Achieving gigawatt-scale green hydrogen production and seasonal storage at industrial locations across the U.S.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: PubMed not MEDLINE; MEDLINE
    • Publication Information:
      Original Publication: [London] : Nature Pub. Group
    • Abstract:
      Onsite production of gigawatt-scale wind- and solar-sourced hydrogen (H 2 ) at industrial locations depends on the ability to store and deliver otherwise-curtailed H 2 during times of power shortages. Thousands of tonnes of H 2 will require storage in regions where subsurface storage is scarce, which may only be possible using liquid organic H 2 carriers. We evaluate aboveground system with a focus on providing technical insights into toluene/methylcyclohexane (TOL/MCH) storage systems in locations suitable for gigawatt-scale wind- and solar-powered electrolyzer systems in the United States. Here we show that the levelized cost of storage, at a national median of US dollar $1.84/kg-H 2 is spatially heterogeneous, causing minor impact on the cost of H 2 supply in the Midwest, and significant impact in Central California and the Southeast. While TOL/MCH may be the cheapest aboveground bulk storage solution evaluated, upfront capital costs, modest energy efficiency, reliance on critical materials and pre-sulfided catalysts, and greenhouse gas emissions from heating are opportunities for further development.
      (© 2024. The Author(s).)
    • References:
      Ramachandran, R. & Menon, R. K. An overview of industrial uses of hydrogen. Int. J. Hydrog. Energy 23, 593–598 (1998). (PMID: 10.1016/S0360-3199(97)00112-2)
      Chen, J. G. et al. Beyond fossil fuel–driven nitrogen transformations. Science 360, 1–7 (2018). (PMID: 10.1126/science.aar6611)
      Fischedick, M., Marzinkowski, J., Winzer, P. & Weigel, M. Techno-economic evaluation of innovative steel production technologies. J. Clean. Prod. 84, 563–580 (2014). (PMID: 10.1016/j.jclepro.2014.05.063)
      Griffiths, S., Sovacool, B. K., Kim, J., Bazilian, M. & Uratani, J. M. Industrial decarbonization via hydrogen: A critical and systematic review of developments, socio-technical systems and policy options. Energy Res. Soc. Sci. 80, 102208 (2021). (PMID: 10.1016/j.erss.2021.102208)
      Megia, P. J., Vizcaino, A. J., Calles, J. A. & Carrero, A. Hydrogen Production Technologies: From Fossil Fuels toward Renewable Sources. A Mini Review. Energy Fuels 35, 16403–16415 (2021). (PMID: 10.1021/acs.energyfuels.1c02501)
      Green hydrogen for sustainable industrial development: A policy toolkit for developing countries. ISBN: 978-92-9260-579-7. 106 https://www.irena.org/Publications/2024/Feb/Green-hydrogen-for-sustainable-industrial-development-A-policy-toolkit-for-developing-countries (2023).
      Wiser, R. et al. Land-Based Wind Market Report: 2022 Edition. 91 https://emp.lbl.gov/publications/land-based-wind-market-report-2022 (2022).
      NREL. 2021 Annual Technology Baseline [dataset]. https://atb.nrel.gov/ (2021).
      Azig, D. Hydrogen mini-Factory for domestic purposes (wind version). Sci. Rep. 13, 13154 (2023). (PMID: 10.1038/s41598-023-40205-63757337610423234)
      Lee, K. et al. Comparative Techno-Economic and Life Cycle Analysis of Conventional Ammonia with Carbon-Capture and Low-Carbon Hydrogen-Based Ammonia. Int. J. Gree 123, 103819 (2022).
      Rosner, F. et al. Green steel: design and cost analysis of hydrogen-based direct iron reduction. Energy Environ. Sci. 16, 4121–4134 (2023). (PMID: 10.1039/D3EE01077E)
      Andersson, J. Application of Liquid Hydrogen Carriers in Hydrogen Steelmaking. Energ. 2021, Vol. 14, Page 1392 14, 1392 (2021).
      Tarkowski, R. Underground hydrogen storage: Characteristics and prospects. Renew. Sustain. Energy Rev. 105, 86–94 (2019). (PMID: 10.1016/j.rser.2019.01.051)
      Heinemann, N. et al. Enabling large-scale hydrogen storage in porous media – the scientific challenges. Energy Environ. Sci. 14, 853–864 (2021). (PMID: 10.1039/D0EE03536J)
      Andersson, J. & Grönkvist, S. Large-scale storage of hydrogen. Int. J. Hydrog. Energy 44, 11901–11919 (2019). (PMID: 10.1016/j.ijhydene.2019.03.063)
      Aakko-Saksa, P. T., Cook, C., Kiviaho, J. & Repo, T. Liquid organic hydrogen carriers for transportation and storing of renewable energy – Review and discussion. J. Power Sources 396, 803–823 (2018). (PMID: 10.1016/j.jpowsour.2018.04.011)
      Kreno, L. E. et al. Metal–organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2011). (PMID: 10.1021/cr200324t22070233)
      Allendorf, M. D. et al. Challenges to developing materials for the transport and storage of hydrogen. Nat. Chem.14, 1214–1223 (2022). (PMID: 10.1038/s41557-022-01056-236302871)
      Reznicek, E. P. et al. Techno-Economic Analysis of Low-Carbon Hydrogen Production Pathways for Decarbonizing Steel and Ammonia Production. CellPress Sneak Peek https://doi.org/10.2139/ssrn.4785779 (2024).
      He, T., Pachfule, P., Wu, H., Xu, Q. & Chen, P. Hydrogen carriers. Nat. Rev. Mater. 2016 112 1, 1–17 (2016).
      Chiyoda. The World’s First Global Hydrogen Supply Chain Demonstration Project. https://www.chiyodacorp.com/en/service/spera-hydrogen/ (2017).
      Papadias, D. D., Peng, J. K. & Ahluwalia, R. K. Hydrogen carriers: Production, transmission, decomposition, and storage. Int. J. Hydrog. Energy 46, 24169–24189 (2021). (PMID: 10.1016/j.ijhydene.2021.05.002)
      Papadias, D. D. & Ahluwalia, R. K. Bulk storage of hydrogen. Int. J. Hydrog. Energy 46, 34527–34541 (2021). (PMID: 10.1016/j.ijhydene.2021.08.028)
      Lord, A. S., Kobos, P. H. & Borns, D. J. Geologic storage of hydrogen: Scaling up to meet city transportation demands. Int. J. Hydrog. Energy 39, 15570–15582 (2014). (PMID: 10.1016/j.ijhydene.2014.07.121)
      Maclaurin, G. et al. The Renewable Energy Potential (reV) Model: A Geospatial Platform for Technical Potential and Supply Curve Modeling. https://doi.org/10.2172/1563140 (2021).
      Lopez, A., Levine, A., Carey, J. & Mangan, C. National Renewable Energy Laboratory U.S. Wind Siting Regulation and Zoning Ordinances [dataset]. https://data.openei.org/submissions/5733 https://doi.org/10.25984/1873866 (2022).
      Lopez, A. et al. Impact of siting ordinances on land availability for wind and solar development. Nat. Energy 2023 89 8, 1034–1043 (2023).
      Tripp, C. E., Guittet, D., Barker, A., King, J. & Hamilton, B. Hybrid Optimization and Performance Platform (HOPP). https://doi.org/10.11578/DC.20210326.1 (2019).
      Draxl, C., Clifton, A., Hodge, B. M. & McCaa, J. The Wind Integration National Dataset (WIND) Toolkit. Appl. Energy 151, 355–366 (2015). (PMID: 10.1016/j.apenergy.2015.03.121)
      Blair, N. et al. System Advisor Model (PySAM). (2014).
      Noordende, H. van’t & Ripson, P. A One-Gigawatt Green-Hydrogen Plant: Advanced Design and Total Installed-Capital Costs. https://ispt.eu/news/new-report-gigawatt-green-hydrogen-plant-advanced-design-and-total-installed-capital-costs/ (2022).
      Kee, J. & Penev, M. (Misho). ProFAST (Production Financial Analysis Scenario Tool) [SWR-23-88]. https://doi.org/10.11578/DC.20231211.1 (2023).
      Karanth, N. G. & Hughes, R. The kinetics of the catalytic hydrogenation of toluene. J. Appl. Chem. Biotechnol. 23, 817–827 (1973). (PMID: 10.1002/jctb.5020231105)
      Touzani, A., Klvana, D. & Belanger, G. Dehydrogenation Of Methylcyclohexane On The Industrial Catalyst: Kinetic Study. Stud. Surf. Sci. Catal. 19, 357–364 (1984). (PMID: 10.1016/S0167-2991(09)60118-X)
      Theis, J. Quality Guidelines For Energy System Studies; Cost Estimation Methodology for NETL Assessments of Power Plant Performance. https://www.osti.gov/biblio/1567736 https://doi.org/10.2172/1567736 (2021).
      King, C. F. Analysis, Synthesis, and Design of Chemical Processes. Richard Turton, Richard Bailie, Wallace Whiting, Joseph Shaeiwitz Prentice Hall, 1998. Chemie Ing. Tech. 71 (1999).
      Woods, D. R. Rules of Thumb in Engineering Practice. Rules Thumb Eng. Pract. 1–458 https://doi.org/10.1002/9783527611119 (2007).
      US Geological Survey. USGS Governmental Unit Boundaries [dataset]. www.usgs.ghttps://data.usgs.gov/datacatalog/data/USGS:6dcde538-1684-48a0-a8d6-cb671ca0a43e (2020).
    • Publication Date:
      Date Created: 20241019 Latest Revision: 20241025
    • Publication Date:
      20241025
    • Accession Number:
      PMC11490532
    • Accession Number:
      10.1038/s41467-024-53189-2
    • Accession Number:
      39426968