Molecular insights and functional analysis of isocitrate dehydrogenase in two gram-negative pathogenic bacteria.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: Germany NLM ID: 9012472 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-0972 (Electronic) Linking ISSN: 09593993 NLM ISO Abbreviation: World J Microbiol Biotechnol Subsets: MEDLINE
    • Publication Information:
      Publication: 2005- : Berlin : Springer
      Original Publication: Oxford, OX, UK : Published by Rapid Communications of Oxford Ltd in association with UNESCO and in collaboration with the International Union of Microbiological Societies, c1990-
    • Subject Terms:
    • Abstract:
      Klebsiella pneumoniae and Legionella pneumophila are common Gram-negative bacteria that can cause lung infections. The multidrug resistance of K. pneumoniae presents a significant challenge for treatment. This study focuses on isocitrate dehydrogenase (IDH), a key enzyme in the oxidative metabolic pathway of these two bacteria. KpIDH and LpIDH were successfully overexpressed and purified, and their biochemical characteristics were thoroughly investigated. The study revealed that KpIDH and LpIDH are homodimeric enzymes with molecular weights of approximately 70 kDa. They are completely dependent on the coenzyme NADP + and are inactive towards NAD + . KpIDH exhibits the highest catalytic activity at pH 8.0 in the presence of Mn 2+ and at pH 7.8 in the presence of Mg 2+ . Its optimal catalytic performance is achieved with both ions at 55 °C. LpIDH exhibited its highest activity at pH 7.8 in the presence of Mn 2+ and Mg 2+ , respectively, and exhibits optimal catalytic performance at 45 °C. Heat inactivation studies showed that KpIDH and LpIDH retained over 80% of their activity after being exposed to 45 °C for 20 min. Furthermore, we successfully altered the coenzyme specificity of KpIDH and LpIDH from NADP + to NAD + by replacing four key amino acid residues. This study provides a comprehensive biochemical characterization of two multidrug-resistant bacterial IDHs commonly found in hospital environments. It enhances our understanding of the characteristics of pathogenic bacteria and serves as a reference for developing new therapeutic strategies.
      (© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)
    • References:
      Abdel-Nour M, Duncan C, Low DE, Guyard C (2013) Biofilms: the stronghold of Legionella pneumophila. Int J Mol Sci 14:21660–21675. https://doi.org/10.3390/ijms141121660. (PMID: 10.3390/ijms141121660241859133856027)
      Amary MF, Bacsi K, Maggiani F, Damato S et al (2011) IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol 224:334–343. https://doi.org/10.1002/path.2913. (PMID: 10.1002/path.291321598255)
      Arai M, Nobusawa S, Ikota H, Takemura S, Nakazato Y (2012) Frequent IDH1/2 mutations in intracranial chondrosarcoma: a possible diagnostic clue for its differentiation from chordoma. Brain Tumor Pathol 29:201–206. https://doi.org/10.1007/s10014-012-0085-1. (PMID: 10.1007/s10014-012-0085-122323113)
      Banerjee, S. Nandyala, A. Podili, R (2005) Comparison of mycobacterium tuberculosis isocitrate dehydrogenases (ICD-1 and ICD-2) reveals differences in coenzyme affinity oligomeric state pH tolerance and phylogenetic affiliation Abstract BMC Biochemistry 6(1). https://doi.org/10.1186/1471-2091-6-20. (PMID: 10.1186/1471-2091-6-20161942791260013)
      Bian M, Zhao J, Xu W, Han X et al (2023) Enzymatic characterization of the Isocitrate dehydrogenase with dual Coenzyme specificity from the Marine Bacterium Umbonibacter marinipuiceus. Int J Mol Sci 24. https://doi.org/10.3390/ijms241411428. (PMID: 10.3390/ijms241411428)
      Brüggemann H, Hagman A, Jules M, Sismeiro O et al (2006) Virulence strategies for infecting phagocytes deduced from the in vivo transcriptional program of Legionella pneumophila. Cell Microbiol 8:1228–1240. https://doi.org/10.1111/j.1462-5822.2006.00703.x. (PMID: 10.1111/j.1462-5822.2006.00703.x16882028)
      Chauhan D, Shames SR (2021) Pathogenicity and virulence of Legionella: intracellular replication and host response. Virulence 12:1122–1144. https://doi.org/10.1080/21505594.2021.1903199. (PMID: 10.1080/21505594.2021.1903199338434348043192)
      Chen R, Jeong SS (2000) Functional prediction: identification of protein orthologs and paralogs. Protein Sci 9:2344–2353. https://doi.org/10.1110/ps.9.12.2344. (PMID: 10.1110/ps.9.12.2344112060562144510)
      Chen R, Greer AF, Dean AM (1997) Structural constraints in protein engineering–the coenzyme specificity of Escherichia coli isocitrate dehydrogenase. Eur J Biochem 250:578–582. https://doi.org/10.1111/j.1432-1033.1997.0578a.x. (PMID: 10.1111/j.1432-1033.1997.0578a.x9428712)
      Chen X, Sun P, Liu Y, Shen S et al (2022) Structures of a constitutively active mutant of human IDH3 reveal new insights into the mechanisms of allosteric activation and the catalytic reaction. J Biol Chem 298:102695. https://doi.org/10.1016/j.jbc.2022.102695. (PMID: 10.1016/j.jbc.2022.102695363756389731866)
      Chen X, Wei W, Xiong W, Wu S et al (2023) Two different isocitrate dehydrogenases from Pseudomonas aeruginosa: Enzymology and Coenzyme-Evolutionary implications. Int J Mol Sci 24. https://doi.org/10.3390/ijms241914985. (PMID: 10.3390/ijms241914985)
      Chien M, Morozova I, Shi S, Sheng H et al (2004) The genomic sequence of the accidental pathogen Legionella pneumophila. Science 305:1966–1968. https://doi.org/10.1126/science.1099776. (PMID: 10.1126/science.109977615448271)
      Choby JE, Howard-Anderson J, Weiss DS (2020) Hypervirulent Klebsiella pneumoniae - clinical and molecular perspectives. J Intern Med 287:283–300. https://doi.org/10.1111/joim.13007. (PMID: 10.1111/joim.1300731677303)
      Crousilles A, Dolan SK, Brear P, Chirgadze DY, Welch M (2018) Gluconeogenic precursor availability regulates flux through the glyoxylate shunt in Pseudomonas aeruginosa. J Biol Chem 293:14260–14269. https://doi.org/10.1074/jbc.RA118.004514. (PMID: 10.1074/jbc.RA118.004514300303826139552)
      Daniel J, Maamar H, Deb C, Sirakova TD, Kolattukudy PE (2011) Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog 7:e1002093. https://doi.org/10.1371/journal.ppat.1002093. (PMID: 10.1371/journal.ppat.1002093217314903121879)
      Dean AM, Golding GB (1997) Protein engineering reveals ancient adaptive replacements in isocitrate dehydrogenase. Proc Natl Acad Sci U S A 94:3104–3109. https://doi.org/10.1073/pnas.94.7.3104. (PMID: 10.1073/pnas.94.7.3104909635320329)
      Eisenreich W, Dandekar T, Heesemann J, Goebel W (2010) Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nat Rev Microbiol 8:401–412. https://doi.org/10.1038/nrmicro2351. (PMID: 10.1038/nrmicro235120453875)
      Eylert E, Herrmann V, Jules M, Gillmaier N et al (2010) Isotopologue profiling of Legionella pneumophila: role of serine and glucose as carbon substrates. J Biol Chem 285:22232–22243. https://doi.org/10.1074/jbc.M110.128678. (PMID: 10.1074/jbc.M110.128678204424012903384)
      Giorgi C, Marchi S, Pinton P (2018) The machineries, regulation and cellular functions of mitochondrial calcium. Nat Rev Mol Cell Biol 19:713–730. https://doi.org/10.1038/s41580-018-0052-8. (PMID: 10.1038/s41580-018-0052-830143745)
      Gonçalves S, Miller SP, Carrondo MA, Dean AM, Matias PM (2012) Induced fit and the catalytic mechanism of isocitrate dehydrogenase. Biochemistry 51:7098–7115. https://doi.org/10.1021/bi300483w. (PMID: 10.1021/bi300483w22891681)
      Guilhen C, Miquel S, Charbonnel N, Joseph L et al (2019) Colonization and immune modulation properties of Klebsiella pneumoniae biofilm-dispersed cells. NPJ Biofilms Microbiomes 5:25. https://doi.org/10.1038/s41522-019-0098-1. (PMID: 10.1038/s41522-019-0098-1315831086760147)
      Gunnink SM, Kerk SA, Kuiper BD, Alabi OD et al (2014) Alkaline pH activates the transport activity of GLUT1 in L929 fibroblast cells. Biochimie 99:189–194. https://doi.org/10.1016/j.biochi.2013.12.003. (PMID: 10.1016/j.biochi.2013.12.00324333987)
      Häuslein I, Manske C, Goebel W, Eisenreich W, Hilbi H (2016) Pathway analysis using (13) C-glycerol and other carbon tracers reveals a bipartite metabolism of Legionella pneumophila. Mol Microbiol 100:229–246. https://doi.org/10.1111/mmi.13313. (PMID: 10.1111/mmi.1331326691313)
      Holt KE, Wertheim H, Zadoks RN, Baker S et al (2015) Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci U S A 112:E3574–3581. https://doi.org/10.1073/pnas.1501049112. (PMID: 10.1073/pnas.1501049112261008944500264)
      Huang SP, Cheng HM, Wang P, Zhu GP (2016) Biochemical characterization and Complete Conversion of Coenzyme specificity of Isocitrate dehydrogenase from Bifidobacterium longum. Int J Mol Sci 17:296. https://doi.org/10.3390/ijms17030296. (PMID: 10.3390/ijms17030296269270874813160)
      Huang S, Zhao J, Li W, Wang P et al (2021) Biochemical and phylogenetic characterization of a Novel NADP(+)-Specific isocitrate dehydrogenase from the Marine Microalga Phaeodactylum tricornutum. Front Mol Biosci 8:702083. https://doi.org/10.3389/fmolb.2021.702083. (PMID: 10.3389/fmolb.2021.702083342910898287583)
      Hurley JH, Dean AM, Koshland DE Jr., Stroud RM (1991) Catalytic mechanism of NADP(+)-dependent isocitrate dehydrogenase: implications from the structures of magnesium-isocitrate and NADP + complexes. Biochemistry 30:8671–8678. https://doi.org/10.1021/bi00099a026. (PMID: 10.1021/bi00099a0261888729)
      Hurley JH, Chen R, Dean AM (1996) Determinants of cofactor specificity in isocitrate dehydrogenase: structure of an engineered NADP+ --> NAD + specificity-reversal mutant. Biochemistry 35:5670–5678. https://doi.org/10.1021/bi953001q. (PMID: 10.1021/bi953001q8639526)
      Imada K, Tamura T, Takenaka R, Kobayashi I et al (2008) Structure and quantum chemical analysis of NAD+-dependent isocitrate dehydrogenase: hydride transfer and co-factor specificity. Proteins 70:63–71. https://doi.org/10.1002/prot.21486. (PMID: 10.1002/prot.2148617634983)
      Karlström M, Stokke R, Steen IH, Birkeland NK, Ladenstein R (2005) Isocitrate dehydrogenase from the hyperthermophile Aeropyrum pernix: X-ray structure analysis of a ternary enzyme-substrate complex and thermal stability. J Mol Biol 345:559–577. https://doi.org/10.1016/j.jmb.2004.10.025. (PMID: 10.1016/j.jmb.2004.10.02515581899)
      Kaur R, Kumar R, Verma S, Kumar A et al (2020) Structural and functional insights about unique extremophilic bacterial lipolytic enzyme from metagenome source. Int J Biol Macromol 152:593–604. https://doi.org/10.1016/j.ijbiomac.2020.02.210. (PMID: 10.1016/j.ijbiomac.2020.02.21032088224)
      Krulwich TA, Sachs G, Padan E (2011) Molecular aspects of bacterial pH sensing and homeostasis. Nat Rev Microbiol 9:330–343. https://doi.org/10.1038/nrmicro2549. (PMID: 10.1038/nrmicro2549214648253247762)
      Li Y, Ni M (2023) Regulation of biofilm formation in Klebsiella pneumoniae. Front Microbiol 14:1238482. https://doi.org/10.3389/fmicb.2023.1238482. (PMID: 10.3389/fmicb.2023.12384823774491410513181)
      Lu C, Ward PS, Kapoor GS, Rohle D et al (2012) IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483:474–478. https://doi.org/10.1038/nature10860. (PMID: 10.1038/nature10860223439013478770)
      Lv C, Wang P, Wang W, Su R et al (2016) Two isocitrate dehydrogenases from a plant pathogen Xanthomonas campestris Pv. Campestris 8004. Bioinformatic analysis, enzymatic characterization, and implication in virulence. J Basic Microbiol 56:975–985. https://doi.org/10.1002/jobm.201500648. (PMID: 10.1002/jobm.20150064827282849)
      Lv P, Tang W, Wang P, Cao Z, Zhu G (2018) Enzymatic characterization and functional implication of two structurally different isocitrate dehydrogenases from Xylella fastidiosa. Biotechnol Appl Biochem 65:230–237. https://doi.org/10.1002/bab.1560. (PMID: 10.1002/bab.156028220528)
      Magill SS, O’Leary E, Janelle SJ, Thompson DL et al (2018) Changes in prevalence of Health Care-Associated infections in U.S. hospitals. N Engl J Med 379:1732–1744. https://doi.org/10.1056/NEJMoa1801550. (PMID: 10.1056/NEJMoa1801550303803847978499)
      Meehan CJ, Goig GA, Kohl TA, Verboven L et al (2019) Whole genome sequencing of Mycobacterium tuberculosis: current standards and open issues. Nat Rev Microbiol 17:533–545. https://doi.org/10.1038/s41579-019-0214-5. (PMID: 10.1038/s41579-019-0214-531209399)
      Miyazaki J, Kobashi N, Nishiyama M, Yamane H (2003) Characterization of homoisocitrate dehydrogenase involved in lysine biosynthesis of an extremely thermophilic bacterium, Thermus thermophilus HB27, and evolutionary implication of beta-decarboxylating dehydrogenase. J Biol Chem 278:1864–1871. https://doi.org/10.1074/jbc.M205133200. (PMID: 10.1074/jbc.M20513320012427751)
      Moon S, Ham S, Jeong J, Ku H et al (2023) Temperature matters: bacterial response to temperature change. J Microbiol 61:343–357. https://doi.org/10.1007/s12275-023-00031-x. (PMID: 10.1007/s12275-023-00031-x37010795)
      Nei M, Kumar S (2000) Molecular Evolution and Phylogenetics. Oxford University Press.
      Newton HJ, Ang DK, van Driel IR, Hartland EL (2010) Molecular pathogenesis of infections caused by Legionella pneumophila. Clin Microbiol Rev 23:274–298. https://doi.org/10.1128/cmr.00052-09. (PMID: 10.1128/cmr.00052-09203753532863363)
      Oliva G, Sahr T, Buchrieser C (2018) The life cycle of L. pneumophila: Cellular differentiation is linked to virulence and metabolism. Front Cell Infect Microbiol 8:3. https://doi.org/10.3389/fcimb.2018.00003. (PMID: 10.3389/fcimb.2018.00003294042815780407)
      Pappa O, Chochlakis D, Sandalakis V, Dioli C et al (2020) Antibiotic Resistance of Legionella pneumophila in Clinical and Water Isolates-A systematic review. Int J Environ Res Public Health 17. https://doi.org/10.3390/ijerph17165809. (PMID: 10.3390/ijerph17165809)
      Paschka P, Schlenk RF, Gaidzik VI, Habdank M et al (2010) IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol 28:3636–3643. https://doi.org/10.1200/jco.2010.28.3762. (PMID: 10.1200/jco.2010.28.376220567020)
      Passalacqua KD, Charbonneau ME, O’Riordan MXD (2016) Bacterial metabolism shapes the host-Pathogen Interface. Microbiol Spectr 4. https://doi.org/10.1128/microbiolspec.VMBF-0027-2015. (PMID: 10.1128/microbiolspec.VMBF-0027-2015)
      Peyron P, Vaubourgeix J, Poquet Y, Levillain F et al (2008) Foamy macrophages from tuberculous patients’ granulomas constitute a nutrient-rich reservoir for M. Tuberculosis persistence. PLoS Pathog 4:e1000204. https://doi.org/10.1371/journal.ppat.1000204. (PMID: 10.1371/journal.ppat.1000204190022412575403)
      Pietrak B, Zhao H, Qi H, Quinn C et al (2011) A tale of two subunits: how the neomorphic R132H IDH1 mutation enhances production of αHG. Biochemistry 50:4804–4812. https://doi.org/10.1021/bi200499m. (PMID: 10.1021/bi200499m21524095)
      Prasad UV, Vasu D, Kumar YN, Kumar PS et al (2013) Cloning, expression and characterization of NADP-dependent isocitrate dehydrogenase from Staphylococcus aureus. Appl Biochem Biotechnol 169:862–869. https://doi.org/10.1007/s12010-012-0027-8. (PMID: 10.1007/s12010-012-0027-823288593)
      Prince A, Wong Fok Lung T (2023) Immunometabolic control by Klebsiella pneumoniae. Immunometabolism (Cobham) 5:e00028. https://doi.org/10.1097/in9.0000000000000028. (PMID: 10.1097/in9.000000000000002837492184)
      Sharma PK, Kumar R, Kumar R, Mohammad O et al (2012) Engineering of a metagenome derived lipase toward thermal tolerance: effect of asparagine to lysine mutation on the protein surface. Gene 491:264–271. https://doi.org/10.1016/j.gene.2011.09.028. (PMID: 10.1016/j.gene.2011.09.02822001407)
      Sharma PK, Singh K, Singh R, Capalash N et al (2012b) Characterization of a thermostable lipase showing loss of secondary structure at ambient temperature. Mol Biol Rep 39:2795–2804. https://doi.org/10.1007/s11033-011-1038-1. (PMID: 10.1007/s11033-011-1038-121678056)
      Sharma PK, Kumar R, Garg P, Kaur J (2014) Insights into controlling role of substitution mutation, E315G on thermostability of a lipase cloned from metagenome of hot spring soil. 3 Biotech 4:189–196. https://doi.org/10.1007/s13205-013-0142-4. (PMID: 10.1007/s13205-013-0142-428324449)
      Solheim LP, Fromm HJ (1980) pH kinetic studies of bovine brain hexokinase. Biochemistry 19:6074–6080. https://doi.org/10.1021/bi00567a020. (PMID: 10.1021/bi00567a0207470451)
      Song P, Wang ML, Zheng QY, Wang P, Zhu GP (2021) Isocitrate dehydrogenase 1 from Acinetobacter Baummanii (AbIDH1) enzymatic characterization and its regulation by phosphorylation. Biochimie 181:77–85. https://doi.org/10.1016/j.biochi.2020.12.001. (PMID: 10.1016/j.biochi.2020.12.00133290880)
      Soundar S, Park JH, Huh TL, Colman RF (2003) Evaluation by mutagenesis of the importance of 3 arginines in alpha, beta, and gamma subunits of human NAD-dependent isocitrate dehydrogenase. J Biol Chem 278:52146–52153. https://doi.org/10.1074/jbc.M306178200. (PMID: 10.1074/jbc.M30617820014555658)
      Tang WG, Song P, Cao ZY, Wang P, Zhu GP (2015) A unique homodimeric NAD⁺-linked isocitrate dehydrogenase from the smallest autotrophic eukaryote Ostreococcus Tauri. Faseb j 29:2462–2472. https://doi.org/10.1096/fj.14-257014. (PMID: 10.1096/fj.14-25701425724193)
      Verma S, Kumar R, Kumar P, Sharma D et al (2020) Cloning, characterization, and Structural modeling of an extremophilic bacterial lipase isolated from saline habitats of the Thar Desert. Appl Biochem Biotechnol 192:557–572. https://doi.org/10.1007/s12010-020-03329-3. (PMID: 10.1007/s12010-020-03329-332424739)
      Wang P, Jin M, Zhu G (2012) Biochemical and molecular characterization of NAD(+)-dependent isocitrate dehydrogenase from the ethanologenic bacterium Zymomonas mobilis. FEMS Microbiol Lett 327:134–141. https://doi.org/10.1111/j.1574-6968.2011.02467.x. (PMID: 10.1111/j.1574-6968.2011.02467.x22117777)
      Wang P, Lv C, Zhu G (2015) Novel type II and monomeric NAD + specific isocitrate dehydrogenases: phylogenetic affinity, enzymatic characterization, and evolutionary implication. Sci Rep 5:9150. https://doi.org/10.1038/srep09150. (PMID: 10.1038/srep09150257751774360740)
      Wang X, Inaoka DK, Shiba T, Balogun E, O et al (2017) Expression, purification, and crystallization of type 1 isocitrate dehydrogenase from Trypanosoma Brucei Brucei. Protein Expr Purif 138:56–62. https://doi.org/10.1016/j.pep.2017.06.011. (PMID: 10.1016/j.pep.2017.06.01128642005)
      Wang P, Wu Y, Liu J, Song P et al (2018) Crystal structure of the Isocitrate dehydrogenase 2 from Acinetobacter baumannii (AbIDH2) reveals a Novel Dimeric structure with two Monomeric-IDH-Like subunits. Int J Mol Sci 19. https://doi.org/10.3390/ijms19041131. (PMID: 10.3390/ijms19041131)
      Wang P, Chen X, Yang J, Pei Y et al (2019) Characterization of the nicotinamide adenine dinucleotides (NAD(+) and NADP(+)) binding sites of the monomeric isocitrate dehydrogenases from Campylobacter species. Biochimie 160:148–155. https://doi.org/10.1016/j.biochi.2019.03.007. (PMID: 10.1016/j.biochi.2019.03.00730876971)
      Wang P, Wang Y, Guo X, Huang S, Zhu G (2020) Biochemical and phylogenetic characterization of a monomeric isocitrate dehydrogenase from a marine methanogenic archaeon Methanococcoides methylutens. Extremophiles 24:319–328. https://doi.org/10.1007/s00792-020-01156-2. (PMID: 10.1007/s00792-020-01156-231970482)
      Yan H, Parsons DW, Jin G, McLendon R et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773. https://doi.org/10.1056/NEJMoa0808710. (PMID: 10.1056/NEJMoa0808710192286192820383)
      Yang J, Zhang K, Ding C, Wang S et al (2023) Exploring multidrug-resistant Klebsiella pneumoniae antimicrobial resistance mechanisms through whole genome sequencing analysis. BMC Microbiol 23:245. https://doi.org/10.1186/s12866-023-02974-y. (PMID: 10.1186/s12866-023-02974-y3766002810474722)
      Yen KE, Bittinger MA, Su SM, Fantin VR (2010) Cancer-associated IDH mutations: biomarker and therapeutic opportunities. Oncogene 29:6409–6417. https://doi.org/10.1038/onc.2010.444. (PMID: 10.1038/onc.2010.44420972461)
      Yu W, Dittenhafer-Reed KE, Denu JM (2012) SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status. J Biol Chem 287:14078–14086. https://doi.org/10.1074/jbc.M112.355206. (PMID: 10.1074/jbc.M112.355206224161403340192)
      Zhao XY, Wang P, Zhu GY (2014) Enzymatic characterization of a type II Isocitrate dehydrogenase from pathogenic leptospira interrogans serovar lai strain 56601. Appl Biochem Biotechnol 172(1):487–496. https://doi.org/10.1007/s12010-013-0521-7.
      Zhu G, Golding GB, Dean AM (2005) The selective cause of an ancient adaptation. Science 307:1279–1282. https://doi.org/10.1126/science.1106974. (PMID: 10.1126/science.110697415653464)
    • Grant Information:
      32071270 National Natural Science Foundation of China; 2022AH010012 Anhui Provincial Universities
    • Contributed Indexing:
      Keywords: Klebsiella pneumoniae; Legionella pneumophila; Biochemical characterization; Coenzyme specificity determinants; Isocitrate dehydrogenase; Kinetics
    • Accession Number:
      EC 1.1.1.41 (Isocitrate Dehydrogenase)
      53-59-8 (NADP)
      0U46U6E8UK (NAD)
      0 (Bacterial Proteins)
    • Publication Date:
      Date Created: 20241019 Date Completed: 20241019 Latest Revision: 20241108
    • Publication Date:
      20241108
    • Accession Number:
      10.1007/s11274-024-04169-7
    • Accession Number:
      39425873