Structural models predict a significantly higher binding affinity between the NblA protein of cyanophage Ma-LMM01 and the phycocyanin of Microcystis aeruginosa NIES-298 compared to the host homolog.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Oxford University Press Country of Publication: England NLM ID: 101664675 Publication Model: eCollection Cited Medium: Print ISSN: 2057-1577 (Print) Linking ISSN: 20571577 NLM ISO Abbreviation: Virus Evol Subsets: PubMed not MEDLINE
    • Publication Information:
      Original Publication: Oxford : Oxford University Press, [2015]-
    • Abstract:
      Horizontal gene transfer events between viruses and hosts are widespread across the virosphere. In cyanophage-host systems, such events often involve the transfer of genes involved in photosynthetic processes. The genome of the lytic cyanophage Ma-LMM01 infecting the toxic, bloom-forming, freshwater Microcystis aeruginosa NIES-298 contains a homolog of the non-bleaching A ( nblA ) gene, which was probably transferred from a cyanobacterial host. The function of the NblA protein is to disassemble phycobilisomes, cyanobacterial light-harvesting complexes that can comprise up to half of the cellular soluble protein content. NblA thus plays an essential dual role in cyanobacteria: it protects the cell from high-light intensities and increases the intracellular nitrogen pool under nutrient limitation. NblA has previously been shown to interact with phycocyanin, one of the main components of phycobilisomes. Using structural modeling and protein-protein docking, we show that the NblA dimer of Ma-LMM01 is predicted to have a significantly higher binding affinity for M. aeruginosa NIES-298 phycocyanin (αβ) 6 hexamers, compared to the host homolog. Protein-protein docking suggests that the viral NblA structural model is able to bind deeper into the phycocyanin groove. The main structural difference between the virus and host NblA appears to be an additional α-helix near the N-terminus of the viral NblA, which interacts with the inside of the phycocyanin groove and could thus be considered partly responsible for this deeper binding. Interestingly, phylogenetic analyses indicate that this longer nblA was probably acquired from a different Microcystis host. Based on infection experiments and previous findings, we propose that a higher binding affinity of the viral NblA to the host phycocyanin may represent a selective advantage for the virus, whose infection cycle requires an increased phycobilisome degradation rate that is not fulfilled by the NblA of the host.
      Competing Interests: None declared.
      (© The Author(s) 2024. Published by Oxford University Press.)
    • References:
      Mol Biol Evol. 2000 Apr;17(4):540-52. (PMID: 10742046)
      Plant Cell Environ. 2013 Jun;36(6):1071-84. (PMID: 23190083)
      Plant J. 2018 Jun;94(5):813-821. (PMID: 29575252)
      Microbiology (Reading). 2004 Aug;150(Pt 8):2739-2749. (PMID: 15289570)
      Mol Microbiol. 2003 Nov;50(3):1043-54. (PMID: 14617160)
      Nature. 2021 Aug;596(7873):583-589. (PMID: 34265844)
      Nucleic Acids Res. 2019 Jul 2;47(W1):W402-W407. (PMID: 31251384)
      Protein Sci. 2023 Jan;32(1):e4519. (PMID: 36419248)
      Syst Biol. 2003 Oct;52(5):696-704. (PMID: 14530136)
      Trends Biochem Sci. 1995 Nov;20(11):478-80. (PMID: 8578593)
      J Biol Chem. 2006 Feb 24;281(8):5216-23. (PMID: 16356935)
      EMBO J. 1994 Mar 1;13(5):1039-47. (PMID: 8131738)
      Nat Microbiol. 2022 Feb;7(2):327-336. (PMID: 34972821)
      Environ Microbiol Rep. 2020 Oct;12(5):486-502. (PMID: 32754956)
      Microbiol Rev. 1993 Sep;57(3):725-49. (PMID: 8246846)
      J Virol. 2012 Jan;86(1):236-45. (PMID: 22031930)
      Proc Natl Acad Sci U S A. 1967 Jul;58(1):217-24. (PMID: 5231602)
      Nat Methods. 2022 Jun;19(6):679-682. (PMID: 35637307)
      Plant J. 2015 Sep;83(5):845-52. (PMID: 26173720)
      Nucleic Acids Res. 2022 Jul 5;50(W1):W276-W279. (PMID: 35412617)
      Ann N Y Acad Sci. 2009 Oct;1178:65-77. (PMID: 19845628)
      Ecol Lett. 2021 Feb;24(2):363-373. (PMID: 33146939)
      Proc Natl Acad Sci U S A. 2004 Jul 27;101(30):11013-8. (PMID: 15256601)
      Nature. 2009 May 14;459(7244):207-12. (PMID: 19444207)
      Nucleic Acids Res. 2022 Jan 7;50(D1):D20-D26. (PMID: 34850941)
      Science. 1996 Jun 28;272(5270):1910-4. (PMID: 8658163)
      Nature. 1999 Jun 10;399(6736):541-8. (PMID: 10376593)
      Photosynth Res. 2017 Apr;132(1):95-106. (PMID: 28078551)
      Plant J. 2020 May;102(3):529-540. (PMID: 31820831)
      J Biol Chem. 2008 Nov 21;283(47):32394-403. (PMID: 18818204)
      Proc Natl Acad Sci U S A. 2022 Feb 1;119(5):. (PMID: 35078938)
      J Virol. 2023 May 31;97(5):e0027523. (PMID: 37133447)
      Plant J. 2014 Jul;79(1):118-26. (PMID: 24798071)
      BMC Bioinformatics. 2004 Aug 19;5:113. (PMID: 15318951)
      Genome Announc. 2018 Feb 1;6(5):. (PMID: 29437104)
      J Bacteriol. 2008 Mar;190(5):1762-72. (PMID: 18065537)
      Front Microbiol. 2018 Jan 19;9:2. (PMID: 29403457)
      J Gen Virol. 2015 Dec;96(12):3681-3697. (PMID: 26399243)
      Nat Protoc. 2017 Feb;12(2):255-278. (PMID: 28079879)
      Photosynth Res. 2022 Jun;152(3):317-332. (PMID: 35218444)
      Bioinformatics. 2016 Dec 1;32(23):3676-3678. (PMID: 27503228)
      Nature. 2003 Aug 14;424(6950):741. (PMID: 12917674)
      Cell Host Microbe. 2012 Jun 14;11(6):560-1. (PMID: 22704616)
      Bioinformatics. 2001 Aug;17(8):700-12. (PMID: 11524371)
      Microbes Environ. 2012;27(4):350-5. (PMID: 23047146)
      Protein Sci. 2023 Nov;32(11):e4792. (PMID: 37774136)
      Cell Host Microbe. 2022 Jul 13;30(7):917-929. (PMID: 35834963)
      Syst Biol. 2010 May;59(3):307-21. (PMID: 20525638)
      J Biol Chem. 2008 Oct 31;283(44):30330-40. (PMID: 18718907)
      Mol Biol Evol. 2010 Feb;27(2):221-4. (PMID: 19854763)
      Appl Environ Microbiol. 2006 Feb;72(2):1239-47. (PMID: 16461672)
      Curr Opin Microbiol. 2003 Feb;6(1):35-42. (PMID: 12615217)
      Microbiol Spectr. 2023 Feb 14;11(1):e0288822. (PMID: 36602358)
    • Contributed Indexing:
      Keywords: AlphaFold2; Cyanophage; horizontal gene transfer (HGT); non-bleaching A (NblA) protein; protein–protein docking; structural modeling; virus ecology; virus evolution
    • Publication Date:
      Date Created: 20241016 Latest Revision: 20241018
    • Publication Date:
      20241018
    • Accession Number:
      PMC11477984
    • Accession Number:
      10.1093/ve/veae082
    • Accession Number:
      39411151