Improving the bioconversion of phytosterols to 9α-hydroxy-4-androstene-3,17-dione by disruption of acyltransferase SucT and TmaT associated with the mycobacterial cell wall synthesis.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: Germany NLM ID: 9012472 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-0972 (Electronic) Linking ISSN: 09593993 NLM ISO Abbreviation: World J Microbiol Biotechnol Subsets: MEDLINE
    • Publication Information:
      Publication: 2005- : Berlin : Springer
      Original Publication: Oxford, OX, UK : Published by Rapid Communications of Oxford Ltd in association with UNESCO and in collaboration with the International Union of Microbiological Societies, c1990-
    • Subject Terms:
    • Abstract:
      The bioconversion of low value-added phytosterols into high value-added 9α-hydroxy-4-androstene-3,17-dione (9-OHAD) in Mycolicibacterium neoaurum is a representative step in the steroid pharmaceutical industry. However, the complex mycobacterial cell walls with extremely low permeability and flowability greatly decrease the overall conversion efficiency. Herein, we preliminarily identified two key acyltransferases encoded by Mn_TmaT and Mn_SucT required for the proper synthesis of cell wall in mycobacteria and achieved a significant increase in cell permeability by disrupting them without affecting the cell wall structural stability. At length, the destruction of Mn_TmaT and Mn_SucT alone increased the conversion rate of 9-OHAD from 45.3% (6.67 ± 0.39 g/L) to 62.4% (9.19 ± 0.58 g/L) and 67.9% (10.02 ± 0.62 g/L) while the continuous destruction of Mn_TmaT and Mn_SucT did not further improve the conversion efficiency of 9-OHAD. Notably, it was investigated that the continuous destruction of Mn_TmaT and Mn_SucT led to alterations in both the covalent and non-covalent binding layers of the cell wall, resulting in excessive changes in cell morphology and structure, which ultimately decreased 9-OHAD production. Therefore, this study deciphered a pivotal biosynthetic path of cell wall and provided an efficient and feasible construction strategy of 9-OHAD synthesis in mycobacteria.
      (© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)
    • References:
      Abrahams K, Besra G (2021) Synthesis and recycling of the mycobacterial cell envelope. Curr Opin Microbiol 60:58–65. https://doi.org/10.1016/j.mib.2021.01.012. (PMID: 10.1016/j.mib.2021.01.012336101258035080)
      Brown L, Wolf J, Prados R, Casadevall A (2015) Through the wall: extracellular vesicles in gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol 13(10):620–630. https://doi.org/10.1038/nrmicro3480. (PMID: 10.1038/nrmicro3480263240944860279)
      Child S, Ghith A, Bruning J, Bell S (2020) A comparison of steroid and lipid binding cytochrome P450s from Mycobacterium marinum and Mycobacterium tuberculosis. J Inorg Biochem 209:111116. https://doi.org/10.1016/j.jinorgbio.2020.111116. (PMID: 10.1016/j.jinorgbio.2020.11111632473484)
      De K, Belardinelli J, Pandurangan A, Ehianeta T, Lian E, Palcekova Z, Lam H, Gonzalez M, Bryant J, Blundell T, Parkhill J, Floto R, Lowary T, Wheat W, Jackson M (2024) Lipoarabinomannan modification as a source of phenotypic heterogeneity in host-adapted Mycobacterium abscessus isolates. Proc Natl Acad Sci USA 121(17):e2403206121. https://doi.org/10.1073/pnas.2403206121. (PMID: 10.1073/pnas.24032061213863072511046677)
      de Carvalho C, Murray I, Nguyen H, Nguyen T, Cantu D (2024) Acyltransferase families that act on thioesters: sequences, structures, and mechanisms. Proteins-Structure Function Bioinf 92(2):157–169. https://doi.org/10.1002/prot.26599. (PMID: 10.1002/prot.26599)
      Donova M, Egorova O (2012) Microbial steroid transformations: current state and prospects. Appl Microbiol Biotechnol 94(6):1423–1447. https://doi.org/10.1007/s00253-012-4078-0. (PMID: 10.1007/s00253-012-4078-022562163)
      Dulberger C, Rubin E, Boutte C (2020) The mycobacterial cell envelope-a moving target. Nat Rev Microbiol 18(1):47–59. https://doi.org/10.1038/s41579-019-0273-7. (PMID: 10.1038/s41579-019-0273-731728063)
      Fernandes P, Cruz A, Angelova B, Pinheiro H, Cabral J (2003) Microbial conversion of steroid compounds: recent developments. Enzym Microb Technol 32(6):688–705. https://doi.org/10.1016/S0141-0229(03)00029-2. (PMID: 10.1016/S0141-0229(03)00029-2)
      Fernandez L, Galan B, Garcia J (2018) New insights on steroid biotechnology. Front Microbiol 9:958. https://doi.org/10.3389/fmicb.2018.00958. (PMID: 10.3389/fmicb.2018.00958)
      Franklin A, Salgueiro V, Layton A, Sullivan R, Mize T, Vazquez L, Benedict S, Gurcha S, Anso I, Besra G, Banzhaf M, Lovering A, Williams S, Guerin M, Scott N, Prados R, Lowe E, Moynihan P (2024) The mycobacterial glycoside hydrolase LamH enables capsular arabinomannan release and stimulates growth. Nat Commun 15(1):5740. https://doi.org/10.1038/s41467-024-50051-3. (PMID: 10.1038/s41467-024-50051-33898204011233589)
      Grzegorzewicz A, Ha P, Gundi V, Scherman M, North E, Hess T, Jones V, Gruppo V, Born S, Kordulakova J, Chavadi S, Morisseau C, Lenaerts A, Lee R, McNeil M, Jackson M (2012) Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane. Nat Chem Biol 8(4):334–341. https://doi.org/10.1038/nchembio.794. (PMID: 10.1038/nchembio.794223441753307863)
      He K, Sun H, Song H (2018) Engineering phytosterol transport system in Mycobacterium sp strain MS136 enhances production of 9α-hydroxy-4-androstene-3,17-dione. Biotechnol Lett 40(4):673–678. https://doi.org/10.1007/s10529-018-2520-9. (PMID: 10.1007/s10529-018-2520-929392454)
      Jackson M, Stevens C, Zhang L, Zgurskaya H, Niederweis M (2021) Transporters involved in the biogenesis and functionalization of the mycobacterial cell envelope. Chem Rev 121(9):5124–5157. https://doi.org/10.1021/acs.chemrev.0c00869. (PMID: 10.1021/acs.chemrev.0c0086933170669)
      Jiang X, Chen G (2016) Morphology engineering of bacteria for bio-production. Biotechnol Adv 34(4):435–440. https://doi.org/10.1016/j.biotechadv.2015.12.007. (PMID: 10.1016/j.biotechadv.2015.12.00726707986)
      Jiang X, Wang H, Shen R, Chen G (2015) Engineering the bacterial shapes for enhanced inclusion bodies accumulation. Metab Eng 29:227–237. https://doi.org/10.1016/j.ymben.2015.03.017. (PMID: 10.1016/j.ymben.2015.03.01725868707)
      Kaur D, McNeil M, Khoo K, Chatterjee D, Crick D, Jackson M, Brennan P (2007) New insights into the biosynthesis of mycobacterial lipomannan arising from deletion of a conserved gene. J Biol Chem 282(37):27133–27140. https://doi.org/10.1074/jbc.M703389200. (PMID: 10.1074/jbc.M70338920017606615)
      Liu X, Zhang J, Yuan C, Du G, Han S, Shi J, Sun J, Zhang B (2023) Improving the production of 9α-hydroxy-4-androstene-3,17-dione from phytosterols by 3-ketosteroid-∆1-dehydrogenase deletions and multiple genetic modifications in Mycobacterium fortuitum. Microb Cell Fact 22(1):53. https://doi.org/10.1186/s12934-023-02052-y. (PMID: 10.1186/s12934-023-02052-y3692283010018825)
      Marrakchi H, Laneelle M, Daffe M (2014) Mycolic acids: structures, biosynthesis, and beyond. Chem Biol 21(1):67–85. https://doi.org/10.1016/j.chembiol.2013.11.011. (PMID: 10.1016/j.chembiol.2013.11.01124374164)
      Morita Y, Velasquez R, Taig E, Waller R, Patterson J, Tull D, Williams S, Billman H, McConville M (2005) Compartmentalization of lipid biosynthesis in mycobacteria. J Biol Chem 280(22):21645–21652. https://doi.org/10.1074/jbc.M414181200. (PMID: 10.1074/jbc.M41418120015805104)
      Niederweis M, Danilchanka O, Huff J, Hoffmann C, Engelhardt H (2010) Mycobacterial outer membranes: in search of proteins. Trends Microbiol 18(3):109–116. https://doi.org/10.1016/j.tim.2009.12.005. (PMID: 10.1016/j.tim.2009.12.005200607222931330)
      Palcekova Z, Angala S, Belardinelli J, Eskandarian H, Joe M, Brunton R, Rithner C, Jones V, Nigou J, Lowary T, Gilleron M, McNeil M, Jackson M (2019) Disruption of the SucT acyltransferase in Mycobacterium smegmatis abrogates succinylation of cell envelope polysaccharides. J Biol Chem 294(26):10325–10335. https://doi.org/10.1074/jbc.RA119.008585. (PMID: 10.1074/jbc.RA119.008585311100456664188)
      Palcekova Z, De K, Angala S, Gilleron M, Zuberogoitia S, Gouxette L, Soto M, Gonzalez M, Obregon A, Nigou J, Wheat W, Jackson M (2024) Impact of methylthioxylose substituents on the biological activities of lipomannan and lipoarabinomannan in Mycobacterium tuberculosis. Acs Infect Dis 10(4):1379–1390. https://doi.org/10.1021/acsinfecdis.4c00079. (PMID: 10.1021/acsinfecdis.4c0007938511206)
      Roettig A, Steinbuechel A (2013) Acyltransferases in bacteria. Microbiol Mol Biol Rev 77(2):277–321. https://doi.org/10.1128/mmbr.00010-13. (PMID: 10.1128/mmbr.00010-13)
      Rohman A, Dijkstra B (2021) Application of microbial 3-ketosteroid-∆1-dehydrogenases in biotechnology. Biotechnol Adv 49:107751. https://doi.org/10.1016/j.biotechadv.2021.107751. (PMID: 10.1016/j.biotechadv.2021.10775133823268)
      Shtratnikova V, Schelkunov M, Fokina V, Pekov Y, Ivashina T, Donova M (2016) Genome-wide bioinformatics analysis of steroid metabolism-associated genes in Nocardioides simplex VKM Ac-2033D. Curr Genet 62(3):643–656. https://doi.org/10.1007/s00294-016-0568-4. (PMID: 10.1007/s00294-016-0568-426832142)
      Sodani M, Misra C, Nigam G, Fatima Z, Kulkarni S, Rath D (2024) MSMEG_0311 is a conserved essential polar protein involved in mycobacterium cell wall metabolism. Int J Biol Macromol 260:129583. https://doi.org/10.1016/j.ijbiomac.2024.129583. (PMID: 10.1016/j.ijbiomac.2024.12958338242409)
      Sun W, Liu Y, Liu H, Ma J, Ren Y, Wang F, Wei D (2019) Enhanced conversion of sterols to steroid synthons by augmenting the peptidoglycan synthesis gene pbpB in Mycobacterium neoaurum. J Basic Microbiol 59(9):924–935. https://doi.org/10.1002/jobm.201900159. (PMID: 10.1002/jobm.20190015931347189)
      Sun H, Yang J, He K, Wang Y, Song H (2021) Enhancing production of 9α-hydroxy-androst-4-ene-3,17-dione (9-OHAD) from phytosterols by metabolic pathway engineering of mycobacteria. Chem Eng Sci 230:116195. https://doi.org/10.1016/j.ces.2020.116195. (PMID: 10.1016/j.ces.2020.116195)
      Tang R, Ren X, Xia M, Shen Y, Tu L, Luo J, Zhang Q, Wang Y, Ji P, Wang M (2021) Efficient one-step biocatalytic multienzyme cascade strategy for direct conversion of phytosterol to C-17-hydroxylated steroids. Appl Environ Microbiol 87(24):e00321–e00321. https://doi.org/10.1128/AEM.00321-21. (PMID: 10.1128/AEM.00321-21345869118612284)
      Thanweer F, Verma N (2012) Identification of critical residues of the serotype modifying O-acetyltransferase of Shigella flexneri. BMC Biochem 13:13. https://doi.org/10.1186/1471-2091-13-13. (PMID: 10.1186/1471-2091-13-13227931743467182)
      Tiwari R, Koeffel R, Schneiter R (2007) An acetylation/deacetylation cycle controls the export of sterols and steroids from S. Cerevisiae. EMBO J 26(24):5109–5119. https://doi.org/10.1038/sj.emboj.7601924. (PMID: 10.1038/sj.emboj.7601924180341592140111)
      Wang X, Ke X, Liu Z, Zheng Y (2022) Rational development of mycobacteria cell factory for advancing the steroid biomanufacturing. World J Microbiol Biotechnol 38(11):191. https://doi.org/10.1007/s11274-022-03369-3. (PMID: 10.1007/s11274-022-03369-3359742059381402)
      Wang X, Ke X, Zhao X, Ren Q, Cui J, Liu Z, Zheng Y (2023) Aldolase SalA dominates C24 steroidal side-chain-cleavage in the phytosterol degradation from Mycobacterium neoaurum. Process Biochem 131:217–225. https://doi.org/10.1016/j.procbio.2023.06.023. (PMID: 10.1016/j.procbio.2023.06.023)
      Wei J, Zhang Y, Liu M, Ning Y, Cao Y, Chen F (2024) Divergent chemo- and biocatalytic route to 16β-methylcorticoids: asymmetric synthesis of betamethasone dipropionate, clobetasol propionate, and beclomethasone dipropionate. Angewandte Chemie-International Ed 63(4):e202313952. https://doi.org/10.1002/anie.202313952. (PMID: 10.1002/anie.202313952)
      Xiong L, Liu H, Xu L, Sun W, Wang Q, Wei Z (2017) Improving the production of 22-hydroxy-23,24-bisnorchol-4-ene-3-one from sterols in Mycobacterium neoaurum by increasing cell permeability and modifying multiple genes. Microb Cell Fact 16(1):89. https://doi.org/10.1186/s12934-017-0705-x. (PMID: 10.1186/s12934-017-0705-x285324975440992)
      Xiong L, Liu H, Song X, Meng X, Liu X, Ji Y, Wang F, Wei Z (2020a) Improving the biotransformation of phytosterols to 9α-hydroxy-4-androstene-3,17-dione by deleting embC associated with the assembly of cell envelope in Mycobacterium neoaurum. J Biotechnol 323:341–346. https://doi.org/10.1016/j.jbiotec.2020.09.019. (PMID: 10.1016/j.jbiotec.2020.09.01932976867)
      Xiong L, Liu H, Zhao M, Liu Y, Song L, Xie Y, Xu X, Wang F, Wei D (2020b) Enhancing the bioconversion of phytosterols to steroidal intermediates by the deficiency of kasB in the cell wall synthesis of Mycobacterium neoaurum. Microb Cell Fact 19(1):80. https://doi.org/10.1186/s12934-020-01335-y. (PMID: 10.1186/s12934-020-01335-y322285917106593)
      Xiong L, Liu H, Song L, Dong M, Ke J, Liu Y, Liu K, Zhao M, Wang F, Wei D (2022) Improving the biotransformation efficiency of soybean phytosterols in Mycolicibacterium neoaurum by the combined deletion of fbpC3 and embC in cell envelope synthesis. Synth Syst Biotechnol 7(1):453–459. https://doi.org/10.1016/j.synbio.2021.11.007. (PMID: 10.1016/j.synbio.2021.11.00734938904)
      Yamaryo Y, Rainczuk A, Lea D, Brammananth R, van der Peet P, Meikle P, Ralton J, Rupasinghe T, Williams S, Coppel R, Crellin P, McConville M (2015) Acetylation of trehalose mycolates is required for efficient MmpL-mediated membrane transport in corynebacterineae. ACS Chem Biol 10(3):734–746. https://doi.org/10.1021/cb5007689. (PMID: 10.1021/cb5007689)
      Yao K, Wang F, Zhang H, Wei D (2013) Identification and engineering of cholesterol oxidases involved in the initial step of sterols catabolism in Mycobacterium neoaurum. Metab Eng 15:75–87. https://doi.org/10.1016/j.ymben.2012.10.005. (PMID: 10.1016/j.ymben.2012.10.00523164577)
      Yao K, Xu L, Wang F, Wei D (2014) Characterization and engineering of 3-ketosteroid-∆1-dehydrogenase and 3-ketosteroid-9α-hydroxylase in Mycobacterium neoaurum ATCC25795 to produce 9α-hydroxy-4-androstene-3,17-dione through the catabolism of sterols. Metab Eng 24:181–191. https://doi.org/10.1016/j.ymben.2014.05.005. (PMID: 10.1016/j.ymben.2014.05.00524831710)
      Zhao A, Zhang X, Li Y, Wang Z, Lv Y, Liu J, Alam M, Xiong W, Xu J (2021) Mycolicibacterium cell factory for the production of steroid-based drug intermediates. Biotechnol Adv 53:107860. https://doi.org/10.1016/j.biotechadv.2021.107860. (PMID: 10.1016/j.biotechadv.2021.10786034710554)
      Zhu X, Wang X, Zhang J, Wang X (2024) Enhancing production and purity of 9-OH-AD from phytosterols by balancing metabolic flux of the side-chain degradation and 9-position hydroxylation in Mycobacterium neoaurum. Biotechnol J 19(1):e2300439. https://doi.org/10.1002/biot.202300439. (PMID: 10.1002/biot.20230043938129322)
    • Grant Information:
      2019YFA0905300 National Key Research and Development Program of China
    • Contributed Indexing:
      Keywords: 9α-hydroxyandrost-4-ene-3,17-dione; Acyltransferases SucT and TmaT; Cell wall engineering; Lipoarabinomannan acylation; Trehalose mycolates transport
    • Accession Number:
      0 (Phytosterols)
      409J2J96VR (Androstenedione)
      560-62-3 (9-hydroxy-4-androstene-3,17-dione)
      EC 2.3.- (Acyltransferases)
      0 (Bacterial Proteins)
    • Subject Terms:
      Mycolicibacterium neoaurum
    • Publication Date:
      Date Created: 20241015 Date Completed: 20241015 Latest Revision: 20241108
    • Publication Date:
      20241108
    • Accession Number:
      10.1007/s11274-024-04165-x
    • Accession Number:
      39404941