Glutamate Signaling and Neuroligin/Neurexin Adhesion Play Opposing Roles That Are Mediated by Major Histocompatibility Complex I Molecules in Cortical Synapse Formation.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Society for Neuroscience Country of Publication: United States NLM ID: 8102140 Publication Model: Electronic Cited Medium: Internet ISSN: 1529-2401 (Electronic) Linking ISSN: 02706474 NLM ISO Abbreviation: J Neurosci Subsets: MEDLINE
    • Publication Information:
      Publication: Washington, DC : Society for Neuroscience
      Original Publication: [Baltimore, Md.] : The Society, c1981-
    • Subject Terms:
    • Abstract:
      Although neurons release neurotransmitter before contact, the role for this release in synapse formation remains unclear. Cortical synapses do not require synaptic vesicle release for formation (Verhage et al., 2000; Sando et al., 2017; Sigler et al., 2017; Held et al., 2020), yet glutamate clearly regulates glutamate receptor trafficking (Roche et al., 2001; Nong et al., 2004) and induces spine formation (Engert and Bonhoeffer, 1999; Maletic-Savatic et al., 1999; Toni et al., 1999; Kwon and Sabatini, 2011; Oh et al., 2016). Using rat and murine culture systems to dissect molecular mechanisms, we found that glutamate rapidly decreases synapse density specifically in young cortical neurons in a local and calcium-dependent manner through decreasing N -methyl-d-aspartate receptor (NMDAR) transport and surface expression as well as cotransport with neuroligin (NL1). Adhesion between NL1 and neurexin 1 protects against this glutamate-induced synapse loss. Major histocompatibility I (MHCI) molecules are required for the effects of glutamate in causing synapse loss through negatively regulating NL1 levels in both sexes. Thus, like acetylcholine at the neuromuscular junction, glutamate acts as a dispersal signal for NMDARs and causes rapid synapse loss unless opposed by NL1-mediated trans-synaptic adhesion. Together, glutamate, MHCI, and NL1 mediate a novel form of homeostatic plasticity in young neurons that induces rapid changes in NMDARs to regulate when and where nascent glutamatergic synapses are formed.
      Competing Interests: The authors declare no competing financial interests.
      (Copyright © 2024 the authors.)
    • Comments:
      Update of: bioRxiv. 2024 Mar 07:2024.03.05.583626. doi: 10.1101/2024.03.05.583626. (PMID: 38496590)
    • References:
      J Neurophysiol. 2006 Oct;96(4):2127-33. (PMID: 16760351)
      Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12492-7. (PMID: 9770513)
      Nat Neurosci. 2001 Aug;4(8):794-802. (PMID: 11477425)
      Nat Neurosci. 2014 Jan;17(1):56-64. (PMID: 24336150)
      Neuropsychopharmacology. 2015 Jan;40(1):4-15. (PMID: 24990427)
      Curr Opin Neurobiol. 1999 Jun;9(3):305-13. (PMID: 10395573)
      Cold Spring Harb Perspect Biol. 2012 Jan 01;4(1):a005736. (PMID: 22086977)
      J Neurosci. 2004 Jul 14;24(28):6383-91. (PMID: 15254094)
      Neuron. 2012 Oct 18;76(2):410-22. (PMID: 23083742)
      Nat Neurosci. 2012 Dec;15(12):1667-74. (PMID: 23143522)
      Curr Opin Neurobiol. 2004 Jun;14(3):353-61. (PMID: 15194116)
      Annu Rev Neurosci. 2007;30:425-50. (PMID: 17417940)
      Nature. 1999 May 6;399(6731):66-70. (PMID: 10331391)
      Biol Psychiatry. 2017 Mar 1;81(5):380-382. (PMID: 28137373)
      Nat Rev Neurosci. 2004 Jul;5(7):521-31. (PMID: 15208694)
      Science. 1992 Nov 27;258(5087):1498-501. (PMID: 1359647)
      Neuron. 2009 Dec 24;64(6):791-8. (PMID: 20064387)
      Neuron. 2004 Dec 2;44(5):759-67. (PMID: 15572108)
      Neuron. 2020 Aug 19;107(4):667-683.e9. (PMID: 32616470)
      J Neurosci. 2021 Dec 1;41(48):9891-9905. (PMID: 34686546)
      Nature. 1983 Oct 13-19;305(5935):632-4. (PMID: 6621712)
      Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):11088-93. (PMID: 16043708)
      Neuron. 2007 Jun 21;54(6):919-31. (PMID: 17582332)
      Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):14112-7. (PMID: 10570207)
      J Neurosci. 1998 Feb 15;18(4):1217-29. (PMID: 9454832)
      J Cell Biol. 2021 Jul 5;220(7):. (PMID: 34086051)
      Neuron. 2002 Jul 18;35(2):345-53. (PMID: 12160751)
      PLoS One. 2012;7(2):e32446. (PMID: 22384253)
      Curr Opin Neurobiol. 2022 Aug;75:102553. (PMID: 35594578)
      Can J Physiol Pharmacol. 1999 Sep;77(9):722-34. (PMID: 10566950)
      Trends Neurosci. 2012 Nov;35(11):660-70. (PMID: 22939644)
      J Neurosci. 2013 Aug 21;33(34):13791-804. (PMID: 23966700)
      Science. 2016 Sep 2;353(6303):1037-1040. (PMID: 27516412)
      Behav Brain Funct. 2011 Jan 04;7:1. (PMID: 21205317)
      Nature. 2011 Jun 2;474(7349):100-4. (PMID: 21552280)
      Proc Natl Acad Sci U S A. 2000 May 23;97(11):6173-8. (PMID: 10811899)
      Trends Neurosci. 2004 May;27(5):257-61. (PMID: 15111007)
      Cell. 2004 Dec 29;119(7):1013-26. (PMID: 15620359)
      Nature. 1999 Nov 25;402(6760):421-5. (PMID: 10586883)
      J Neurosci Methods. 2007 Mar 15;160(2):197-205. (PMID: 17049620)
      Neuron. 2020 Sep 9;107(5):986-987. (PMID: 32910891)
      J Neurosci. 1999 Jul 1;19(13):5265-74. (PMID: 10377338)
      Nature. 2003 Mar 20;422(6929):302-7. (PMID: 12646920)
      J Neurosci. 2004 Sep 22;24(38):8253-64. (PMID: 15385609)
      Neuron. 1998 Sep;21(3):505-20. (PMID: 9768838)
      Science. 2000 Dec 15;290(5499):2155-9. (PMID: 11118151)
      Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):9037-42. (PMID: 12070347)
      Biol Psychiatry. 2014 Feb 15;75(4):262-8. (PMID: 24199663)
      Nat Neurosci. 2003 Dec;6(12):1264-9. (PMID: 14608359)
      J Cell Biol. 2011 Jul 25;194(2):323-34. (PMID: 21788371)
      Proc Natl Acad Sci U S A. 2007 Apr 17;104(16):6828-33. (PMID: 17420446)
      Science. 1999 Mar 19;283(5409):1923-7. (PMID: 10082466)
      Neuron. 2014 Sep 17;83(6):1303-1318. (PMID: 25233313)
      Philos Trans R Soc Lond B Biol Sci. 2017 Mar 5;372(1715):. (PMID: 28093556)
      J Neurosci. 2003 Aug 6;23(18):7129-42. (PMID: 12904473)
      Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):725-30. (PMID: 23269831)
      Front Mol Neurosci. 2020 Dec 03;13:610964. (PMID: 33343299)
      Nat Neurosci. 2001 Jun;4(6):587-96. (PMID: 11369939)
      Nat Neurosci. 2021 Jun;24(6):786-798. (PMID: 33958804)
      Annu Rev Neurosci. 2011;34:89-103. (PMID: 21438687)
      Neuron. 1996 Apr;16(4):825-33. (PMID: 8608000)
      Cell Biosci. 2023 Sep 29;13(1):181. (PMID: 37773139)
      Nat Cell Biol. 2003 Jun;5(6):520-30. (PMID: 12738960)
      Cereb Cortex. 2016 Apr;26(4):1453-1463. (PMID: 25316337)
      Science. 2016 Aug 19;353(6301):772-7. (PMID: 27540164)
      J Neurosci. 2011 Mar 23;31(12):4743-54. (PMID: 21430173)
      J Neurosci Res. 2018 Mar;96(3):354-359. (PMID: 29034487)
      Neuron. 2006 Sep 21;51(6):741-54. (PMID: 16982420)
      J Neurosci. 2006 Oct 18;26(42):10813-25. (PMID: 17050720)
      Neuron. 2017 Apr 19;94(2):304-311.e4. (PMID: 28426965)
      Nat Rev Neurosci. 2015 Aug;16(8):469-86. (PMID: 26189694)
      PLoS One. 2015 Aug 11;10(8):e0135223. (PMID: 26263390)
      J Neurophysiol. 2003 Dec;90(6):3950-7. (PMID: 12930820)
      J Neurosci. 2014 Nov 5;34(45):15083-96. (PMID: 25378172)
      Neural Dev. 2009 May 18;4:17. (PMID: 19450252)
      Neuron. 2000 Jul;27(1):57-69. (PMID: 10939331)
      Nat Neurosci. 2001 Apr;4(4):351-2. (PMID: 11276221)
      Annu Rev Genet. 2018 Nov 23;52:567-590. (PMID: 30212237)
      J Neurosci. 2006 Feb 15;26(7):2000-9. (PMID: 16481433)
      Nat Neurosci. 2002 Aug;5(8):751-9. (PMID: 12089529)
      J Cell Biol. 1992 May;117(4):849-61. (PMID: 1577861)
      J Physiol Paris. 2002 Jan-Mar;96(1-2):73-80. (PMID: 11755785)
      Neuron. 2017 May 3;94(3):611-625.e4. (PMID: 28472659)
      STAR Protoc. 2021 Dec 22;3(1):101063. (PMID: 35005645)
      Neuron. 2012 Oct 18;76(2):396-409. (PMID: 23083741)
      Neuron. 2017 Apr 19;94(2):312-321.e3. (PMID: 28426966)
      J Neurosci. 2016 Aug 24;36(34):8783-9. (PMID: 27559162)
      Science. 2000 Feb 4;287(5454):864-9. (PMID: 10657302)
      Cell. 2000 Jun 9;101(6):657-69. (PMID: 10892652)
      Neuron. 2019 May 8;102(3):621-635.e3. (PMID: 30871858)
      Nat Neurosci. 2011 Apr;14(4):442-51. (PMID: 21358642)
      J Neurosci. 2010 Sep 22;30(38):12733-44. (PMID: 20861378)
      Nat Protoc. 2007;2(3):670-6. (PMID: 17406629)
      Proc Natl Acad Sci U S A. 2010 Sep 28;107(39):16999-7004. (PMID: 20837535)
      Nat Neurosci. 2012 Jan 29;15(3):389-98, S1-2. (PMID: 22286174)
      Neuron. 2002 Apr 11;34(2):255-64. (PMID: 11970867)
      Nature. 1983 Oct 13-19;305(5935):634-7. (PMID: 6312327)
      J Neurosci. 1996 May 1;16(9):2983-94. (PMID: 8622128)
      J Neurosci. 2010 Feb 10;30(6):2115-29. (PMID: 20147539)
      Science. 2005 Feb 25;307(5713):1324-8. (PMID: 15681343)
      Annu Rev Neurosci. 2005;28:251-74. (PMID: 16022596)
      Neuron. 2018 Oct 24;100(2):276-293. (PMID: 30359597)
      J Neurosci. 2003 Nov 19;23(33):10645-9. (PMID: 14627649)
    • Grant Information:
      R01 EY013584 United States EY NEI NIH HHS; R01 NS060125 United States NS NINDS NIH HHS
    • Contributed Indexing:
      Keywords: MHCI; homeostatic plasticity; neuroimmunology; neuroligin; synaptogenesis
    • Accession Number:
      0 (Cell Adhesion Molecules, Neuronal)
      3KX376GY7L (Glutamic Acid)
      0 (neuroligin 1)
      0 (Receptors, N-Methyl-D-Aspartate)
      0 (Nrxn1 protein, mouse)
      0 (Neural Cell Adhesion Molecules)
      0 (Nerve Tissue Proteins)
      0 (Neuroligins)
      0 (Calcium-Binding Proteins)
    • Publication Date:
      Date Created: 20241018 Date Completed: 20241204 Latest Revision: 20241208
    • Publication Date:
      20241209
    • Accession Number:
      PMC11622183
    • Accession Number:
      10.1523/JNEUROSCI.0797-24.2024
    • Accession Number:
      39424368