The potential for species distribution models to distinguish source populations from sinks.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Blackwell Country of Publication: England NLM ID: 0376574 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2656 (Electronic) Linking ISSN: 00218790 NLM ISO Abbreviation: J Anim Ecol Subsets: MEDLINE
    • Publication Information:
      Publication: Oxford : Blackwell
      Original Publication: Oxford, British Ecological Society.
    • Subject Terms:
    • Abstract:
      While species distribution models (SDM) are frequently used to predict species occurrences to help inform conservation management, there is limited evidence evaluating whether habitat suitability can reliably predict intrinsic growth rates or distinguish source populations from sinks. Filling this knowledge gap is critical for conservation science, as applications of SDMs for management purposes ultimately depend on these typically unobserved population or metapopulation dynamics. Using linear regression, we associated previously published population level estimates of intrinsic growth and abundance derived from a Bayesian analysis of mark-recapture data for 17 bird species found in the contiguous United States with SDM habitat suitability estimates fitted here to opportunistic data for these same species. We then used the area under the ROC curve (AUC) to measure how well SDMs can distinguish populations categorized as sources and sinks. We built SDMs using two different approaches, boosted regression trees (BRT) and generalized linear models (GLM), and compared their source/sink predictive performance. Each SDM was built with presence points obtained from eBird (a web-available database) and 10 environmental variables previously selected to model intrinsic growth rates and abundance for these species. We show that SDMs built with opportunistic data are poor predictors of species demography in general; both BRT and GLM explained very little spatial variation of intrinsic growth rate and population abundance (median R 2 across 17 species was close to 0.1 for both SDM methods). SDMs, however, estimated higher suitability for source populations as compared to sinks. Out of 13 species which had both source and sink populations, both BRT and GLM had AUC values greater than 0.7 for 7 species when discriminating between sources and sinks. Habitat suitability have the potential to be a useful measure to indicate a population's ability to sustain itself as a source population; however more research on a diverse set of taxa is essential to fully explore this potential. This interpretation of habitat suitability can be particularly useful for conservation practice, and identification of explicit cases of when and how SDMs fail to match population demography can be informative for advancing ecological theory.
      (© 2024 The Author(s). Journal of Animal Ecology © 2024 British Ecological Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.)
    • References:
      Aizpurua, O., Cantú‐Salazar, L., Martin, G. S., Sardà‐Palomera, F., Gargallo, G., Herrando, S., Brotons, L., & Titeux, N. (2017). Evaluating the reliability of species distribution models with an indirect measure of bird reproductive performance. Journal of Avian Biology, 48(12), 1575–1582. https://doi.org/10.1111/jav.01218.
      Akçakaya, H. R., & Atwood, J. L. (1997). A habitat‐based Metapopulation model of the California gnatcatcher. Conservation Biology, 11(2), 422–434. https://doi.org/10.1046/j.1523‐1739.1997.96164.x.
      Akçakaya, H. R., & Baur, B. (1996). Effects of population subdivision and catastrophes on the persistence of a land snail metapopulation. Oecologia, 105(4), 475–483. https://doi.org/10.1007/BF00330010.
      Albert, S. K., DeSante, D. F., Kaschube, D. R., & Saracco, J. F. (2016). MAPS (monitoring avian productivity and survivorship) data provide inferences on demographic drivers of population trends for 158 species of north American Landbirds. North American Bird Bander, 41(1), 12–19.
      Anderson, R. P. (2013). A framework for using niche models to estimate impacts of climate change on species distributions: Niche models and climate change. Annals of the New York Academy of Sciences, 1297(1), 8–28. https://doi.org/10.1111/nyas.12264.
      Araújo, M. B., Anderson, R. P., Márcia Barbosa, A., Beale, C. M., Dormann, C. F., Early, R., Garcia, R. A., Guisan, A., Maiorano, L., Naimi, B., O'Hara, R. B., Zimmermann, N. E., & Rahbek, C. (2019). Standards for distribution models in biodiversity assessments. Science Advances, 5(1), eaat4858. https://doi.org/10.1126/sciadv.aat4858.
      Baer, K. C., & Maron, J. L. (2020). Ecological niche models display nonlinear relationships with abundance and demographic performance across the latitudinal distribution of Astragalus utahensis (Fabaceae). Ecology and Evolution, 10(15), 8251–8264. https://doi.org/10.1002/ece3.6532.
      Barbet‐Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting pseudo‐absences for species distribution models: How, where and how many?: How to use pseudo‐absences in niche modelling? Methods in Ecology and Evolution, 3(2), 327–338. https://doi.org/10.1111/j.2041‐210X.2011.00172.x.
      Battin, J. (2004). When good animals love bad habitats: Ecological traps and the conservation of animal populations: Ecological traps. Conservation Biology, 18(6), 1482–1491. https://doi.org/10.1111/j.1523‐1739.2004.00417.x.
      Bayly, M. J., & Angert, A. L. (2019). Niche models do not predict experimental demography but both suggest dispersal limitation across the northern range limit of the scarlet monkeyflower (Erythranthe cardinalis). Journal of Biogeography, 46, 1316–1328. https://doi.org/10.1111/jbi.13609.
      Behnke, R., Vavrus, S., Allstadt, A., Albright, T., Thogmartin, W. E., & Radeloff, V. C. (2016). Evaluation of downscaled, gridded climate data for the conterminous United States. Ecological Applications, 26(5), 1338–1351.
      Bellis, J., Bourke, D., Maschinski, J., Heineman, K., & Dalrymple, S. (2020). Climate suitability as a predictor of conservation translocation failure. Conservation Biology, 34(6), 1473–1481. https://doi.org/10.1111/cobi.13518.
      Brambilla, M., & Ficetola, G. F. (2012). Species distribution models as a tool to estimate reproductive parameters: A case study with a passerine bird species. Journal of Animal Ecology, 81(4), 781–787. https://doi.org/10.1111/j.1365‐2656.2012.01970.x.
      Broennimann, O., & Guisan, A. (2008). Predicting current and future biological invasions: Both native and invaded ranges matter. Biology Letters, 4(5), 585–589. https://doi.org/10.1098/rsbl.2008.0254.
      Chesser, R. T., Billerman, S. M., Burns, K. J., Cicero, C., Dunn, J. L., Hernández‐Baños, B. E., Jiménez, R. A., Kratter, A. W., Mason, N. A., Rasmussen, P. C., & Remsen, J. V., Jr. (2023). Sixty‐fourth supplement to the American Ornithological Society's check‐list of North American birds. Ornithology, 140(3), ukad023.
      Csergő, A. M., Salguero‐Gómez, R., Broennimann, O., Coutts, S. R., Guisan, A., Angert, A. L., Welk, E., Stott, I., Enquist, B. J., McGill, B., Svenning, J., Violle, C., & Buckley, Y. M. (2017). Less favourable climates constrain demographic strategies in plants. Ecology Letters, 20(8), 969–980. https://doi.org/10.1111/ele.12794.
      Dallas, T. A., & Hastings, A. (2018). Habitat suitability estimated by niche models is largely unrelated to species abundance. Global Ecology and Biogeography, 27(12), 1448–1456. https://doi.org/10.1111/geb.12820.
      DeSante, D. F., Burton, K. M., Kaschube, D., Velez, P., Froehlich, D., & Albert, S. (2024). Instructions for the establishment and operation of constant‐effort bird‐banding stations as part of the monitoring avian productivity and survivorship (MAPS) program.
      DeSante, D. F., Kaschube, D. R., & Saracco, J. F. (2015). Vital rates of north American Landbirds. The Institute for Bird Populations. www.VitalRatesOfNorthAmericanLandbirds.org.
      Dias, P. C. (1996). Sources and sinks in population biology. Trends in Ecology & Evolution, 11(8), 326–330. https://doi.org/10.1016/0169‐5347(96)10037‐9.
      Donovan, T. M., & Thompson, F. R. (2001). Modeling the ecological trap hypothesis: A habitat and demographic analysis for migrant songbirds. Ecological Applications, 11(3), 871–882. https://doi.org/10.1890/1051‐0761(2001)011[0871:MTETHA]2.0.CO;2.
      Draper, D., Marques, I., & Iriondo, J. M. (2019). Species distribution models with field validation, a key approach for successful selection of receptor sites in conservation translocations. Global Ecology and Conservation, 19, e00653. https://doi.org/10.1016/j.gecco.2019.e00653.
      Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology, 77(4), 802–813. https://doi.org/10.1111/j.1365‐2656.2008.01390.x.
      Eyre, A. C., Briscoe, N. J., Harley, D. K. P., Lumsden, L. F., McComb, L. B., & Lentini, P. E. (2022). Using species distribution models and decision tools to direct surveys and identify potential translocation sites for a critically endangered species. Diversity and Distributions, 28(4), 700–711. https://doi.org/10.1111/ddi.13469.
      Fordham, D. A., Akçakaya, H. R., Brook, B. W., Rodríguez, A., Alves, P. C., Civantos, E., Triviño, M., Watts, M. J., & Araújo, M. B. (2013). Adapted conservation measures are required to save the Iberian lynx in a changing climate. Nature Climate Change, 3(10), 899–903. https://doi.org/10.1038/nclimate1954.
      Furrer, R. D., & Pasinelli, G. (2016). Empirical evidence for source‐sink populations: A review on occurrence, assessments and implications. Biological Reviews, 91(3), 782–795. https://doi.org/10.1111/brv.12195.
      Greiser, C., Hylander, K., Meineri, E., Luoto, M., & Ehrlén, J. (2020). Climate limitation at the cold edge: Contrasting perspectives from species distribution modelling and a transplant experiment. Ecography, 43(5), 637–647. https://doi.org/10.1111/ecog.04490.
      Guisan, A., Thuiller, W., & Zimmermann, N. E. (2017). Habitat suitability and distribution models with applications in R. Cambridge University Press.
      Hällfors, M. H., Aikio, S., Fronzek, S., Hellmann, J. J., Ryttäri, T., & Heikkinen, R. K. (2016). Assessing the need and potential of assisted migration using species distribution models. Biological Conservation, 196, 60–68. https://doi.org/10.1016/j.biocon.2016.01.031.
      Heinrichs, J. A., Bender, D. J., Gummer, D. L., & Schumaker, N. H. (2010). Assessing critical habitat: Evaluating the relative contribution of habitats to population persistence. Biological Conservation, 143(9), 2229–2237. https://doi.org/10.1016/j.biocon.2010.06.009.
      Holt, R. D. (1985). Population dynamics in two‐patch environments: Some anomalous consequences of an optimal habitat distribution. Theoretical Population Biology, 28(2), 181–208. https://doi.org/10.1016/0040‐5809(85)90027‐9.
      Holt, R. D. (2020). Reflections on niches and numbers. Ecography, 43(3), 387–390. https://doi.org/10.1111/ecog.04828.
      Holt, R. D., Lawton, J. H., Gaston, K. J., & Blackburn, T. M. (1997). On the relationship between range size and local abundance: Back to basics. Oikos, 78(1), 183. https://doi.org/10.2307/3545815.
      Johnston, A., Hochachka, W. M., Strimas‐Mackey, M. E., Ruiz Gutierrez, V., Robinson, O. J., Miller, E. T., Auer, T., Kelling, S. T., & Fink, D. (2021). Analytical guidelines to increase the value of community science data: An example using eBird data to estimate species distributions. Diversity and Distributions, 27(7), 1265–1277. https://doi.org/10.1111/ddi.13271.
      Kauffman, M. J., Pollock, J. F., & Walton, B. (2004). Spatial structure, dispersal, and management of a recovering raptor population. The American Naturalist, 164(5), 582–597. https://doi.org/10.1086/424763.
      Lee‐Yaw, J. A., McCune, J. L., Pironon, S., & Sheth, S. N. (2022). Species distribution models rarely predict the biology of real populations. Ecography, 2022(6), e05877. https://doi.org/10.1111/ecog.05877.
      Lyons, D. A., Lowen, J. B., Therriault, T. W., Brickman, D., Guo, L., Moore, A. M., Peña, M. A., Wang, Z., & DiBacco, C. (2020). Identifying marine invasion hotspots using stacked species distribution models. Biological Invasions, 22(11), 3403–3423. https://doi.org/10.1007/s10530‐020‐02332‐3.
      Martinez‐Meyer, E., Diaz‐Porras, D., Peterson, A. T., & Yanez‐Arenas, C. (2012). Ecological niche structure and rangewide abundance patterns of species. Biology Letters, 9(1), 20120637. https://doi.org/10.1098/rsbl.2012.0637.
      Nisi, A. C., Benson, J. F., King, R., & Wilmers, C. C. (2023). Habitat fragmentation reduces survival and drives source–sink dynamics for a large carnivore. Ecological Applications, 33(4), e2822. https://doi.org/10.1002/eap.2822.
      Nystrand, M., Griesser, M., Eggers, S., & Ekman, J. (2010). Habitat‐specific demography and source‐sink dynamics in a population of Siberian jays. Journal of Animal Ecology, 79(1), 266–274. https://doi.org/10.1111/j.1365‐2656.2009.01627.x.
      Osorio‐Olvera, L., Soberón, J., & Falconi, M. (2019). On population abundance and niche structure. Ecography, 42(8), 1415–1425. https://doi.org/10.1111/ecog.04442.
      Pellissier, L., Meltofte, H., Hansen, J., Schmidt, N. M., Tamstorf, M. P., Maiorano, L., Aastrup, P., Olsen, J., Guisan, A., & Wisz, M. S. (2013). Suitability, success and sinks: How do predictions of nesting distributions relate to fitness parameters in high arctic waders? Diversity and Distributions, 19(12), 1496–1505. https://doi.org/10.1111/ddi.12109.
      Peterson, A. T. (Ed.). (2011). Ecological niches and geographic distributions. Princeton University Press.
      Pulliam, H. R. (1988). Sources, sinks, and population regulation. The American Naturalist, 132(5), 652–661. https://doi.org/10.1086/284880.
      Pulliam, H. R. (2000). On the relationship between niche and distribution. Ecology Letters, 3(4), 349–361.
      Robinson, S. K., Thompson, F. R., Donovan, T. M., Whitehead, D. R., & Faaborg, J. (1995). Regional forest fragmentation and the nesting success of migratory birds. Science, 267(5206), 1987–1990. https://doi.org/10.1126/science.267.5206.1987.
      Şen, B. (2024). bilgecansen/MAPSvsEBIRD: Code for Sen et al. (for publication at JAE) (v1.0.4). Zenodo, https://doi.org/10.5281/zenodo.13834536.
      Şen, B., & Akçakaya, H. R. (2022a). Fecundity and density dependence can be estimated from mark–recapture data for making population projections. Ornithological Applications, 124(1), duab064. https://doi.org/10.1093/ornithapp/duab064.
      Şen, B., & Akçakaya, H. R. (2022b). Inter‐specific variability in demographic processes affects abundance‐occupancy relationships. Oecologia, 198, 153–165. https://doi.org/10.1007/s00442‐021‐05085‐5.
      Spencer, W., Rustigian‐Romsos, H., Strittholt, J., Scheller, R., Zielinski, W., & Truex, R. (2011). Using occupancy and population models to assess habitat conservation opportunities for an isolated carnivore population. Biological Conservation, 144(2), 788–803. https://doi.org/10.1016/j.biocon.2010.10.027.
      Stan Development Team. (2024). Stan modeling language users guide and reference manual, version 2.35. https://mc‐stan.org.
      Sullivan, B. L., Wood, C. L., Iliff, M. J., Bonney, R. E., Fink, D., & Kelling, S. (2009). eBird: A citizen‐based bird observation network in the biological sciences. Biological Conservation, 142, 2282–2292.
      Thuiller, W., Brotons, L., Araújo, M. B., & Lavorel, S. (2004). Effects of restricting environmental range of data to project current and future species distributions. Ecography, 27(2), 165–172. https://doi.org/10.1111/j.0906‐7590.2004.03673.x.
      Thuiller, W., Münkemüller, T., Schiffers, K. H., Georges, D., Dullinger, S., Eckhart, V. M., Edwards, T. C., Gravel, D., Kunstler, G., Merow, C., Moore, K., Piedallu, C., Vissault, S., Zimmermann, N. E., Zurell, D., & Schurr, F. M. (2014). Does probability of occurrence relate to population dynamics? Ecography, 37(12), 1155–1166. https://doi.org/10.1111/ecog.00836.
      Tikhonov, G., Opedal, Ø. H., Abrego, N., Lehikoinen, A., Jonge, M. M. J., Oksanen, J., & Ovaskainen, O. (2020). Joint species distribution modelling with the r‐package H msc. Methods in Ecology and Evolution, 11(3), 442–447. https://doi.org/10.1111/2041‐210X.13345.
      Valavi, R., Guillera‐Arroita, G., Lahoz‐Monfort, J. J., & Elith, J. (2022). Predictive performance of presence‐only species distribution models: A benchmark study with reproducible code. Ecological Monographs, 92(1), e01486. https://doi.org/10.1002/ecm.1486.
      VanDerWal, J., Shoo, L. P., Graham, C., & Williams, S. E. (2009). Selecting pseudo‐absence data for presence‐only distribution modeling: How far should you stray from what you know? Ecological Modelling, 220(4), 589–594. https://doi.org/10.1016/j.ecolmodel.2008.11.010.
      VanDerWal, J., Shoo, L. P., Johnson, C. N., & Williams, S. E. (2009). Abundance and the environmental niche: Environmental suitability estimated from niche models predicts the upper limit of local abundance. The American Naturalist, 174(2), 282–291. https://doi.org/10.1086/600087.
      Weber, M. M., Stevens, R. D., Diniz‐Filho, J. A. F., & Grelle, C. E. V. (2017). Is there a correlation between abundance and environmental suitability derived from ecological niche modelling? A meta‐analysis. Ecography, 40(7), 817–828. https://doi.org/10.1111/ecog.02125.
      Williams, H. M., Siegrist, J., & Wilson, A. M. (2021). Support for a relationship between demography and modeled habitat suitability is scale dependent for the purple martin Progne subis. Journal of Animal Ecology, 90(2), 356–366. https://doi.org/10.1111/1365‐2656.13369.
    • Contributed Indexing:
      Keywords: habitat suitability; intrinsic growth rate; population abundance; population demography; source‐sink dynamics; species distribution models
    • Publication Date:
      Date Created: 20241021 Date Completed: 20241204 Latest Revision: 20241204
    • Publication Date:
      20241204
    • Accession Number:
      10.1111/1365-2656.14201
    • Accession Number:
      39429222