Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Impact of contraction intensity and ankle joint angle on calf muscle fascicle length and pennation angle during isometric and dynamic contractions.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Source:
Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
- Publication Information:
Original Publication: London : Nature Publishing Group, copyright 2011-
- Subject Terms:
- Abstract:
During muscle contraction, not only are the fascicles shortening but also the pennation angle changes, which leads to a faster contraction of the muscle than of its fascicles. This phenomenon is called muscle gearing, and it has a direct influence on the force output of the muscle. There are few studies showing pennation angle changes during isometric and concentric contractions for different contraction intensities and muscle lengths. Therefore, the aim was to determine these influences over a wide range of contraction intensities and ankle joint angles for human triceps surae. Additionally, the influence of contraction intensity and ankle joint angle on muscle gearing was evaluated. Ten sport students performed concentric and isometric contractions with intensities between 0 and 90% of the maximum voluntary contraction and ankle joint angles from 50° to 120°. During these contractions, the m. gastrocnemius medialis and lateralis and the m. soleus were recorded via ultrasound imaging. A nonlinear relationship between fascicle length and pennation angle was discovered, which can be described with a quadratic fit for each of the muscles during isometric contraction. A nearly identical relationship was detected during dynamic contraction. The muscle gearing increased almost linearly with contraction intensity and ankle joint angle.
(© 2024. The Author(s).)
- References:
J Biomech. 2009 Nov 13;42(15):2616-9. (PMID: 19665132)
J Biomech. 2021 Dec 2;129:110823. (PMID: 34736086)
Proc R Soc Lond B Biol Sci. 1953 Mar 11;141(902):104-17. (PMID: 13047276)
J Sports Sci Med. 2014 May 01;13(2):439-43. (PMID: 24790502)
Eur J Appl Physiol. 2013 Feb;113(2):437-47. (PMID: 22777499)
J Biomech. 2019 Mar 27;86:160-166. (PMID: 30792071)
PeerJ. 2018 Apr 18;6:e4610. (PMID: 29682414)
J Biomech. 1995 Sep;28(9):1025-33. (PMID: 7559672)
Front Physiol. 2020 Nov 12;11:538522. (PMID: 33281608)
J Biomech. 2020 Apr 16;103:109694. (PMID: 32147241)
J Exp Biol. 2005 Sep;208(Pt 17):3249-61. (PMID: 16109887)
Eur J Appl Physiol Occup Physiol. 1992;65(5):438-44. (PMID: 1425650)
Front Bioeng Biotechnol. 2024 Jun 05;12:1388907. (PMID: 38903187)
J Magn Reson Imaging. 2015 Apr;41(4):941-53. (PMID: 24771672)
Ann Biomed Eng. 2004 Mar;32(3):318-28. (PMID: 15095807)
J Biomech. 2011 Jul 28;44(11):2129-35. (PMID: 21664617)
J Physiol. 1998 Oct 15;512 ( Pt 2):603-14. (PMID: 9763648)
J Orthop Res. 1992 Nov;10(6):928-34. (PMID: 1403308)
J Anat. 2022 Dec;241(6):1324-1335. (PMID: 36004517)
J Biomech. 2019 Mar 6;85:37-42. (PMID: 30660380)
J Mech Behav Biomed Mater. 2018 Jul;83:20-27. (PMID: 29656240)
J Physiol. 1996 Oct 1;496 ( Pt 1):287-97. (PMID: 8910216)
Physiol Rep. 2016 Sep;4(17):. (PMID: 27604399)
PLoS One. 2015 Jun 26;10(6):e0130985. (PMID: 26114955)
Biomech Model Mechanobiol. 2013 Nov;12(6):1205-20. (PMID: 23417261)
Exerc Sport Sci Rev. 1988;16:89-137. (PMID: 3292268)
Crit Rev Biomed Eng. 1989;17(4):359-411. (PMID: 2676342)
Eur J Sport Sci. 2018 Sep;18(8):1128-1138. (PMID: 29806988)
J Exp Biol. 2016 Apr;219(Pt 7):998-1003. (PMID: 27030778)
Proc Biol Sci. 2001 Feb 7;268(1464):229-33. (PMID: 11217891)
J Biomech. 2007;40(1):157-64. (PMID: 16364330)
J Anat. 2022 Jan;240(1):131-144. (PMID: 34411299)
J Biomech. 2014 Jun 3;47(8):1822-8. (PMID: 24725439)
Gait Posture. 2010 Jan;31(1):73-7. (PMID: 19775893)
R Soc Open Sci. 2018 May 16;5(5):172371. (PMID: 29892420)
J Electromyogr Kinesiol. 2007 Aug;17(4):504-14. (PMID: 16919969)
J Biomech. 1990;23 Suppl 1:23-34. (PMID: 2081741)
J Exp Biol. 2006 Nov;209(Pt 21):4379-88. (PMID: 17050853)
Muscle Nerve. 2009 May;39(5):652-65. (PMID: 19291798)
J Appl Physiol (1985). 2017 Dec 1;123(6):1433-1442. (PMID: 28860176)
Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1745-50. (PMID: 18230734)
J Biomech. 1981;14(3):135-42. (PMID: 7240274)
J Exp Biol. 2016 Aug 1;219(Pt 15):2311-9. (PMID: 27489217)
J Biomech. 2016 May 3;49(7):1002-1008. (PMID: 26905734)
Exerc Sport Sci Rev. 2002 Jul;30(3):106-10. (PMID: 12150568)
J Exp Biol. 2014 Feb 1;217(Pt 3):376-81. (PMID: 24477610)
Integr Comp Biol. 2018 Aug 1;58(2):207-218. (PMID: 29889236)
J Biomech. 2016 May 3;49(7):1156-1161. (PMID: 26976226)
J Biomech. 2021 Jan 4;114:110110. (PMID: 33302182)
J Appl Physiol (1985). 2013 Mar 15;114(6):761-9. (PMID: 23305989)
Hum Mov Sci. 2007 Apr;26(2):320-41. (PMID: 17343950)
J Physiol. 1966 May;184(1):170-92. (PMID: 5921536)
Acta Physiol Scand. 2000 Oct;170(2):127-35. (PMID: 11114950)
Gait Posture. 2013 Mar;37(3):305-12. (PMID: 22910172)
Am J Physiol. 1967 Oct;213(4):1025-30. (PMID: 6051170)
Med Sci Sports Exerc. 2023 Nov 1;55(11):2035-2044. (PMID: 37418239)
J Biomech. 1977;10(11/12):799-805. (PMID: 606726)
J Appl Physiol (1985). 1998 Aug;85(2):398-404. (PMID: 9688711)
Biomech Model Mechanobiol. 2024 Aug;23(4):1263-1276. (PMID: 38530501)
J Appl Physiol (1985). 2003 Sep;95(3):1090-6. (PMID: 12740314)
- Contributed Indexing:
Keywords: AGR; Muscle architecture; Muscle gearing; Ultrasound
- Publication Date:
Date Created: 20241022 Date Completed: 20241022 Latest Revision: 20241025
- Publication Date:
20241025
- Accession Number:
PMC11496514
- Accession Number:
10.1038/s41598-024-75795-2
- Accession Number:
39438523
No Comments.