New perspectives on microbiome-dependent gut-brain pathways for the treatment of depression with gastrointestinal symptoms: from bench to bedside.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Transliterated Title:
      依赖于微生物的肠脑通路治疗伴有胃肠道症状抑郁症的新视角:从实验室到临床.
    • Publication Information:
      Ahead of Print
    • Source:
      Publisher: Zhejiang University Press Country of Publication: China NLM ID: 101236535 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1862-1783 (Electronic) Linking ISSN: 16731581 NLM ISO Abbreviation: J Zhejiang Univ Sci B Subsets: MEDLINE
    • Publication Information:
      Original Publication: Hangzhou, China : Zhejiang University Press, 2005-
    • Abstract:
      Patients with depression are more likely to have chronic gastrointestinal (GI) symptoms than the general population, but such symptoms are considered only somatic symptoms of depression and lack special attention. There is a chronic lack of appropriate diagnosis and effective treatment for patients with depression accompanied by GI symptoms, and studying the association between depression and GI disorders (GIDs) is extremely important for clinical management. There is growing evidence that depression is closely related to the microbiota present in the GI tract, and the microbiota-gut-brain axis (MGBA) is creating a new perspective on the association between depression and GIDs. Identifying and treating GIDs would provide a key opportunity to prevent episodes of depression and may also improve the outcome of refractory depression. Current studies on depression and the microbially related gut-brain axis (GBA) lack a focus on GI function. In this review, we combine preclinical and clinical evidence to summarize the roles of the microbially regulated GBA in emotions and GI function, and summarize potential therapeutic strategies to provide a reference for the study of the pathomechanism and treatment of depression in combination with GI symptoms.
    • References:
      Abbasi SH, Hosseini F, Modabbernia A, et al., 2012. Effect of celecoxib add-on treatment on symptoms and serum IL-6 concentrations in patients with major depressive disorder: randomized double-blind placebo-controlled study. J Affect Disord, 141(2-3): 308- 314. https://doi.org/10.1016/j.jad.2012.03.033.
      Abildgaard A, Elfving B, Hokland M, et al., 2017. Probiotic treatment reduces depressive-like behaviour in rats independently of diet. Psychoneuroendocrinology, 79: 40- 48. https://doi.org/10.1016/j.psyneuen.2017.02.014.
      Agrawal L, Korkutata M, Vimal SK, et al., 2020. Therapeutic potential of serotonin 4 receptor for chronic depression and its associated comorbidity in the gut. Neuropharmacology, 166: 107969. https://doi.org/10.1016/j.neuropharm.2020.107969.
      Aguado A, del Álamo MG, 2020. Gastrointestinal comorbidity and symptoms associated with depression in patients aged over 60 years. Med Fam SEMERGEN, 46(1): 27- 32. https://doi.org/10.1016/j.semerg.2019.03.003.
      Agus A, Planchais J, Sokol H, 2018. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe, 23(6): 716- 724. https://doi.org/10.1016/j.chom.2018.05.003.
      Alexeev EE, Lanis JM, Kao DJ, et al., 2018. Microbiota-derived indole metabolites promote human and murine intestinal homeostasis through regulation of interleukin-10 receptor. Am J Pathol, 188(5): 1183- 1194. https://doi.org/10.1016/j.ajpath.2018.01.011.
      Allen AP, Hutch W, Borre YE, et al., 2016. Bifidobacterium longum 1714 as a translational psychobiotic: modulation of stress, electrophysiology and neurocognition in healthy volunteers. Transl Psychiatry, 6(11): e939. https://doi.org/10.1038/tp.2016.191.
      Arpaia N, Campbell C, Fan XY, et al., 2013. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 504(7480): 451- 455. https://doi.org/10.1038/nature12726.
      Avramidou M, Angst F, Angst J, et al., 2018. Epidemiology of gastrointestinal symptoms in young and middle-aged Swiss adults: prevalences and comorbidities in a longitudinal population cohort over 28 years. BMC Gastroenterol, 18: 21. https://doi.org/10.1186/s12876-018-0749-3.
      Barandouzi ZA, Starkweather AR, Henderson WA, et al., 2020. Altered composition of gut microbiota in depression: a systematic review. Front Psychiatry, 11: 541. https://doi.org/10.3389/fpsyt.2020.00541.
      Barbara G, Feinle-Bisset C, Ghoshal UC, et al., 2016. The intestinal microenvironment and functional gastrointestinal disorders. Gastroenterology, 150(6): 1305- 1318.e8. https://doi.org/10.1053/j.gastro.2016.02.028.
      Barrett E, Ross RP, O'Toole PW, et al., 2012. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol, 113(2): 411- 417. https://doi.org/10.1111/j.1365-2672.2012.05344.x.
      Belkaid Y, Hand TW, 2014. Role of the microbiota in immunity and inflammation. Cell, 157(1): 121- 141. https://doi.org/10.1016/j.cell.2014.03.011.
      Belkaid Y, Harrison OJ, 2017. Homeostatic immunity and the microbiota. Immunity, 46(4): 562- 576. https://doi.org/10.1016/j.immuni.2017.04.008.
      Bertollo AG, Grolli RE, Plissari ME, et al., 2020. Stress and serum cortisol levels in major depressive disorder: a cross-sectional study. AIMS Neurosci, 7(4): 459- 469. https://doi.org/10.3934/Neuroscience.2020028.
      Beyak MJ, 2010. Visceral afferents—determinants and modulation of excitability. Auton Neurosci, 153(1-2): 69- 78. https://doi.org/10.1016/j.autneu.2009.07.019.
      Bian XC, Patel B, Dai XL, et al., 2007. High mucosal serotonin availability in neonatal guinea pig ileum is associated with low serotonin transporter expression. Gastroenterology, 132(7): 2438- 2447. https://doi.org/10.1053/j.gastro.2007.03.103.
      Bjørklund G, Pivina L, Dadar M, et al., 2020. Gastrointestinal alterations in autism spectrum disorder: what do we know? Neurosci Biobehav Rev, 118: 111- 120. https://doi.org/10.1016/j.neubiorev.2020.06.033.
      Bjurstöm H, Wang JY, Ericsson I, et al., 2008. GABA, a natural immunomodulator of T lymphocytes. J Neuroimmunol, 205(1-2): 44- 50. https://doi.org/10.1016/j.jneuroim.2008.08.017.
      Blacher E, Levy M, Tatirovsky E, et al., 2017. Microbiome-modulated metabolites at the interface of host immunity. J Immunol, 198(2): 572- 580. https://doi.org/10.4049/jimmunol.1601247.
      Boller T, Felix G, 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol, 60: 379- 406. https://doi.org/10.1146/annurev.arplant.57.032905.105346.
      Bolte LA, Vich Vila A, Imhann F, et al., 2021. Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome. Gut, 70(7): 1287- 1298. https://doi.org/10.1136/gutjnl-2020-322670.
      Bonaz B, Sinniger V, Pellissier S, 2017. The vagus nerve in the neuro-immune axis: implications in the pathology of the gastrointestinal tract. Front Immunol, 8: 1452. https://doi.org/10.3389/fimmu.2017.01452.
      Bonaz B, Bazin T, Pellissier S, 2018. The vagus nerve at the interface of the microbiota-gut-brain axis. Front Neurosci, 12: 49. https://doi.org/10.3389/fnins.2018.00049.
      Braniste V, Al-Asmakh M, Kowal C, et al., 2014. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med, 6(263): 263ra158. https://doi.org/10.1126/scitranslmed.3009759.
      Bravo JA, Forsythe P, Chew MV, et al., 2011. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA, 108(38): 16050- 16055. https://doi.org/10.1073/pnas.1102999108.
      Brigitta B, 2002. Pathophysiology of depression and mechanisms of treatment. Dialogues Clin Neurosci, 4(1): 7- 20. https://doi.org/10.31887/DCNS.2002.4.1/bbondy.
      Britanova L, Diefenbach A, 2017. Interplay of innate lymphoid cells and the microbiota. Immunol Rev, 279(1): 36- 51. https://doi.org/10.1111/imr.12580.
      Britton GJ, Contijoch EJ, Mogno I, et al., 2019. Microbiotas from humans with inflammatory bowel disease alter the balance of gut Th17 and RORγt + regulatory T cells and exacerbate colitis in mice. Immunity, 50(1): 212- 224.e4. https://doi.org/10.1016/j.immuni.2018.12.015.
      Bromet E, Andrade LH, Hwang I, et al., 2011. Cross-national epidemiology of DSM-IV major depressive episode. BMC Med, 9(1): 90. https://doi.org/10.1186/1741-7015-9-90.
      Brun P, Giron MC, Qesari M, et al., 2013. Toll-like receptor 2 regulates intestinal inflammation by controlling integrity of the enteric nervous system. Gastroenterology, 145(6): 1323- 1333. https://doi.org/10.1053/j.gastro.2013.08.047.
      Cani PD, Everard A, Duparc T, 2013. Gut microbiota, enteroendocrine functions and metabolism. Curr Opin Pharmacol, 13(6): 935- 940. https://doi.org/10.1016/j.coph.2013.09.008.
      Cantarero-Prieto D, Moreno-Mencia P, 2022. The effects of gastrointestinal disturbances on the onset of depression and anxiety. PLoS ONE, 17(1): e0262712. https://doi.org/10.1371/journal.pone.0262712.
      Cao C, Liu MQ, Qu SC, et al., 2020. Chinese medicine formula Kai-Xin-San ameliorates depression-like behaviours in chronic unpredictable mild stressed mice by regulating gut microbiota-inflammation-stress system. J Ethnopharmacol, 261: 113055. https://doi.org/10.1016/j.jep.2020.113055.
      Carlessi AS, Borba LA, Zugno AI, et al., 2021. Gut microbiota-brain axis in depression: the role of neuroinflammation. Eur J Neurosci, 53(1): 222- 235. https://doi.org/10.1111/ejn.14631.
      Chahwan B, Kwan S, Isik A, et al., 2019. Gut feelings: a randomised, triple-blind, placebo-controlled trial of probiotics for depressive symptoms. J Affect Disord, 253: 317- 326. https://doi.org/10.1016/j.jad.2019.04.097.
      Chen DZ, Zhang YL, Huang T, et al., 2023. Depression and risk of gastrointestinal disorders: a comprehensive two-sample Mendelian randomization study of European ancestry. Psychol Med, 53(15): 7309- 7321. https://doi.org/10.1017/s0033291723000867.
      Cheng D, Chang HS, Ma SY, et al., 2018. Tiansi Liquid modulates gut microbiota composition and tryptophan‒kynurenine metabolism in rats with hydrocortisone-induced depression. Molecules, 23(11): 2832. https://doi.org/10.3390/molecules23112832.
      Cheng SP, Li M, Zhang QY, et al., 2021. Efficacy and safety of Shugan Jieyu capsules in the adjuvant treatment of functional dyspepsia with anxiety and depression: a meta-analysis. China Pharm, 30(14): 94- 102 (in Chinese). https://doi.org/10.3969/j.issn.1006-4931.2021.14.026.
      Chiocchetti R, Mazzuoli G, Albanese V, et al., 2008. Anatomical evidence for ileal Peyer’s patches innervation by enteric nervous system: a potential route for prion neuroinvasion? Cell Tissue Res, 332(2): 185- 194. https://doi.org/10.1007/s00441-008-0583-y.
      Chu AL, Stochl J, Lewis G, et al., 2019. Longitudinal association between inflammatory markers and specific symptoms of depression in a prospective birth cohort. Brain Behav Immun, 76: 74- 81. https://doi.org/10.1016/j.bbi.2018.11.007.
      Craig CF, Filippone RT, Stavely R, et al., 2022. Neuroinflammation as an etiological trigger for depression comorbid with inflammatory bowel disease. J Neuroinflammation, 19: 4. https://doi.org/10.1186/s12974-021-02354-1.
      Cryan JF, O'Riordan KJ, Cowan CSM, et al., 2019. The microbiota-gut-brain axis. Physiol Rev, 99(4): 1877- 2013. https://doi.org/10.1152/physrev.00018.2018.
      Dai HQ, Han JJ, Wang T, et al., 2023. Recent advances in gut microbiota-associated natural products: structures, bioactivities, and mechanisms. Nat Prod Rep, 40(6): 1078- 1093. https://doi.org/10.1039/d2np00075j.
      Dalile B, van Oudenhove L, Vervliet B, et al., 2019. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol, 16(8): 461- 478. https://doi.org/10.1038/s41575-019-0157-3.
      Dantzer R, 2017. Role of the kynurenine metabolism pathway in inflammation-induced depression: preclinical approaches. In: Dantzer R, Capuron L (Eds.), Inflammation-Associated Depression: Evidence, Mechanisms and Implications. Springer, Cham, p. 117- 138. https://doi.org/10.1007/7854_2016_6.
      Dao VH, Hoang LB, Trinh TO, et al., 2021. Psychobiotics for patients with chronic gastrointestinal disorders having anxiety or depression symptoms. J Multidiscip Healthc, 14: 1395- 1402. https://doi.org/10.2147/jmdh.S312316.
      David LA, Maurice CF, Carmody RN, et al., 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484): 559- 563. https://doi.org/10.1038/nature12820.
      de Kruijff I, Choenni V, Groeneweg JT, et al., 2019. Gastrointestinal symptoms in infants of mothers with a psychiatric history and the role of depression and bonding. J Pediatr Gastroenterol Nutr, 69(6): 662- 667. https://doi.org/10.1097/mpg.0000000000002484.
      de Punder K, Pruimboom L, 2015. Stress induces endotoxemia and low-grade inflammation by increasing barrier permeability. Front Immunol, 6: 223. https://doi.org/10.3389/fimmu.2015.00223.
      de Weerth C, 2017. Do bacteria shape our development? Crosstalk between intestinal microbiota and HPA axis. Neurosci Biobehav Rev, 83: 458- 471. https://doi.org/10.1016/j.neubiorev.2017.09.016.
      Dehhaghi M, Kazemi Shariat Panahi H, Guillemin GJ, 2019. Microorganisms, tryptophan metabolism, and kynurenine pathway: a complex interconnected loop influencing human health status. Int J Tryptophan Res, 12: 1178646919852996. https://doi.org/10.1177/1178646919852996.
      Dinan TG, Cryan JF, 2012. Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology, 37(9): 1369- 1378. https://doi.org/10.1016/j.psyneuen.2012.03.007.
      Dinan TG, Cryan JF, 2017. The microbiome-gut-brain axis in health and disease. Gastroenterol Clin North Am, 46(1): 77- 89. https://doi.org/10.1016/j.gtc.2016.09.007.
      Dockray GJ, 2013. Enteroendocrine cell signalling via the vagus nerve. Curr Opin Pharmacol, 13(6): 954- 958. https://doi.org/10.1016/j.coph.2013.09.007.
      Du Y, Gao XR, Peng L, et al., 2020. Crosstalk between the microbiota-gut-brain axis and depression. Heliyon, 6(6): e04097. https://doi.org/10.1016/j.heliyon.2020.e04097.
      Egerod KL, Engelstoft MS, Grunddal KV, et al., 2012. A major lineage of enteroendocrine cells coexpress CCK, secretin, GIP, GLP-1, PYY, and neurotensin but not somatostatin. Endocrinology, 153(12): 5782- 5795. https://doi.org/10.1210/en.2012-1595.
      Erny D, Hrabě de Angelis AL, Jaitin D, et al., 2015. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci, 18(7): 965- 977. https://doi.org/10.1038/nn.4030.
      Fan CQ, Li Y, Lan T, et al., 2022. Microglia secrete miR-146a-5p-containing exosomes to regulate neurogenesis in depression. Mol Ther, 30(3): 1300- 1314. https://doi.org/10.1016/j.ymthe.2021.11.006.
      Fan L, Peng Y, Wang JW, et al., 2021. Total glycosides from stems of Cistanche tubulosa alleviate depression-like behaviors: bidirectional interaction of the phytochemicals and gut microbiota. Phytomedicine, 83: 153471. https://doi.org/10.1016/j.phymed.2021.153471.
      Fang K, Li HR, Chen XX, et al., 2020. Quercetin alleviates LPS-induced depression-like behavior in rats via regulating BDNF-related imbalance of Copine 6 and TREM1/2 in the hippocampus and PFC. Front Pharmacol, 10: 1544. https://doi.org/10.3389/fphar.2019.01544.
      Farzi A, Fröhlich EE, Holzer P, 2018. Gut microbiota and the neuroendocrine system. Neurotherapeutics, 15(1): 5- 22. https://doi.org/10.1007/s13311-017-0600-5.
      Feng B, La JH, Schwartz ES, et al., 2012. Irritable bowel syndrome: methods, mechanisms, and pathophysiology. Neural and neuro-immune mechanisms of visceral hypersensitivity in irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol, 302(10): G1085- G1098. https://doi.org/10.1152/ajpgi.00542.2011.
      Fleshner M, Frank M, Maier SF, 2017. Danger signals and inflammasomes: stress-evoked sterile inflammation in mood disorders. Neuropsychopharmacology, 42(1): 36- 45. https://doi.org/10.1038/npp.2016.125.
      Foster JA, Rinaman L, Cryan JF, 2017. Stress & the gut-brain axis: regulation by the microbiome. Neurobiol Stress, 7: 124- 136. https://doi.org/10.1016/j.ynstr.2017.03.001.
      Fothergill LJ, Furness JB, 2018. Diversity of enteroendocrine cells investigated at cellular and subcellular levels: the need for a new classification scheme. Histochem Cell Biol, 150(6): 693- 702. https://doi.org/10.1007/s00418-018-1746-x.
      Furness JB, 2012. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol, 9(5): 286- 294. https://doi.org/10.1038/nrgastro.2012.32.
      Gao J, Xu K, Liu HN, et al., 2018. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front Cell Infect Microbiol, 8: 13. https://doi.org/10.3389/fcimb.2018.00013.
      Gao LB, Huang SH, Tang K, et al., 2020. Advances in traditional Chinese medicine research of depression based on microbiota-gut-brain axis. Microbiol China, 47(8): 2582- 2596 (in Chinese). https://doi.org/10.13344/j.microbiol.china.200150.
      Gao LJ, Liu L, Li LL, et al., 2019. Exploration of the theory of the spleen and stomach as the foundation of the acquired body based on the microbiota-gut-brain axis. Lishizhen Med Mater Med Res, 30(6): 1449- 1450 (in Chinese). https://doi.org/10.3969/j.issn.1008-0805.2019.06.060.
      Gershon MD, 2013. 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes, 20(1): 14- 21. https://doi.org/10.1097/MED.0b013e32835bc703.
      Goh KK, Liu YW, Kuo PH, et al., 2019. Effect of probiotics on depressive symptoms: a meta-analysis of human studies. Psychiatry Res, 282: 112568. https://doi.org/10.1016/j.psychres.2019.112568.
      Grasa L, Abecia L, Forcén R, et al., 2015. Antibiotic-induced depletion of murine microbiota induces mild inflammation and changes in Toll-like receptor patterns and intestinal motility. Microb Ecol, 70(3): 835- 848. https://doi.org/10.1007/s00248-015-0613-8.
      Grider JR, Piland BE, 2007. The peristaltic reflex induced by short-chain fatty acids is mediated by sequential release of 5-HT and neuronal CGRP but not BDNF. Am J Physiol Gastrointest Liver Physiol, 292(1): G429- G437. https://doi.org/10.1152/ajpgi.00376.2006.
      Gunawardene AR, Corfe BM, Staton CA, 2011. Classification and functions of enteroendocrine cells of the lower gastrointestinal tract. Int J Exp Pathol, 92(4): 219- 231. https://doi.org/10.1111/j.1365-2613.2011.00767.x.
      Halestrap AP, 2013. The SLC16 gene family‒structure, role and regulation in health and disease. Mol Aspects Med, 34(2-3): 337- 349. https://doi.org/10.1016/j.mam.2012.05.003.
      Hao WZ, Ma QY, Tao G, et al., 2021. Oral coniferyl ferulate attenuated depression symptoms in mice via reshaping gut microbiota and microbial metabolism. Food Funct, 12(24): 12550- 12564. https://doi.org/10.1039/d1fo02655k.
      Heiman ML, Greenway FL, 2016. A healthy gastrointestinal microbiome is dependent on dietary diversity. Mol Metab, 5(5): 317- 320. https://doi.org/10.1016/j.molmet.2016.02.005.
      Heiss CN, Olofsson LE, 2019. The role of the gut microbiota in development, function and disorders of the central nervous system and the enteric nervous system. J Neuroendocrinol, 31(5): e12684. https://doi.org/10.1111/jne.12684.
      Ho L, Ono K, Tsuji M, et al., 2018. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s disease-type beta-amyloid neuropathological mechanisms. Expert Rev Neurother, 18(1): 83- 90. https://doi.org/10.1080/14737175.2018.1400909.
      Holscher HD, 2017. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes, 8(2): 172- 184. https://doi.org/10.1080/19490976.2017.1290756.
      Hong M, Zheng J, Ding ZY, et al., 2013. Imbalance between Th17 and Treg cells may play an important role in the development of chronic unpredictable mild stress-induced depression in mice. Neuroimmunomodulation, 20(1): 39- 50. https://doi.org/10.1159/000343100.
      Hou LW, Yang L, Zhu CT, et al., 2023. Cuscutae semen alleviates CUS-induced depression-like behaviors in mice via the gut microbiota-neuroinflammation axis. Front Pharmacol, 14: 1107781. https://doi.org/10.3389/fphar.2023.1107781.
      Huang J, Cai YY, Su YS, et al., 2021. Gastrointestinal symptoms during depressive episodes in 3256 patients with major depressive disorders: findings from the NSSD. J Affect Disord, 286: 27- 32. https://doi.org/10.1016/j.jad.2021.02.039.
      Huang J, Cai YY, Wu ZG, et al., 2022. Associations between gastrointestinal symptoms, medication use, and spontan eous drug discontinuation in patients with major depressive disorder in China. J Affect Disord, 319: 462- 468. https://doi.org/10.1016/j.jad.2022.08.116.
      Huang YJ, Choong LXC, Panyod S, et al., 2021. Gastrodia elata Blume water extract modulates neurotransmitters and alters the gut microbiota in a mild social defeat stress-induced depression mouse model. Phytother Res, 35(9): 5133- 5142. https://doi.org/10.1002/ptr.7091.
      Hubbard TD, Murray IA, Perdew GH, 2015. Indole and tryptophan metabolism: endogenous and dietary routes to Ah receptor activation. Drug Metab Dispos, 43(10): 1522- 1535. https://doi.org/10.1124/dmd.115.064246.
      Husi H, 2004. NMDA receptors, neural pathways, and protein interaction databases. Int Rev Neurobiol, 61: 49- 77. https://doi.org/10.1016/s0074-7742(04)61003-8.
      Ignácio ZM, da Silva RS, Plissari ME, et al., 2019. Physical exercise and neuroinflammation in major depressive disorder. Mol Neurobiol, 56(12): 8323- 8335. https://doi.org/10.1007/s12035-019-01670-1.
      Jeon SW, Kim YK, 2017. Inflammation-induced depression: its pathophysiology and therapeutic implications. J Neuroimmunol, 313: 92- 98. https://doi.org/10.1016/j.jneuroim.2017.10.016.
      Johnson KVA, Steenbergen L, 2022. Do common antibiotic treatments influence emotional processing? Physiol Behav, 255: 113900. https://doi.org/10.1016/j.physbeh.2022.113900.
      Jones MP, Tack J, van Oudenhove L, et al., 2017. Mood and anxiety disorders precede development of functional gastrointestinal disorders in patients but not in the population. Clin Gastroenterol Hepatol, 15(7): 1014- 1020.e4. https://doi.org/10.1016/j.cgh.2016.12.032.
      Joseph DN, Whirledge S, 2017. Stress and the HPA axis: balancing homeostasis and fertility. Int J Mol Sci, 18(10): 2224. https://doi.org/10.3390/ijms18102224.
      Jürgens B, Hainz U, Fuchs D, et al., 2009. Interferon-γ- triggered indoleamine 2,3-dioxygenase competence in human monocyte-derived dendritic cells induces regulatory activity in allogeneic T cells. Blood, 114(15): 3235- 3243. https://doi.org/10.1182/blood-2008-12-195073.
      Kawai T, Akira S, 2011. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity, 34(5): 637- 650. https://doi.org/10.1016/j.immuni.2011.05.006.
      Kelly JR, Borre Y, O'Brien C, et al., 2016. Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res, 82: 109- 118. https://doi.org/10.1016/j.jpsychires.2016.07.019.
      Kennedy PJ, Cryan JF, Dinan TG, et al., 2017. Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology, 112: 399- 412. https://doi.org/10.1016/j.neuropharm.2016.07.002.
      Kessler RC, Bromet EJ, 2013. The epidemiology of depression across cultures. Annu Rev Public Health, 34: 119- 138. https://doi.org/10.1146/annurev-publhealth-031912-114409.
      Khandaker GM, Zammit S, Burgess S, et al., 2018. Association between a functional interleukin 6 receptor genetic variant and risk of depression and psychosis in a population-based birth cohort. Brain Behav Immun, 69: 264- 272. https://doi.org/10.1016/j.bbi.2017.11.020.
      Ko CY, Lin HTV, Tsai GJ, 2013. Gamma-aminobutyric acid production in black soybean milk by Lactobacillus brevis FPA 3709 and the antidepressant effect of the fermented product on a forced swimming rat model. Process Biochem, 48(4): 559- 568. https://doi.org/10.1016/j.procbio.2013.02.021.
      Koh A, de Vadder F, Kovatcheva-Datchary P, et al., 2016. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell, 165(6): 1332- 1345. https://doi.org/10.1016/j.cell.2016.05.041.
      Köhler CA, Freitas TH, Maes M, et al., 2017. Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiatr Scand, 135(5): 373- 387. https://doi.org/10.1111/acps.12698.
      Koloski NA, Jones M, Kalantar J, et al., 2012. The brain-gut pathway in functional gastrointestinal disorders is bidirectional: a 12-year prospective population-based study. Gut, 61(9): 1284- 1290. https://doi.org/10.1136/gutjnl-2011-300474.
      Koloski NA, Jones M, Talley NJ, 2016. Evidence that independent gut-to-brain and brain-to-gut pathways operate in the irritable bowel syndrome and functional dyspepsia: a 1-year population-based prospective study. Aliment Pharmacol Ther, 44(6): 592- 600. https://doi.org/10.1111/apt.13738.
      Koopman M, el Aidy S, 2017. Depressed gut? The microbiota-diet-inflammation trialogue in depression. Curr Opin Psychiatry, 30(5): 369- 377. https://doi.org/10.1097/yco.0000000000000350.
      Kronsten VT, Tranah TH, Pariante C, et al., 2022. Gut-derived systemic inflammation as a driver of depression in chronic liver disease. J Hepatol, 76(3): 665- 680. https://doi.org/10.1016/j.jhep.2021.11.008.
      Lach G, Schellekens H, Dinan TG, et al., 2018. Anxiety, depression, and the microbiome: a role for gut peptides. Neurotherapeutics, 15(1): 36- 59. https://doi.org/10.1007/s13311-017-0585-0.
      Lamas B, Richard ML, Leducq V, et al., 2016. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med, 22(6): 598- 605. https://doi.org/10.1038/nm.4102.
      Lamas B, Hernandez-Galan L, Galipeau HJ, et al., 2020. Aryl hydrocarbon receptor ligand production by the gut microbiota is decreased in celiac disease leading to intestinal inflammation. Sci Transl Med, 12(566): eaba0624. https://doi.org/10.1126/scitranslmed.aba0624.
      Laroute V, Beaufrand C, Gomes P, et al., 2022. Lactococcus lactis NCDO2118 exerts visceral antinociceptive properties in rat via GABA production in the gastro-intestinal tract. eLife, 11: e77100. https://doi.org/10.7554/eLife.77100.
      Lerner A, Neidhöfer S, Matthias T, 2017. The gut microbiome feelings of the brain: a perspective for non-microbiologists. Microorganisms, 5(4): 66. https://doi.org/10.3390/microorganisms5040066.
      Li HN, Xiang YJ, Zhu ZM, et al., 2021. Rifaximin-mediated gut microbiota regulation modulates the function of micro glia and protects against CUMS-induced depression-like behaviors in adolescent rat. J Neuroinflammation, 18: 254. https://doi.org/10.1186/s12974-021-02303-y.
      Li JN, Li YN, Duan WZ, et al., 2022. Shugan granule contributes to the improvement of depression-like behaviors in chronic restraint stress-stimulated rats by altering gut microbiota. CNS Neurosci Ther, 28(9): 1409- 1424. https://doi.org/10.1111/cns.13881.
      Li WF, Ali T, Zheng CY, et al., 2021. Fluoxetine regulates eEF2 activity (phosphorylation) via HDAC1 inhibitory mechanism in an LPS-induced mouse model of depression. J Neuroinflammation, 18: 38. https://doi.org/10.1186/s12974-021-02091-5.
      Li YY, Hao YL, Fan F, et al., 2018. The role of microbiome in insomnia, circadian disturbance and depression. Front Psychiatry, 9: 669. https://doi.org/10.3389/fpsyt.2018.00669.
      Liang S, Wu XL, Hu X, et al., 2018. Recognizing depression from the microbiota-gut-brain axis. Int J Mol Sci, 19(6): 1592. https://doi.org/10.3390/ijms19061592.
      Lin SS, Li QQ, Jiang SS, et al., 2021. Crocetin ameliorates chronic restraint stress-induced depression-like behaviors in mice by regulating MEK/ERK pathways and gut microbiota. J Ethnopharmacol, 268: 113608. https://doi.org/10.1016/j.jep.2020.113608.
      Liu RT, Walsh RFL, Sheehan AE, 2019. Prebiotics and probiotics for depression and anxiety: a systematic review and meta-analysis of controlled clinical trials. Neurosci Biobehav Rev, 102: 13- 23. https://doi.org/10.1016/j.neubiorev.2019.03.023.
      Liu YN, Xu FH, Liu S, et al., 2020. Significance of gastrointestinal tract in the therapeutic mechanisms of exercise in depression: synchronism between brain and intestine through GBA. Prog Neuro-Psychopharmacol Biol Psychiatry, 103: 109971. https://doi.org/10.1016/j.pnpbp.2020.109971.
      Liu YX, Zhang L, Wang XQ, et al., 2016. Similar fecal microbiota signatures in patients with diarrhea-predominant irritable bowel syndrome and patients with depression. Clin Gastroenterol Hepatol, 14(11): 1602- 1611.e5. https://doi.org/10.1016/j.cgh.2016.05.033.
      Luo M, Zhuang XJ, Tian ZY, et al., 2021. Alterations in short-chain fatty acids and serotonin in irritable bowel syndrome: a systematic review and meta-analysis. BMC Gastroenterol, 21: 14. https://doi.org/10.1186/s12876-020-01577-5.
      Lurie I, Yang YX, Haynes K, et al., 2015. Antibiotic exposure and the risk for depression, anxiety, or psychosis: a nested case-control study. J Clin Psychiatry, 76(11): 1522- 1528. https://doi.org/10.4088/JCP.15m09961.
      Lyte M, 2011. Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics. Bioessays, 33(8): 574- 581. https://doi.org/10.1002/bies.201100024.
      Lyte M, 2014. Microbial endocrinology: host-microbiota neuroendocrine interactions influencing brain and behavior. Gut Microbes, 5(3): 381- 389. https://doi.org/10.4161/gmic.28682.
      Ma C, Yuan D, Renaud SJ, et al., 2022. Chaihu-shugan-san alleviates depression-like behavior in mice exposed to chronic unpredictable stress by altering the gut microbiota and levels of the bile acids hyocholic acid and 7-ketoDCA. Front Pharmacol, 13: 1040591. https://doi.org/10.3389/fphar.2022.1040591.
      Ma J, Shah AM, Wang ZS, et al., 2021. Dietary supplementation with glutamine improves gastrointestinal barrier function and promotes compensatory growth of growth-retarded yaks. Animal, 15(2): 100108. https://doi.org/10.1016/j.animal.2020.100108.
      Ma QQ, Xing CS, Long WY, et al., 2019. Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis. J Neuroinflammation, 16: 53. https://doi.org/10.1186/s12974-019-1434-3.
      Maguen S, Madden E, Cohen B, et al., 2014. Association of mental health problems with gastrointestinal disorders in Iraq and Afghanistan veterans. Depress Anxiety, 31(2): 160- 165. https://doi.org/10.1002/da.22072.
      Makris AP, Karianaki M, Tsamis KI, et al., 2021. The role of the gut-brain axis in depression: endocrine, neural, and immune pathways. Hormones, 20(1): 1- 12. https://doi.org/10.1007/s42000-020-00236-4.
      Malhi GS, Mann JJ, 2018. Depression. Lancet, 392(10161): 2299- 2312. https://doi.org/10.1016/S0140-6736(18)31948-2.
      Man SM, 2018. Inflammasomes in the gastrointestinal tract: infection, cancer and gut microbiota homeostasis. Nat Rev Gastroenterol Hepatol, 15(12): 721- 737. https://doi.org/10.1038/s41575-018-0054-1.
      Marathe CS, Rayner CK, Jones KL, et al., 2011. Effects of GLP-1 and incretin-based therapies on gastrointestinal motor function. Exp Diabetes Res, 2011: 279530. https://doi.org/10.1155/2011/279530.
      Mars RAT, Yang Y, Ward T, et al., 2020. Longitudinal multi-omics reveals subset-specific mechanisms underlying irritable bowel syndrome. Cell, 182(6): 1460- 1473.e17. https://doi.org/10.1016/j.cell.2020.08.007.
      Martínez-López M, Iborra S, Conde-Garrosa R, et al., 2019. Microbiota sensing by Mincle-Syk axis in dendritic cells regulates interleukin-17 and -22 production and promotes intestinal barrier integrity. Immunity, 50(2): 446- 461.e9. https://doi.org/10.1016/j.immuni.2018.12.020.
      Mawe GM, Hoffman JM, 2013. Serotonin signalling in the gut-functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol, 10(8): 473- 486. https://doi.org/10.1038/nrgastro.2013.105.
      Maynard CL, Elson CO, Hatton RD, et al., 2012. Reciprocal interactions of the intestinal microbiota and immune system. Nature, 489(7415): 231- 241. https://doi.org/10.1038/nature11551.
      McGaughey KD, Yilmaz-Swenson T, Elsayed NM, et al., 2019. Relative abundance of Akkermansia spp. and other bacterial phylotypes correlates with anxiety- and depressive-like behavior following social defeat in mice. Sci Rep, 9: 3281. https://doi.org/10.1038/s41598-019-40140-5.
      McVey Neufeld KA, Bienenstock J, Bharwani A, et al., 2019. Oral selective serotonin reuptake inhibitors activate vagus nerve dependent gut-brain signalling. Sci Rep, 9: 14290. https://doi.org/10.1038/s41598-019-50807-8.
      Medina-Rodriguez EM, Cheng YY, Michalek SM, et al., 2020. Toll-like receptor 2 (TLR2)-deficiency impairs male mouse recovery from a depression-like state. Brain Behav Immun, 89: 51- 58. https://doi.org/10.1016/j.bbi.2020.05.068.
      Medzhitov R, 2007. Recognition of microorganisms and activation of the immune response. Nature, 449(7164): 819- 826. https://doi.org/10.1038/nature06246.
      Messaoud A, Mensi R, Douki W, et al., 2019. Reduced peripheral availability of tryptophan and increased activation of the kynurenine pathway and cortisol correlate with major depression and suicide. World J Biol Psychiatry, 20(9): 703- 711. https://doi.org/10.1080/15622975.2018.1468031.
      Miller AH, Maletic V, Raison CL, 2009. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry, 65(9): 732- 741. https://doi.org/10.1016/j.biopsych.2008.11.029.
      Misiak B, Łoniewski I, Marlicz W, et al., 2020. The HPA axis dysregulation in severe mental illness: can we shift the blame to gut microbiota? Prog Neuro-Psychopharmacol Biol Psychiatry, 102: 109951. https://doi.org/10.1016/j.pnpbp.2020.109951.
      Mittal R, Debs LH, Patel AP, et al., 2017. Neurotransmitters: the critical modulators regulating gut-brain axis. J Cell Physiol, 232(9): 2359- 2372. https://doi.org/10.1002/jcp.25518.
      Mörkl S, Butler MI, Holl A, et al., 2020. Probiotics and the microbiota-gut-brain axis:focus on psychiatry. Curr Nutr Rep, 9(3): 171- 182. https://doi.org/10.1007/s13668-020-00313-5.
      Mortha A, Chudnovskiy A, Hashimoto D, et al., 2014. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science, 343(6178): 1249288. https://doi.org/10.1126/science.1249288.
      Müller B, Rasmusson AJ, Just D, et al., 2021. Fecal short-chain fatty acid ratios as related to gastrointestinal and depressive symptoms in young adults. Psychosom Med, 83(7): 693- 699. https://doi.org/10.1097/psy.0000000000000965.
      Murakami T, Kamada K, Mizushima K, et al., 2017. Changes in intestinal motility and gut microbiota composition in a rat stress model. Digestion, 95(1): 55- 60. https://doi.org/10.1159/000452364.
      Musil R, Schwarz MJ, Riedel M, et al., 2011. Elevated macrophage migration inhibitory factor and decreased transforming growth factor-beta levels in major depression ‒ no influence of celecoxib treatment. J Affect Disord, 134(1-3): 217- 225. https://doi.org/10.1016/j.jad.2011.05.047.
      Na KS, Lee KJ, Lee JS, et al., 2014. Efficacy of adjunctive celecoxib treatment for patients with major depressive disorder: a meta-analysis. Prog Neuro-Psychopharmacol Biol Psychiatry, 48: 79- 85. https://doi.org/10.1016/j.pnpbp.2013.09.006.
      Natividad JM, Pinto-Sanchez MI, Galipeau HJ, et al., 2015. Ecobiotherapy rich in firmicutes decreases susceptibility to colitis in a humanized gnotobiotic mouse model. Inflamm Bowel Dis, 21(8): 1883- 1893. https://doi.org/10.1097/mib.0000000000000422.
      Ng QX, Peters C, Ho CYX, et al., 2018. A meta-analysis of the use of probiotics to alleviate depressive symptoms. J Affect Disord, 228: 13- 19. https://doi.org/10.1016/j.jad.2017.11.063.
      Nie X, Kitaoka S, Tanaka K, et al., 2018. The innate immune receptors TLR2/4 mediate repeated social defeat stress-induced social avoidance through prefrontal microglial activation. Neuron, 99(3): 464- 479.e7. https://doi.org/10.1016/j.neuron.2018.06.035.
      Niesler B, Kuerten S, Demir IE, et al., 2021. Disorders of the enteric nervous system ‒ a holistic view. Nat Rev Gastroenterol Hepatol, 18(6): 393- 410. https://doi.org/10.1038/s41575-020-00385-2.
      Obata Y, Castaño Á, Boeing S, et al., 2020. Neuronal programming by microbiota regulates intestinal physiology. Nature, 578(7794): 284- 289. https://doi.org/10.1038/s41586-020-1975-8.
      Oliva V, Lippi M, Paci R, et al., 2021. Gastrointestinal side effects associated with antidepressant treatments in patients with major depressive disorder: a systematic review and meta-analysis. Prog Neuro-Psychopharmacol Biol Psychiatry, 109: 110266. https://doi.org/10.1016/j.pnpbp.2021.110266.
      Onaga T, Zabielski R, Kato S, 2002. Multiple regulation of peptide YY secretion in the digestive tract. Peptides, 23(2): 279- 290. https://doi.org/10.1016/s0196-9781(01)00609-x.
      Orel R, Kamhi Trop T, 2014. Intestinal microbiota, probiotics and prebiotics in inflammatory bowel disease. World J Gastroenterol, 20(33): 11505- 11524. https://doi.org/10.3748/wjg.v20.i33.11505.
      Pan Y, Chen XY, Zhang QY, et al., 2014. Microglial NLRP3 inflammasome activation mediates IL-1β-related inflammation in prefrontal cortex of depressive rats. Brain Behav Immun, 41: 90- 100. https://doi.org/10.1016/j.bbi.2014.04.007.
      Pearson-Leary J, Zhao CY, Bittinger K, et al., 2020. The gut microbiome regulates the increases in depressive-type behaviors and in inflammatory processes in the ventral hippocampus of stress vulnerable rats. Mol Psychiatry, 25(5): 1068- 1079. https://doi.org/10.1038/s41380-019-0380-x.
      Peirce JM, Alviña K, 2019. The role of inflammation and the gut microbiome in depression and anxiety. J Neurosci Res, 97(10): 1223- 1241. https://doi.org/10.1002/jnr.24476.
      Psichas A, Sleeth ML, Murphy KG, et al., 2015. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J Obes, 39(3): 424- 429. https://doi.org/10.1038/ijo.2014.153.
      Qiu J, Liu RJ, Ma YY, et al., 2020. Lipopolysaccharide-induced depression-like behaviors is ameliorated by sodium butyrate via inhibiting neuroinflammation and oxido-nitrosative stress. Pharmacology, 105(9-10): 550- 560. https://doi.org/10.1159/000505132.
      Quigley EMM, 2019. Prebiotics and probiotics in digestive health. Clin Gastroenterol Hepatol, 17(2): 333- 344. https://doi.org/10.1016/j.cgh.2018.09.028.
      Raison CL, Dantzer R, Kelley KW, et al., 2010. CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-α: relationship to CNS immune responses and depression. Mol Psychiatry, 15(4): 393- 403. https://doi.org/10.1038/mp.2009.116.
      Rathinam VAK, Fitzgerald KA, 2016. Inflammasome complexes: emerging mechanisms and effector functions. Cell, 165(4): 792- 800. https://doi.org/10.1016/j.cell.2016.03.046.
      Raybould HE, 2010. Gut chemosensing: interactions between gut endocrine cells and visceral afferents. Auton Neurosci, 153(1-2): 41- 46. https://doi.org/10.1016/j.autneu.2009.07.007.
      Riley DR, Sieber KB, Robinson KM, et al., 2013. Bacteria-human somatic cell lateral gene transfer is enriched in cancer samples. PLoS Comput Biol, 9(6): e1003107. https://doi.org/10.1371/journal.pcbi.1003107.
      Rodiño-Janeiro BK, Alonso-Cotoner C, Pigrau M, et al., 2015. Role of corticotropin-releasing factor in gastrointestinal permeability. J Neurogastroenterol Motil, 21(1): 33- 50. https://doi.org/10.5056/jnm14084.
      Rothhammer V, Mascanfroni ID, Bunse L, et al., 2016. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med, 22(6): 586- 597. https://doi.org/10.1038/nm.4106.
      Rothschild D, Weissbrod O, Barkan E, et al., 2018. Environment dominates over host genetics in shaping human gut microbiota. Nature, 555(7695): 210- 215. https://doi.org/10.1038/nature25973.
      Ruan XX, Chen J, Sun YH, et al., 2023. Depression and 24 gastrointestinal diseases: a Mendelian randomization study. Transl Psychiatry, 13(1): 146. https://doi.org/10.1038/s41398-023-02459-6.
      Saha M, Mamun AA, Begum K, et al., 2021. Depression among patients presenting with gastrointestinal symptoms: prevalence and associated factors. Mymensingh Med J, 30(2): 415- 419.
      Salter MW, Stevens B, 2017. Microglia emerge as central players in brain disease. Nat Med, 23(9): 1018- 1027. https://doi.org/10.1038/nm.4397.
      Sanada K, Nakajima S, Kurokawa S, et al., 2020. Gut microbiota and major depressive disorder: a systematic review and meta-analysis. J Affect Disord, 266: 1- 13. https://doi.org/10.1016/j.jad.2020.01.102.
      Savitz J, Drevets WC, Wurfel BE, et al., 2015. Reduction of kynurenic acid to quinolinic acid ratio in both the depressed and remitted phases of major depressive disorder. Brain Behav Immun, 46: 55- 59. https://doi.org/10.1016/j.bbi.2015.02.007.
      Schmidt B, Mulder IE, Musk CC, et al., 2011. Establishment of normal gut microbiota is compromised under excessive hygiene conditions. PLoS ONE, 6(12): e28284. https://doi.org/10.1371/journal.pone.0028284.
      Sharbafchi MR, Afshar H, Adhamian P, et al., 2020. Effects of venlafaxine on gastrointestinal symptoms, depression, anxiety, stress, and quality of life in patients with the moderate-to-severe irritable bowel syndrome. J Res Med Sci, 25(1): 115. https://doi.org/10.4103/jrms.JRMS_699_19.
      Shen W, Tao YL, Zheng F, et al., 2023. The alteration of gut microbiota in venlafaxine-ameliorated chronic unpredictable mild stress-induced depression in mice. Behav Brain Res, 446: 114399. https://doi.org/10.1016/j.bbr.2023.114399.
      Shin YJ, Lee DY, Kim JY, et al., 2023. Effect of fermented red ginseng on gut microbiota dysbiosis- or immobilization stress-induced anxiety, depression, and colitis in mice. J Ginseng Res, 47(2): 255- 264. https://doi.org/10.1016/j.jgr.2022.08.004.
      Simon E, Călinoiu LF, Mitrea L, et al., 2021. Probiotics, prebiotics, and synbiotics: implications and beneficial effects against irritable bowel syndrome. Nutrients, 13(6): 2112. https://doi.org/10.3390/nu13062112.
      Simpson CA, Mu A, Haslam N, et al., 2020. Feeling down? A systematic review of the gut microbiota in anxiety/depression and irritable bowel syndrome. J Affect Disord, 266: 429- 446. https://doi.org/10.1016/j.jad.2020.01.124.
      Skonieczna-Żydecka K, Grochans E, Maciejewska D, et al., 2018. Faecal short chain fatty acids profile is changed in polish depressive women. Nutrients, 10(12): 1939. https://doi.org/10.3390/nu10121939.
      Slyepchenko A, Maes M, Jacka FN, et al., 2017. Gut microbiota, bacterial translocation, and interactions with diet: pathophysiological links between major depressive disorder and non-communicable medical comorbidities. Psychother Psychosom, 86(1): 31- 46. https://doi.org/10.1159/000448957.
      Smith K, 2014. Mental health: a world of depression. Nature, 515(7526): 180- 181. https://doi.org/10.1038/515180a.
      Söderquist F, Syk M, Just D, et al., 2020. A cross-sectional study of gastrointestinal symptoms, depressive symptoms and trait anxiety in young adults. BMC Psychiatry, 20: 535. https://doi.org/10.1186/s12888-020-02940-2.
      Song XJ, Wang WH, Ding SS, et al., 2021. Puerarin ameliorates depression-like behaviors of with chronic unpredictable mild stress mice by remodeling their gut microbiota. J Affect Disord, 290: 353- 363. https://doi.org/10.1016/j.jad.2021.04.037.
      Spencer NJ, Hu HZ, 2020. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat Rev Gastroenterol Hepatol, 17(6): 338- 351. https://doi.org/10.1038/s41575-020-0271-2.
      Stilling RM, Dinan TG, Cryan JF, 2014. Microbial genes, brain & behaviour-epigenetic regulation of the gut-brain axis. Genes Brain Behav, 13(1): 69- 86. https://doi.org/10.1111/gbb.12109.
      Suda K, Matsuda K, 2022. How microbes affect depression: underlying mechanisms via the gut-brain axis and the modulating role of probiotics. Int J Mol Sci, 23(3): 1172. https://doi.org/10.3390/ijms23031172.
      Sui SJ, Tian ZB, Wang QC, et al., 2018. Clostridium butyricum promotes intestinal motility by regulation of TLR2 in interstitial cells of Cajal. Eur Rev Med Pharmacol Sci, 22(14): 4730- 4738. https://doi.org/10.26355/eurrev_201807_15533.
      Sun LJ, Li JN, Nie YZ, 2020. Gut hormones in microbiota-gut-brain cross-talk. Chin Med J, 133(7): 826- 833. https://doi.org/10.1097/cm9.0000000000000706.
      Takada M, Nishida K, Kataoka-Kato A, et al., 2016. Probiotic Lactobacillus casei strain shirota relieves stress-associated symptoms by modulating the gut-brain interaction in human and animal models. Neurogastroenterol Motil, 28(7): 1027- 1036. https://doi.org/10.1111/nmo.12804.
      Tan JX, Li XX, Zhu Y, et al., 2022. Antidepressant Shugan Jieyu capsule alters gut microbiota and intestinal microbiome function in rats with chronic unpredictable mild stress-induced depression. Front Pharmacol, 13: 828595. https://doi.org/10.3389/fphar.2022.828595.
      Tang XH, Zhang GF, Xu N, et al., 2020. Extrasynaptic CaMKIIα is involved in the antidepressant effects of ketamine by downregulating GluN2B receptors in an LPS-induced depression model. J Neuroinflammation, 17: 181. https://doi.org/10.1186/s12974-020-01843-z.
      Thaiss CA, Zmora N, Levy M, et al., 2016. The microbiome and innate immunity. Nature, 535(7610): 65- 74. https://doi.org/10.1038/nature18847.
      Tian PJ, O'Riordan KJ, Lee YK, et al., 2020. Towards a psychobiotic therapy for depression: Bifidobacterium breve CCFM1025 reverses chronic stress-induced depressive symptoms and gut microbial abnormalities in mice. Neurobiol Stress, 12: 100216. https://doi.org/10.1016/j.ynstr.2020.100216.
      Tian PJ, Zou RY, Wang LY, et al., 2023. Multi-probiotics ameliorate major depressive disorder and accompanying gastrointestinal syndromes via serotonergic system regulation. J Adv Res, 45: 117- 125. https://doi.org/10.1016/j.jare.2022.05.003.
      Troubat R, Barone P, Leman S, et al., 2021. Neuroinflammation and depression: a review. Eur J Neurosci, 53(1): 151- 171. https://doi.org/10.1111/ejn.14720.
      Vainchtein ID, Chin G, Cho FS, et al., 2018. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science, 359(6381): 1269- 1273. https://doi.org/10.1126/science.aal3589.
      Valles-Colomer M, Falony G, Darzi Y, et al., 2019. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol, 4(4): 623- 632. https://doi.org/10.1038/s41564-018-0337-x.
      Vicentini FA, Mathews AJ, Pittman QJ, et al., 2021. Behavioural adaptations after antibiotic treatment in male mice are reversed by activation of the aryl hydrocarbon receptor. Brain Behav Immun, 98: 317- 329. https://doi.org/10.1016/j.bbi.2021.08.228.
      Villageliú D, Lyte M, 2018. Dopamine production in Enterococcus faecium : a microbial endocrinology-based mechanism for the selection of probiotics based on neurochemical-producing potential. PLoS ONE, 13(11): e0207038. https://doi.org/10.1371/journal.pone.0207038.
      Vlainić JV, Šuran J, Vlainić T, et al., 2016. Probiotics as an adjuvant therapy in major depressive disorder. Curr Neuropharmacol, 14(8): 952- 958. https://doi.org/10.2174/1570159x14666160526120928.
      Waclawiková B, Bullock A, Schwalbe M, et al., 2021. Gut bacteria-derived 5-hydroxyindole is a potent stimulant of intestinal motility via its action on L-type calcium channels. PLoS Biol, 19(1): e3001070. https://doi.org/10.1371/journal.pbio.3001070.
      Wall R, Cryan JF, Ross RP, et al., 2014. Bacterial neuroactive compounds produced by psychobiotics. In: Lyte M, Cryan JF (Eds.), Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease. Springer, New York, p. 221- 239. https://doi.org/10.1007/978-1-4939-0897-4_10.
      Wang F, Jing S, Cao HY, 2019. Clinical study on “strengthening the spleen, regulating the liver and resolving stagnation formula” combined with mesalazine in the treatment of ulcerative colitis combined with depression in 30 cases. Jiangsu J Tradit Chin Med, 51(12): 40- 43 (in Chinese). https://doi.org/10.3969/j.issn.1672-397X.2019.12.014.
      Wang Q, McLoughlin RM, Cobb BA, et al., 2006. A bacterial carbohydrate links innate and adaptive responses through Toll-like receptor 2. J Exp Med, 203(13): 2853- 2863. https://doi.org/10.1084/jem.20062008.
      Wen Y, Liu CJ, Liao J, et al., 2019. Incidence and risk factors of depressive symptoms in 4 years of follow-up among mid-aged and elderly community-dwelling Chinese adults: findings from the China Health and Retirement Longitudinal study. BMJ Open, 9(9): e029529. https://doi.org/10.1136/bmjopen-2019-029529.
      Werbner M, Barsheshet Y, Werbner N, et al., 2019. Social-stress-responsive microbiota induces stimulation of self-reactive effector T helper cells. mSystems, 4(4): e00292-18. https://doi.org/10.1128/mSystems.00292-18.
      Westfall S, Pasinetti GM, 2019. The gut microbiota links dietary polyphenols with management of psychiatric mood disorders. Front Neurosci, 13: 1196. https://doi.org/10.3389/fnins.2019.01196.
      Westfall S, Caracci F, Zhao DY, et al., 2021. Microbiota metabolites modulate the T helper 17 to regulatory T cell (Th17/Treg) imbalance promoting resilience to stress-induced anxiety- and depressive-like behaviors. Brain Behav Immun, 91: 350- 368. https://doi.org/10.1016/j.bbi.2020.10.013.
      Wichmann A, Allahyar A, Greiner TU, et al., 2013. Microbial modulation of energy availability in the colon regulates intestinal transit. Cell Host Microbe, 14(5): 582- 590. https://doi.org/10.1016/j.chom.2013.09.012.
      Willing BP, Russell SL, Finlay BB, 2011. Shifting the balance: antibiotic effects on host-microbiota mutualism. Nat Rev Microbiol, 9(4): 233- 243. https://doi.org/10.1038/nrmicro2536.
      Winter G, Hart RA, Charlesworth RPG, et al., 2018. Gut microbiome and depression: what we know and what we need to know. Rev Neurosci, 29(6): 629- 643. https://doi.org/10.1515/revneuro-2017-0072.
      Wlodarska M, Luo CW, Kolde R, et al., 2017. Indoleacrylic acid produced by commensal Peptostreptococcus species suppresses inflammation. Cell Host Microbe, 22(1): 25- 37.e6. https://doi.org/10.1016/j.chom.2017.06.007.
      Wong ML, Inserra A, Lewis MD, et al., 2016. Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition. Mol Psychiatry, 21(6): 797- 805. https://doi.org/10.1038/mp.2016.46.
      Wu SC, Cao ZS, Chang KM, et al., 2017. Intestinal microbial dysbiosis aggravates the progression of Alzheimer’s disease in Drosophila . Nat Commun, 8: 24. https://doi.org/10.1038/s41467-017-00040-6.
      Yamawaki Y, Yoshioka N, Nozaki K, et al., 2018. Sodium butyrate abolishes lipopolysaccharide-induced depression-like behaviors and hippocampal microglial activation in mice. Brain Res, 1680: 13- 38. https://doi.org/10.1016/j.brainres.2017.12.004.
      Yan MQ, Fu XY, Ou YP, et al., 2022. Multiple-network alterations in major depressive disorder with gastrointestinal symptoms at rest revealed by global functional connectivity analysis. Front Neurosci, 16: 897707. https://doi.org/10.3389/fnins.2022.897707.
      Yanagi S, Sato T, Kangawa K, et al., 2018. The homeostatic force of ghrelin. Cell Metab, 27(4): 786- 804. https://doi.org/10.1016/j.cmet.2018.02.008.
      Yang JQ, Zhang ZY, Xie ZR, et al., 2022. Metformin modulates microbiota-derived inosine and ameliorates methamphetamine-induced anxiety and depression-like withdrawal symptoms in mice. Biomed Pharmacother, 149: 112837. https://doi.org/10.1016/j.biopha.2022.112837.
      Yang Y, Wang HN, Kouadir M, et al., 2019. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis, 10(2): 128. https://doi.org/10.1038/s41419-019-1413-8.
      Ye LH, Bae M, Cassilly CD, et al., 2021. Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways. Cell Host Microbe, 29(2): 179- 196.e9. https://doi.org/10.1016/j.chom.2020.11.011.
      Yeung AWS, Terentis AC, King NJC, et al., 2015. Role of indoleamine 2,3-dioxygenase in health and disease. Clin Sci (Lond), 129(7): 601- 672. https://doi.org/10.1042/cs20140392.
      Yoo JW, Shin YJ, Ma XY, et al., 2022. The alleviation of gut microbiota-induced depression and colitis in mice by anti-inflammatory probiotics NK151, NK173, and NK175. Nutrients, 14(10): 2080. https://doi.org/10.3390/nu14102080.
      Zhang JC, Yao W, Dong C, et al., 2017. Blockade of interleukin-6 receptor in the periphery promotes rapid and sustained antidepressant actions: a possible role of gut-microbiota-brain axis. Transl Psychiatry, 7(5): e1138. https://doi.org/10.1038/tp.2017.112.
      Zhang T, Linghu T, Zhang X, et al., 2018. Advances in neurobiological mechanisms of comorbid depression and gastrointestinal disease. Acta Physiol Sin, 70(1): 71- 78 (in Chinese). https://doi.org/10.13294/j.aps.2018.0004.
      Zhang YY, Fan QL, Hou YL, et al., 2022. Bacteroides species differentially modulate depression-like behavior via gut-brain metabolic signaling. Brain Behav Immun, 102: 11- 22. https://doi.org/10.1016/j.bbi.2022.02.007.
      Zhang ZW, Gao CS, Zhang H, et al., 2022. Morinda officinalis oligosaccharides increase serotonin in the brain and ameliorate depression via promoting 5-hydroxytryptophan production in the gut microbiota. Acta Pharm Sin B, 12(8): 3298- 3312. https://doi.org/10.1016/j.apsb.2022.02.032.
      Zhang ZW, Han P, Fu J, et al., 2023. Gut microbiota-based metabolites of Xiaoyao Pills (a typical Traditional Chinese medicine) ameliorate depression by inhibiting fatty acid amide hydrolase levels in brain. J Ethnopharmacol, 313: 116555. https://doi.org/10.1016/j.jep.2023.116555.
      Zheng ZP, Tang JY, Hu YN, et al., 2022. Role of gut microbiota-derived signals in the regulation of gastrointestinal motility. Front Med, 9: 961703. https://doi.org/10.3389/fmed.2022.961703.
      Zhou FN, Jiang H, Kong N, et al., 2022. Electroacupuncture attenuated anxiety and depression-like behavior via inhibition of hippocampal inflammatory response and metabolic disorders in TNBS-induced IBD rats. Oxid Med Cell Longev, 2022: 8295580. https://doi.org/10.1155/2022/8295580.
      Zhou L, Chu C, Teng F, et al., 2019. Innate lymphoid cells support regulatory T cells in the intestine through interleukin-2. Nature, 568(7752): 405- 409. https://doi.org/10.1038/s41586-019-1082-x.
      Zhu XQ, Han Y, Du J, et al., 2017. Microbiota-gut-brain axis and the central nervous system. Oncotarget, 8(32): 53829- 53838. https://doi.org/10.18632/oncotarget.17754.
      Zhuang M, Shang WT, Ma QC, et al., 2019. Abundance of probiotics and butyrate-production microbiome manages constipation via short-chain fatty acids production and hormones secretion. Mol Nutr Food Res, 63(23): 1801187. https://doi.org/10.1002/mnfr.201801187.
      Zvolensky M, Jardin C, Farris SG, et al., 2018. Gut interpretations: how difficulties in emotion regulation may help explain the relation of visceral sensitivity with depression and anxiety among young adults with gastrointestinal symptoms. Psychol Health Med, 23(7): 840- 845. https://doi.org/10.1080/13548506.2018.1455984.
    • Grant Information:
      2023004 the Scientific Research Projects in Key Areas of Traditional Chinese Medicine of Tianjin Municipal Health and Health Commission
    • Contributed Indexing:
      Keywords: Depression; Gastrointestinal disorders; Gut-brain axis; Pathomechanism; Treatment
      Local Abstract: [Publisher, Chinese] 与普通人群相比,抑郁症患者更易出现慢性胃肠道症状,但这些症状仅被视为抑郁症的躯体症状而缺少特别关注。长期以来,对伴有胃肠道症状的抑郁症患者缺乏适当诊断和有效治疗,因此研究抑郁症与胃肠道疾病间的关联对临床治疗极为重要。越来越多的证据表明,抑郁症与消化道中的微生物群密切相关,而微生物群-肠-脑轴则为抑郁症与胃肠道疾病之间的关联开创了一个新的视角。识别和治疗胃肠道疾病可能预防抑郁症的发作,也可能改善难治性抑郁症的治疗效果。目前抑郁症和微生物相关的肠-脑轴的研究缺乏对胃肠道功能的关注。本综述结合临床前和临床证据,归纳了微生物调控的肠-脑轴在情绪和胃肠道功能中的作用,并总结了潜在治疗策略,为抑郁症伴胃肠道症状的病理机制研究和诊治提供参考。.
    • Publication Date:
      Date Created: 20241020 Latest Revision: 20241020
    • Publication Date:
      20241021
    • Accession Number:
      10.1631/jzus.B2300343
    • Accession Number:
      39428337