High CO 2 dampens then amplifies N-induced diversity loss over 24 years.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
    • Publication Information:
      Publication: Basingstoke : Nature Publishing Group
      Original Publication: London, Macmillan Journals ltd.
    • Subject Terms:
    • Abstract:
      Rising levels of atmospheric carbon dioxide (CO 2 ) and nitrogen (N) deposition affect plant communities in numerous ways 1-11 . Nitrogen deposition causes local biodiversity loss globally 12-14 , but whether, and if so how, rising CO 2 concentrations amplify or dampen those losses remains unclear and is almost entirely unstudied. We addressed this knowledge gap with an open-air experiment in which 108 grassland plots were grown for 24 years under different CO 2 and N regimes. We initially found that adding N reduced plant species richness less at elevated than at ambient CO 2 . Over time, however, this interaction reversed, and elevated CO 2 amplified losses in diversity from enriched N, tripling reductions in species richness from N addition over the last eight years of the study. These interactions resulted from temporal changes in the drivers of diversity, especially light availability, that were in turn driven by CO 2 and N inputs and associated changes in plant biomass. This mechanism is likely to be similar in many grasslands, because additions of the plant resources CO 2 and N are likely to increase the abundance of the dominant species. If rising CO 2 generally exacerbates the widespread negative impacts of N deposition on plant diversity, this bodes poorly for the conservation of grassland biodiversity worldwide.
      Competing Interests: Competing interests The authors declare no competing interests.
      (© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)
    • References:
      Stevens, C. J., Dise, N. B., Mountford, J. O. & Gowing, D. J. Impact of nitrogen deposition on the species richness of grasslands. Science 303, 1876–1879 (2004). (PMID: 15031507)
      Zavaleta, E. S., Shaw, M. R., Chiariello, N. R., Mooney, H. A. & Field, C. B. Additive effects of simulated climate changes, elevated CO 2 , and nitrogen deposition on grassland diversity. Proc. Natl Acad. Sci. USA 100, 7650–7654 (2003). (PMID: 12810960164642)
      Zhu, K., Chiariello, N. R., Tobeck, T., Fukami, T. & Field, C. B. Nonlinear, interacting responses to climate limit grassland production under global change. Proc. Natl Acad. Sci. USA 113, 10589–10594 (2016). (PMID: 276016435035850)
      Niklaus, P. A. & Körner, C. Synthesis of a six-year study of calcareous grassland responses to in situ CO 2 enrichment. Ecol. Monogr. 74, 491–511 (2004).
      Suding, K. N. et al. Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proc. Natl Acad. Sci. USA 102, 4387–4392 (2005). (PMID: 15755810555488)
      Clark, C. M. & Tilman, D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451, 712–715 (2008). (PMID: 18256670)
      Avolio, M. L. et al. Determinants of community compositional change are equally affected by global change. Ecol. Lett. 24, 1892–1904 (2021). (PMID: 34170615)
      Komatsu, K. J. et al. Global change effects on plant communities are magnified by time and the number of global change factors imposed. Proc. Natl Acad. Sci. USA 116, 17867–17873 (2019). (PMID: 314275106731679)
      Pörtner, H.-O. et al. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2022).
      Terrer, C. et al. A trade-off between plant and soil carbon storage under elevated CO 2 . Nature 591, 599–603 (2021). (PMID: 33762765)
      Ackerman, D., Millet, D. B. & Chen, X. Global estimates of inorganic nitrogen deposition across four decades. Global Biogeochem. Cycles 33, 100–107 (2019).
      Stevens, C. J. et al. Nitrogen deposition threatens species richness of grasslands across Europe. Environ. Pollut. 158, 2940–2945 (2010). (PMID: 20598409)
      Simkin, S. M. et al. Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States. Proc. Natl Acad. Sci. USA 113, 4086–4091 (2016). (PMID: 270359434839424)
      Payne, R. J. et al. Nitrogen deposition and plant biodiversity: past, present, and future. Front. Ecol. Environ. 15, 431–436 (2017).
      Bobbink, R. et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol. Appl. 20, 30–59 (2010). (PMID: 20349829)
      Gough, L., Osenberg, C. W., Gross, K. L. & Collins, S. L. Fertilization effects on species density and primary productivity in herbaceous plant communities. Oikos 89, 428–439 (2000).
      Harpole, W. S. et al. Addition of multiple limiting resources reduces grassland diversity. Nature 537, 93–96 (2016). (PMID: 27556951)
      Tian, Q. et al. A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe. Ecology 97, 65–74 (2016). (PMID: 27008776)
      Midolo, G. et al. Impacts of nitrogen addition on plant species richness and abundance: a global meta-analysis. Global Ecol. Biogeogr. 28, 398–413 (2019).
      Band, N., Kadmon, R., Mandel, M. & DeMalach, N. Assessing the roles of nitrogen, biomass, and niche dimensionality as drivers of species loss in grassland communities. Proc. Natl Acad. Sci. USA 119, e2112010119 (2022). (PMID: 352354608915794)
      Belote, R. T., Weltzin, J. F. & Norby, R. J. Response of an understory plant community to elevated [CO 2 ] depends on differential responses of dominant invasive species and is mediated by soil water availability. New Phytol. 161, 827–835 (2004). (PMID: 33873709)
      Potvin, C. & Vasseur, L. Long-term CO 2 enrichment of a pasture community: species richness, dominance, and succession. Ecology 78, 666–677 (1997).
      Reich, P. B. Elevated CO 2 reduces losses of plant diversity caused by nitrogen deposition. Science 326, 1399–1402 (2009). (PMID: 19965757)
      Dybzinski, R. & Tilman, D. Resource use patterns predict long-term outcomes of plant competition for nutrients and light. Am. Nat. 170, 305–318 (2007). (PMID: 17879183)
      Hautier, Y., Niklaus, P. A. & Hector, A. Competition for light causes plant biodiversity loss after eutrophication. Science 324, 636–638 (2009). (PMID: 19407202)
      Borer, E. T. et al. Herbivores and nutrients control grassland plant diversity via light limitation. Nature 508, 517–520 (2014). (PMID: 24670649)
      Mason, R. E. et al. Evidence, causes, and consequences of declining nitrogen availability in terrestrial ecosystems. Science 376, eabh3767 (2022). (PMID: 35420945)
      Isbell, F. et al. Expert perspectives on global biodiversity loss and its drivers and impacts on people. Front. Ecol. Environ. https://doi.org/10.1002/fee.2536 (2022). (PMID: 10.1002/fee.2536)
      Reich, P. B. et al. Plant diversity enhances ecosystem responses to elevated CO 2 and nitrogen deposition. Nature 410, 809–812 (2001). (PMID: 11298447)
      Reich, P. B. et al. Synergistic effects of four climate change drivers on terrestrial carbon cycling. Nat. Geosci. 13, 787–793 (2020).
      Pacala, S. W. & Silander, J. A. Jr Neighborhood interference among velvet leaf, Abutilon theophrasti, and pigweed, Amaranthus retroflexus. Oikos 48, 217–224 (1987).
      Kennedy, T. A. et al. Biodiversity as a barrier to ecological invasion. Nature 417, 636–638 (2002). (PMID: 12050662)
      Korell, L., Auge, H., Chase, J. M., Harpole, W. S. & Knight, T. M. Responses of plant diversity to precipitation change are strongest at local spatial scales and in drylands. Nat. Commun. 12, 2489 (2021). (PMID: 339417798093425)
      Isbell, F. et al. Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proc. Natl Acad. Sci. USA 110, 11911–11916 (2013). (PMID: 238185823718098)
      Harrison, S. P., Gornish, E. S. & Copeland, S. Climate-driven diversity loss in a grassland community. Proc. Natl Acad. Sci. USA 112, 8672–8677 (2015). (PMID: 261008914507231)
      Baer, S. G., Blair, J. M. & Collins, S. L. Environmental heterogeneity has a weak effect on diversity during community assembly in a tallgrass prairie. Ecol. Monogr. 86, 94–106 (2016).
      Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl Acad. Sci. USA 110, 19456–19459 (2013). (PMID: 241672593845118)
      Isbell, F., Tilman, D., Reich, P. B. & Clark, A. T. Deficits of biodiversity and productivity linger a century after agricultural abandonment. Nat. Ecol. Evol. 3, 1533–1538 (2019). (PMID: 31666737)
      Chao, A. & Ricotta, C. Quantifying evenness and linking it to diversity, beta diversity, and similarity. Ecology 100, e02852 (2019). (PMID: 31350905)
      Peterson, D. W., Reich, P. B. & Wrage, K. J. Plant functional group responses to fire frequency and tree canopy cover gradients in oak savannas and woodlands. J. Vegetat. Sci. 18, 3–12 (2007).
      Peterson, D. W. & Reich, P. B. Fire frequency and tree canopy structure influence plant species diversity in a forest–grassland ecotone. Plant Ecol. 194, 5–16 (2008).
      Furey, G. N., Hawthorne, P. L. & Tilman, D. Might field experiments also be inadvertent metacommunities? Ecology 103, e3694 (2022). (PMID: 35353386)
      Leach, M. K. & Givnish, T. J. Ecological determinants of species loss in remnant prairies. Science 273, 1555–1558 (1996).
      Reich, P. B. et al. Species and functional group diversity independently influence biomass accumulation and its response to CO 2 and N. Proc. Natl Acad. Sci. USA 101, 10101–10106 (2004). (PMID: 15220472454171)
      R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2022).
      Pinheiro, J. et al. Nlme: linear and nonlinear mixed effects models (2023).
      Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
      Jacoby, W. G. Loess:: a nonparametric, graphical tool for depicting relationships between variables. Elect. Stud. 19, 577–613 (2000).
    • Accession Number:
      142M471B3J (Carbon Dioxide)
      N762921K75 (Nitrogen)
      0 (Soil)
    • Publication Date:
      Date Created: 20241016 Date Completed: 20241114 Latest Revision: 20241119
    • Publication Date:
      20241120
    • Accession Number:
      10.1038/s41586-024-08066-9
    • Accession Number:
      39415011