Toxin-Antitoxin Systems Reflect Community Interactions Through Horizontal Gene Transfer.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Oxford University Press Country of Publication: United States NLM ID: 8501455 Publication Model: Print Cited Medium: Internet ISSN: 1537-1719 (Electronic) Linking ISSN: 07374038 NLM ISO Abbreviation: Mol Biol Evol Subsets: MEDLINE
    • Publication Information:
      Publication: 2003- : New York, NY : Oxford University Press
      Original Publication: [Chicago, Ill.] : University of Chicago Press, [c1983-
    • Subject Terms:
    • Abstract:
      Bacterial evolution through horizontal gene transfer (HGT) reflects their community interactions. In this way, HGT networks do well at mapping community interactions, but offer little toward controlling them-an important step in the translation of synthetic strains into natural contexts. Toxin-antitoxin (TA) systems serve as ubiquitous and diverse agents of selection; however, their utility is limited by their erratic distribution in hosts. Here we examine the heterogeneous distribution of TAs as a consequence of their mobility. By systematically mapping TA systems across a 10,000 plasmid network, we find HGT communities have unique and predictable TA signatures. We propose these TA signatures arise from plasmid competition and have further potential to signal the degree to which plasmids, hosts, and phage interact. To emphasize these relationships, we construct an HGT network based solely on TA similarity, framing specific selection markers in the broader context of bacterial communities. This work both clarifies the evolution of TA systems and unlocks a common framework for manipulating community interactions through TA compatibility.
      Competing Interests: Conflict of Interest The authors declare no competing financial interests.
      (© The Author(s) 2024. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.)
    • References:
      Proc Biol Sci. 2010 Oct 22;277(1697):3149-55. (PMID: 20504809)
      Nat Rev Microbiol. 2019 Dec;17(12):725-741. (PMID: 31548653)
      Mol Syst Biol. 2023 Feb 10;19(2):e11300. (PMID: 36573357)
      Science. 2019 Sep 6;365(6457):1045-1049. (PMID: 31488693)
      Mol Cell. 2020 Jul 16;79(2):280-292.e8. (PMID: 32533919)
      Nucleic Acids Res. 2023 Jul 21;51(13):6806-6818. (PMID: 37254807)
      Curr Opin Chem Biol. 2008 Aug;12(4):389-99. (PMID: 18625335)
      Antimicrob Agents Chemother. 2014 Jul;58(7):3895-903. (PMID: 24777092)
      ISME J. 2014 Mar;8(3):601-612. (PMID: 24152711)
      Biol Direct. 2009 Jun 03;4:19. (PMID: 19493340)
      Nat Rev Microbiol. 2005 Sep;3(9):711-21. (PMID: 16138099)
      Microbiol Spectr. 2014 Oct;2(5):. (PMID: 26104372)
      Nature. 2011 Oct 30;480(7376):241-4. (PMID: 22037308)
      Nat Chem Biol. 2016 Feb;12(2):82-6. (PMID: 26641934)
      Toxins (Basel). 2023 Jun 04;15(6):. (PMID: 37368681)
      Sci Adv. 2024 Jan 12;10(2):eadj3498. (PMID: 38215203)
      J Bacteriol. 2020 Mar 11;202(7):. (PMID: 31932311)
      Nat Rev Microbiol. 2022 Jun;20(6):335-350. (PMID: 34975154)
      Nucleic Acids Res. 2011 Jul;39(13):5513-25. (PMID: 21422074)
      mBio. 2021 Dec 21;12(6):e0196621. (PMID: 34872345)
      Science. 2015 Nov 6;350(6261):663-6. (PMID: 26542567)
      Microbiology (Reading). 2015 Jan;161(Pt 1):158-167. (PMID: 25378561)
      Curr Opin Biomed Eng. 2021 Sep;19:. (PMID: 37982076)
      Front Microbiol. 2022 Jan 12;12:815911. (PMID: 35095819)
      Plasmid. 2023 May;126:102684. (PMID: 37116631)
      Nature. 2024 Oct 9;:. (PMID: 39385022)
      Nucleic Acids Res. 2011 Jul;39(Web Server issue):W29-37. (PMID: 21593126)
      Annu Rev Microbiol. 2022 Sep 8;76:21-43. (PMID: 35395167)
      PLoS Comput Biol. 2019 Apr 25;15(4):e1006946. (PMID: 31022176)
      Proc Natl Acad Sci U S A. 2000 Nov 7;97(23):12643-8. (PMID: 11058151)
      ACS Synth Biol. 2022 Nov 18;11(11):3785-3796. (PMID: 36346907)
      Crit Rev Biochem Mol Biol. 2011 Oct;46(5):386-408. (PMID: 21819231)
      J Bacteriol. 2010 Nov;192(22):6045-55. (PMID: 20851899)
      Microbiol Mol Biol Rev. 2010 Sep;74(3):434-52. (PMID: 20805406)
      Nat Chem Biol. 2018 Jun;14(6):530-537. (PMID: 29769737)
      Nucleic Acids Res. 2005 Feb 17;33(3):966-76. (PMID: 15718296)
      Nat Rev Microbiol. 2021 Jul;19(7):442-453. (PMID: 33846600)
      ACS Synth Biol. 2015 Mar 20;4(3):307-16. (PMID: 24847673)
      Nature. 2023 Mar;615(7953):720-727. (PMID: 36922599)
      Philos Trans R Soc Lond B Biol Sci. 2009 Aug 12;364(1527):2275-89. (PMID: 19571247)
      Nat Commun. 2020 May 15;11(1):2452. (PMID: 32415210)
      Nat Commun. 2020 Jul 17;11(1):3602. (PMID: 32681114)
      Science. 2023 Jul 21;381(6655):343-348. (PMID: 37471535)
      PLoS One. 2014 Jun 10;9(6):e98679. (PMID: 24914678)
      Nucleic Acids Res. 2023 Jul 21;51(13):7094-7108. (PMID: 37260076)
      FEMS Microbiol Rev. 2017 May 1;41(3):343-353. (PMID: 28449040)
    • Contributed Indexing:
      Keywords: community; horizontal gene transfer; network; plasmid; toxin–antitoxin system
    • Publication Date:
      Date Created: 20241015 Date Completed: 20241027 Latest Revision: 20241101
    • Publication Date:
      20241101
    • Accession Number:
      PMC11523183
    • Accession Number:
      10.1093/molbev/msae206
    • Accession Number:
      39404847