Continuous Wireless Telemetric Measurement of Intraocular Pressure (IOP), Ocular Perfusion Pressure (OPP), and Cerebrospinal Fluid Pressure (CSFP) in Nonhuman Primates (NHPs).

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Downs JC;Downs JC
  • Source:
    Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2025; Vol. 2858, pp. 265-289.
  • Publication Type:
    Journal Article
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Humana Press Country of Publication: United States NLM ID: 9214969 Publication Model: Print Cited Medium: Internet ISSN: 1940-6029 (Electronic) Linking ISSN: 10643745 NLM ISO Abbreviation: Methods Mol Biol Subsets: MEDLINE
    • Publication Information:
      Publication: Totowa, NJ : Humana Press
      Original Publication: Clifton, N.J. : Humana Press,
    • Subject Terms:
    • Abstract:
      Intraocular pressure (IOP) and cerebrospinal fluid pressure (CSFP) telemetry in large animal models can be used to determine the exact IOP, CSFP, translaminar pressure, and translaminar pressure gradient exposure that each normal and treated eye is subjected to relative to its fellow eye. In this way, it is possible to determine the independent contributions of each of these parameters (mean and/or transient fluctuations) to the risk of both the onset and rate of progression of glaucoma. Importantly, we have shown that IOP and CSFP fluctuate continuously by up to 100% over the course of the day, so snapshot cage-side IOP measurements are unable to adequately capture the pressure in the eye; CSFP is not measurable noninvasively at all. Implementation of IOP and CSFP telemetry will allow us to precisely determine the pressure insult in each eye of each animal and thereby unravel the true mechanisms underlying pressure-induced damage to the retinal ganglion cells in glaucoma.
      (© 2025. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)
    • References:
      Rein DB et al (2006) The economic burden of major adult visual disorders in the United States. Arch Ophthalmol 124(12):1754–1760. (PMID: 17159036)
      Malihi M et al (2014) Long-term trends in glaucoma-related blindness in Olmsted County, Minnesota. Ophthalmology 121(1):134–141. (PMID: 24823760)
      Rahmani B et al (1996) The cause-specific prevalence of visual impairment in an urban population. The Baltimore Eye Survey. Ophthalmology 103(11):1721–1726. (PMID: 8942862)
      Collaborative Normal-Tension Glaucoma Study Group (1998) The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Am J Ophthalmol 126(4):498–505.
      Anderson DR, S. Normal Tension Glaucoma (2003) Collaborative normal tension glaucoma study. Curr Opin Ophthalmol 14(2):86–90. (PMID: 12698048)
      Kass MA et al (2010) Delaying treatment of ocular hypertension: the ocular hypertension treatment study. Arch Ophthalmol 128(3):276–287. (PMID: 202121963966140)
      Kass MA et al (2002) The Ocular Hypertension Treatment Study – a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 120(6):701–713. (PMID: 12049574)
      Coleman DJ, Trokel S (1969) Direct-recorded intraocular pressure variations in a human subject. Arch Ophthalmol 82(5):637–640. (PMID: 5357713)
      Realini AD et al (2006) Does IOP follow a conserved daily rhythm? Invest Ophthalmol Vis Sci 47(5):4464.
      Realini T, Weinreb RN, Wisniewski SR (2010) Diurnal intraocular pressure patterns are not repeatable in the short term in healthy individuals. Ophthalmology 117(9):1700–1704. (PMID: 20557945)
      Bhorade AM et al (2009) Variability of intraocular pressure measurements in observation participants in the ocular hypertension treatment study. Ophthalmology 116(4):717–724. (PMID: 19243824)
      Realini T, Weinreb RN, Wisniewski S (2011) Short-term repeatability of diurnal intraocular pressure patterns in glaucomatous individuals. Ophthalmology 118(1):47–51. (PMID: 20709404)
      Allison K, Patel D, Alabi O (2020) Epidemiology of glaucoma: the past, present, and predictions for the future. Cureus 12(11):e11686. (PMID: 333919217769798)
      Turner DC et al (2017) The magnitude and time course of IOP change in response to body position change in nonhuman primates measured using continuous IOP telemetry. Invest Ophthalmol Vis Sci 58(14):6232–6240. (PMID: 292282515724553)
      De Moraes CG et al (2016) Visual field change and 24-hour IOP-related profile with a contact lens sensor in treated glaucoma patients. Ophthalmology 123(4):744–753. (PMID: 26854032)
      Kim JH, Caprioli J (2018) Intraocular pressure fluctuation: is it important? J Ophthalmic Vis Res 13(2):170–174. (PMID: 297196465905311)
      Asrani S et al (2000) Large diurnal fluctuations in intraocular pressure are an independent risk factor in patients with glaucoma. J Glaucoma 9(2):134–142. (PMID: 10782622)
      Rabiolo AMG, Crabb DP, Garway-Heath DF, on behalf of the United Kingdom Glaucoma Treatment Study Investigators (2024) Relationship between intraocular pressure fluctuation and visual field progression rates in the United Kingdom Glaucoma Treatment Study. Ophthalmology.
      Downs JC, Girkin CA (2017) Lamina cribrosa in glaucoma. Curr Opin Ophthalmol 28(2):113–119. (PMID: 278984705480216)
      Zeimer R (1995) Biomechanical properties of the optic nerve head. In: Glaucoma, pp 107–121.
      Quigley HA, Addicks EM (1981) Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Arch Ophthalmol 99(1):137–143. (PMID: 7458737)
      Howell GR et al (2007) Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. J Cell Biol 179(7):1523–1537. (PMID: 181583322373494)
      Nickells RW et al (2012) Under pressure: cellular and molecular responses during glaucoma, a common neurodegeneration with axonopathy. Annu Rev Neurosci 35:153–179. (PMID: 22524788)
      Downs JC (2015) Optic nerve head biomechanics in aging and disease. Exp Eye Res 133:19–29. (PMID: 258194514379445)
      Quaranta L et al (2016) Twenty-four-hour intraocular pressure and ocular perfusion pressure characteristics in newly diagnosed patients with normal tension glaucoma. Eye (Lond) 30(11):1481–1489. (PMID: 27472211)
      Choi J et al (2006) Effect of nocturnal blood pressure reduction on circadian fluctuation of mean ocular perfusion pressure: a risk factor for normal tension glaucoma. Invest Ophthalmol Vis Sci 47(3):831–836. (PMID: 16505014)
      Choi J et al (2007) Circadian fluctuation of mean ocular perfusion pressure is a consistent risk factor for normal-tension glaucoma. Invest Ophthalmol Vis Sci 48(1):104–111. (PMID: 17197523)
      Choi J et al (2013) Relationship between 24-hour mean ocular perfusion pressure fluctuation and rate of paracentral visual field progression in normal-tension glaucoma. Invest Ophthalmol Vis Sci 54(9):6150–6157. (PMID: 23963166)
      Graham SL, Drance SM (1999) Nocturnal hypotension: role in glaucoma progression. Surv Ophthalmol 43(Suppl 1):S10–S16. (PMID: 10416743)
      Kim YK et al (2010) Circadian blood pressure and intraocular pressure patterns in normal tension glaucoma patients with undisturbed sleep. Korean J Ophthalmol 24(1):23–28. (PMID: 201574102817819)
      Lee NY et al (2017) Fluctuation in systolic blood pressure is a major systemic risk factor for development of primary open-angle glaucoma. Sci Rep 7:43734. (PMID: 282627035338023)
      Leske MC (2009) Ocular perfusion pressure and glaucoma: clinical trial and epidemiologic findings. Curr Opin Ophthalmol 20(2):73–78. (PMID: 192405382662722)
      Leske MC et al (2002) Incident open-angle glaucoma and blood pressure. Arch Ophthalmol 120(7):954–959. (PMID: 12096967)
      Memarzadeh F et al (2010) Blood pressure, perfusion pressure, and open-angle glaucoma: the Los Angeles Latino Eye Study. Invest Ophthalmol Vis Sci 51(6):2872–2877. (PMID: 200898802891455)
      Xu L, Wang YX, Jonas JB (2009) Ocular perfusion pressure and glaucoma: the Beijing Eye Study. Eye (Lond) 23(3):734–736. (PMID: 18989341)
      Mottet B et al (2013) 24-hour intraocular pressure rhythm in young healthy subjects evaluated with continuous monitoring using a contact lens sensor. JAMA Ophthalmol 131(12):1507–1516. (PMID: 24158696)
      Chung E et al (2013) Non-invasive continuous blood pressure monitoring: a review of current applications. Front Med 7(1):91–101. (PMID: 23345112)
      Jonas JB, Berenshtein E, Holbach L (2003) Anatomic relationship between lamina cribrosa, intraocular space, and cerebrospinal fluid space. Invest Ophthalmol Vis Sci 44(12):5189–5195. (PMID: 14638716)
      Berdahl JP et al (2008) Intracranial pressure in primary open angle glaucoma, normal tension glaucoma, and ocular hypertension: a case-control study. Invest Ophthalmol Vis Sci 49(12):5412–5418. (PMID: 18719086)
      Berdahl JP, Allingham RR, Johnson DH (2008) Cerebrospinal fluid pressure is decreased in primary open-angle glaucoma. Ophthalmology 115(5):763–768. (PMID: 18452762)
      Berdahl JP, Allingham RR (2010) Intracranial pressure and glaucoma. Curr Opin Ophthalmol 21(2):106–111. (PMID: 20040876)
      Berdahl JP, Ethier CR, Allingham RR (2009) Cerebrospinal fluid pressure and glaucomatous optic disc cupping. Graefes Arch Clin Exp Ophthalmol 247(9):1289–1290. author reply 1291-4. (PMID: 19444463)
      Berdahl JP, Yu DY, Morgan WH (2012) The translaminar pressure gradient in sustained zero gravity, idiopathic intracranial hypertension, and glaucoma. Med Hypotheses 79(6):719–724. (PMID: 22981592)
      Morgan WH, Yu DY, Balaratnasingam C (2008) The role of cerebrospinal fluid pressure in glaucoma pathophysiology: the dark side of the optic disc. J Glaucoma 17(5):408–413. (PMID: 18703953)
      Morgan WH et al (2002) Optic disc movement with variations in intraocular and cerebrospinal fluid pressure. Invest Ophthalmol Vis Sci 43(10):3236–3242. (PMID: 12356830)
      Morgan WH et al (1998) The correlation between cerebrospinal fluid pressure and retrolaminar tissue pressure. Invest Ophthalmol Vis Sci 39(8):1419–1428. (PMID: 9660490)
      Morgan WH et al (1995) The influence of cerebrospinal fluid pressure on the lamina cribrosa tissue pressure gradient. Invest Ophthalmol Vis Sci 36(6):1163–1172. (PMID: 7730025)
      Yang D et al (2014) Optic neuropathy induced by experimentally reduced cerebrospinal fluid pressure in monkeys. Invest Ophthalmol Vis Sci 55(5):3067–3073. (PMID: 24736050)
      Morgan WH et al (2008) Glaucoma and cerebrospinal fluid pressure. Ophthalmology 115(12):2317–2318. author reply 2318. (PMID: 19041488)
      Hua Y, Voorhees AP, Sigal IA (2018) Cerebrospinal Fluid Pressure: Revisiting Factors Influencing Optic Nerve Head Biomechanics. Invest Ophthalmol Vis Sci 59(1):154–165. (PMID: 293321305769499)
      Ren R et al (2010) Cerebrospinal fluid pressure in glaucoma: a prospective study. Ophthalmology 117(2):259–266. (PMID: 19969367)
      Liu KC et al (2020) Current concepts of cerebrospinal fluid dynamics and the translaminar cribrosa pressure gradient: a paradigm of optic disk disease. Surv Ophthalmol 65(1):48–66. (PMID: 31449832)
      Wostyn P et al (2015) Glaucoma and the role of cerebrospinal fluid dynamics. Invest Ophthalmol Vis Sci 56(11):6630–6631. (PMID: 26465892)
      Killer HE, Flammer J, Miller NR (2008) Glaucoma and cerebrospinal fluid pressure. Ophthalmology 115(12):2316–2317. author reply 2317. (PMID: 19041485)
      Fleischman D et al (2012) Cerebrospinal fluid pressure decreases with older age. PLoS One 7(12):e52664. (PMID: 233007373530461)
      Karimi A et al (2022) Relative contributions of intraocular and cerebrospinal fluid pressures to the biomechanics of the lamina cribrosa and laminar neural tissues. Invest Ophthalmol Vis Sci 63(11):14. (PMID: 362553649587471)
      Feola AJ et al (2017) Deformation of the lamina cribrosa and optic nerve due to changes in cerebrospinal fluid pressure. Invest Ophthalmol Vis Sci 58(4):2070–2078. (PMID: 283896756733531)
      Downs JC (2020) Neural coupling of intracranial pressure and aqueous humour outflow facility: a potential new therapeutic target for intraocular pressure management. J Physiol 598(8):1429–1430. (PMID: 32060923)
      Quigley HA, Addicks EM (1980) Chronic experimental glaucoma in primates. II. Effect of extended intraocular pressure elevation on optic nerve head and axonal transport. Invest Ophthalmol Vis Sci 19(2):137–152. (PMID: 6153173)
      Quigley HA, Addicks EM (1980) Chronic experimental glaucoma in primates. I. Production of elevated intraocular pressure by anterior chamber injection of autologous ghost red blood cells. Invest Ophthalmol Vis Sci 19(2):126–136. (PMID: 6766124)
      Quigley HA et al (1980) The mechanism of optic nerve damage in experimental acute intraocular pressure elevation. Invest Ophthalmol Vis Sci 19(5):505–517. (PMID: 6154668)
      Burgoyne CF (2015) The non-human primate experimental glaucoma model. Exp Eye Res 141:57–73. (PMID: 260709844628879)
      Turner DC et al (2019) Transient intraocular pressure fluctuations: source, magnitude, frequency, and associated mechanical energy. Invest Ophthalmol Vis Sci 60(7):2572–2582. (PMID: 312123106586078)
      Jasien JV et al (2020) Diurnal cycle of translaminar pressure in nonhuman primates quantified with continuous wireless telemetry. Invest Ophthalmol Vis Sci 61(2):37. (PMID: 320974797329631)
      Jasien JV et al (2020) Quantification of Translaminar Pressure Gradient (TLPG) with continuous wireless telemetry in Nonhuman Primates (NHPs). Transl Vis Sci Technol 9(12):18. (PMID: 332405717671865)
      Jasien JV et al (2019) Cyclic pattern of Intraocular Pressure (IOP) and transient IOP fluctuations in nonhuman primates measured with continuous wireless telemetry. Curr Eye Res 44(11):1244–1252. (PMID: 311708176829065)
      Jasien JV et al (2020) Comparison of extraocular and intraocular pressure transducers for measurement of transient intraocular pressure fluctuations using continuous wireless telemetry. Sci Rep 10(1):20893. (PMID: 332624207708973)
      Downs JC et al (2011) 24-hour IOP telemetry in the nonhuman primate: implant system performance and initial characterization of IOP at multiple timescales. Invest Ophthalmol Vis Sci 52(10):7365–7375. (PMID: 217915863183973)
      Markert JE et al (2018) IOP, IOP transient impulse, ocular perfusion pressure, and mean arterial pressure relationships in nonhuman primates instrumented with telemetry. Invest Ophthalmol Vis Sci 59(11):4496–4505. (PMID: 302084176133237)
      Wilson KI et al (2020) Intra-subject variability and diurnal cycle of ocular perfusion pressure as characterized by continuous telemetry in nonhuman primates. Invest Ophthalmol Vis Sci 61(6):7. (PMID: 324921137415896)
      Turner DC, Girkin CA, Downs JC (2019) The magnitude of intraocular pressure elevation associated with eye rubbing. Ophthalmology 126(1):171–172. (PMID: 30153437)
      Jasien JV et al (2017) The Magnitude of hypotony and time course of intraocular pressure recovery following anterior chamber cannulation in nonhuman primates. Invest Ophthalmol Vis Sci 58(7):3225–3230. (PMID: 286602755490360)
      Fortune B et al (2013) Onset and progression of peripapillary retinal nerve fiber layer (RNFL) retardance changes occur earlier than RNFL thickness changes in experimental glaucoma. Invest Ophthalmol Vis Sci 54(8):5653–5661. (PMID: 238473223759219)
      Jasien JV et al (2020) Effect of Body position on Intraocular Pressure (IOP), Intracranial Pressure (ICP), and Translaminar Pressure (TLP) via continuous wireless telemetry in Nonhuman Primates (NHPs). Invest Ophthalmol Vis Sci 61(12):18. (PMID: 330743007585393)
    • Contributed Indexing:
      Keywords: Intraocular pressure fluctuations; Lamina cribrosa; Long-term IOP monitoring; Mechanical stress
    • Publication Date:
      Date Created: 20241021 Date Completed: 20241021 Latest Revision: 20241129
    • Publication Date:
      20241202
    • Accession Number:
      10.1007/978-1-0716-4140-8_21
    • Accession Number:
      39433682