Biomechanical significance of intervertebral discs on growthplate stresses in scoliotic trunks following unilateral muscle weakening: A hybrid approach of finite element and musculoskeletal modeling.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Kamal Z;Kamal Z
  • Source:
    International journal for numerical methods in biomedical engineering [Int J Numer Method Biomed Eng] 2024 Dec; Vol. 40 (12), pp. e3863. Date of Electronic Publication: 2024 Oct 15.
  • Publication Type:
    Journal Article
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Wiley Country of Publication: England NLM ID: 101530293 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2040-7947 (Electronic) Linking ISSN: 20407939 NLM ISO Abbreviation: Int J Numer Method Biomed Eng Subsets: MEDLINE
    • Publication Information:
      Original Publication: [Oxford, UK] : Wiley
    • Subject Terms:
    • Abstract:
      This study aimed to ascertain the relevance of intervertebral discs (IVD) in the stress distribution on growthplates (GPs) of a trunk model with adolescent idiopathic scoliosis (AIS) following a unilateral weakening of muscles. A thoracolumbar spine finite element (FE) model of a young female healthy and an AIS spine comprising GPs linked to the T12 through sacrum vertebrae. Two scenarios of including (FEI) and excluding (FEE) IVDs were considered. Then, using optimization-driven musculoskeletal models of the AIS and healthy trunks, the FE models were examined under subject-specific muscle forces and gravity loads. Results of this study demonstrate that when IVDs included in the FE model, an increase, ranging from 0.2 to 1.7 MPa, with the highest value occurring at the apex of the AIS model, in the von Mises stresses in the GPs. The ratio of 1.5 was found for the maximum von-Mises stress value on the most tilted GP in the FEI over the FEE model. Unilateral paralysis of muscles caused a reduction of 50% and 63% in the von Mises stress ratio of the concave-over-convex side of the most tilted GP in the FEI and FEE models of the AIS spine with healthy muscles, respectively. The intradiscal pressures, found for FEE and FEI models, assented to recent in-vivo investigations. Nonetheless, employing IVDs in the simulations provides an indispensable tool to anticipate the effects of neuromuscular disorders on GP stresses in an AIS spine and predict deformity progression during growth.
      (© 2024 John Wiley & Sons Ltd.)
    • References:
      Gould SL, Cristofolini L, Davico G, Viceconti M. Computational modelling of the scoliotic spine: a literature review. Int J Numer Method Biomed Eng. 2021;37(10):e3503. doi:10.1002/cnm.3503.
      Wajchenberg M, Astur N, Kanas M, Martins DE. Adolescent idiopathic scoliosis: current concepts on neurological and muscular etiologies. Scoliosis Spinal Disord. 2016;11:4.
      van der Plaats A, Veldhuizen AG, Verkerke GJ. Numerical simulation of asymmetrically altered growth as initiation mechanism of scoliosis. Ann Biomed Eng. 2007;35(7):1206‐1215.
      Smit TH. Adolescent idiopathic scoliosis: the mechanobiology of differential growth. JOR Spine. 2020;3(4):e1115. doi:10.1002/jsp2.1115.
      Mehlman C, Araghi A, Roy DR. Hyphenated history: the Hueter‐Volkmann law. Am J Orthop (Belle Mead NJ). 1997;26(11):798‐800.
      Hosseinzadehposti M, Rajaeirad M, Kamal Z. Exploring vertebral bone density changes in a trunk with adolescent idiopathic scoliosis a mechanobiological modeling investigation of intact and unilaterally‐paralyzed muscles. 2024. doi:10.21203/rs.3.rs‐3298319/v1.
      Ali A, Fontanari V, Fontana M, Schmölz W. Spinal deformities and advancement in corrective orthoses. Bioengineering (Basel). 2020;8(1):2. doi:10.3390/bioengineering8010002.
      Vaccaro A, Su BW, Chiba K, et al. The Spine: Medical & Surgical Management (2 Volumes). 1st ed., Kindle Edition Jaypee Brothers Medical Publishers (P) Ltd; 2018.
      Kamal Z, Rouhi G, Arjmand N, Adeeb S. A stability‐based model of a growing spine with adolescent idiopathic scoliosis: a combination of musculoskeletal and finite element approaches. Med Eng Phys. 2019;64:46‐55.
      Sevrain A, Aubin CE, Gharbi H, Wang X, Labelle H. Biomechanical evaluation of predictive parameters of progression in adolescent isthmic spondylolisthesis: a computer modeling and simulation study. Scoliosis. 2012;7:2.
      Lin H, Aubin CE, Parent S, Villemure I. Mechanobiological bone growth: comparative analysis of two biomechanical modeling approaches. Med Biol Eng Comput. 2009;47(4):357‐366.
      Nafo W, Guldeniz O, Jun H, Kim E. Ligamentous tethering and intradiscal pressure affecting the mechanical environment of scoliotic spines. Med Eng Phys. 2023;119:104035. doi:10.1016/j.medengphy.2023.104035.
      Little P, Adam C. Patient‐specific computational biomechanics for simulating adolescent scoliosis surgery: predicted vs clinical correction for a preliminary series of six patients. Int J Numer Methods Biomed Eng. 2010;27(3):347‐356.
      Yang S, Zhang F, Ma J, Ding W. Intervertebral disc ageing and degeneration: the antiapoptotic effect of oestrogen. Ageing Res Rev. 2020;57:100978. doi:10.1016/j.arr.2019.100978.
      Greaves CY, Gadala MS, Oxland TR. A three‐dimensional finite element model of the cervical spine with spinal cord: an investigation of three injury mechanisms. Ann Biomed Eng. 2008;36:396‐405. doi:10.1007/s10439‐008‐9440‐0.
      Pickering E, Pivonka P, Little JP. Toward patient specific models of pediatric IVDs: a parametric study of IVD mechanical properties. Front Bioeng Biotechnol. 2021;9:632408. doi:10.3389/fbioe.2021.632408.
      Kamal Z, Rouhi G. Stress distribution changes in growth plates of a trunk with adolescent idiopathic scoliosis following unilateral muscle paralysis: a hybrid musculoskeletal and finite element model. J Biomech. 2020;111:109997. doi:10.1016/j.jbiomech.2020.109997.
      Cholewicki J, VanVliet JJ 4th. Relative contribution of trunk muscles to the stability of the lumbar spine during isometric exertions. Clin Biomech (Bristol, Avon). 2002;17(2):99‐105. doi:10.1016/S0268‐0033(01)00118‐8.
      Masi AT, Nair K, Evans T, Ghandour Y. Clinical, biomechanical, and physiological translational interpretations of human resting myofascial tone or tension. Int J Ther Massage Body. 2010;3(4):16‐28.
      Ward SR, Kim CW, Eng CM, et al. Architectural analysis and intraoperative measurements demonstrate the unique design of the multifidus muscle for lumbar spine stability. J Bone Joint Surg Am. 2009;91(1):176‐185. doi:10.2106/JBJS.G.01311.
      Kamal Z, Rouhi G. Significance of spine stability criteria on trunk muscle forces following unilateral muscle weakening: a comparison between kinematics‐driven and stability‐based kinematics‐driven musculoskeletal models. Med Eng Phys. 2019;73:51‐63. doi:10.1016/j.medengphy.2019.07.008.
      Shirazi‐Adl A. Analysis of large compression loads on lumbar spine in flexion and in torsion using a novel wrapping element. J Biomech. 2006;39:267‐275.
      Cholewicki J, McGill SM. Mechanical stability of the in vivo lumbar spine: implications for injury and chronic low back pain. Clin Biomech (Bristol, Avon). 1996;11(1):1‐15. doi:10.1016/0268‐0033(95)00035‐6.
      Arjmand N, Shirazi‐Adl A. Model and in vivo studies on human trunk load partitioning and stability in isometric forward flexions. J Biomech. 2006;39:510‐521.
      Fortuna R, Vaz MA, Youssef AR, Longino D, Herzog W. Changes in contractile properties of muscles receiving repeat injections of botulinum toxin (Botox). J Biomech. 2011;44:39‐44. doi:10.1016/j.jbiomech.2010.08.020.
      Modi HN, Suh SW, Song HR, Yang JH, Kim HJ, Modi CH. Differential wedging of vertebral body and intervertebral disc in thoracic and lumbar spine in adolescent idiopathic scoliosis—a cross sectional study in 150 patients. Scoliosis. 2008;3:11.
      Schmidt H, Heuer F, Simon U, et al. Application of a new calibration method for a three‐dimensional finite element model of a human lumbar annulus fibrosus. Clin Biomech (Bristol, Avon). 2006;21(4):337‐344. doi:10.1016/j.clinbiomech.2005.12.001.
      El‐Rich M, Arnoux P, Wagnac E, Brunet C, Aubin CE. Finite element investigation of the loading rate effect on the spinal load‐sharing changes under impact conditions. J Biomech. 2009;42(9):1252‐1262. doi:10.1016/j.jbiomech.2009.03.036.
      Little JP, Adam CJ, Evans JH, Pettet GJ, Pearcy MJ. Nonlinear finite element analysis of anular lesions in the L4/5 intervertebral disc. J Biomech. 2007;40(12):2744‐2751. doi:10.1016/j.jbiomech.2007.01.007.
      Kamal Z, Rouhi G. A parametric investigation on the effects of cervical disc prostheses with upward and downward nuclei on spine biomechanics. J Mech Med Biol. 2015;16(2):1650092. doi:10.1142/S0219519416500925.
      Eijkelkamp MF, van Donkelaar CC, Veldhuizen AG, van Horn JR, Huyghe JM, Verkerke GJ. Requirements for an artificial intervertebral disc. Int J Artif Organs. 2001;24(5):311‐321.
      Meijer GJM, Homminga J, Hekman EEG, Veldhuizen AG, Verkerke GJ. The effect of three‐dimensional geometrical changes during adolescent growth on the biomechanics of a spinal motion segment. J Biomech. 2010;43:1590‐1597.
      Huynh AM, Aubin CE, Mathieu PA, Labelle H. Simulation of progressive spinal deformities in Duchenne muscular dystrophy using a biomechanical model integrating muscles and vertebral growth modulation. Clin Biomech. 2007;22(4):392‐399.
      Ranu HS, Denton RA, King AI. Pressure distribution under an intervertebral disc—an experimental study. J Biomech. 1979;12:807‐812.
      Rolander SD. Motion of the lumbar spine with special reference to the stablizing effect of posterior fusion. Acta Orthop Scand. 1966;90(Suppl):1‐144.
      Shirazi‐Adl A, Shrivastava SC, Ahmed AM. Stress analysis of the lumbar disc‐body unit in compression, a three‐dimensional nonlinear finite element study. Spine. 1984;9(2):120‐134.
      Berkson MH, Nachemson AL, Schultz AB. Mechanical properties of human lumbar spine motion segments. Part II. Response in compression and shear, influence of gross morphology. J Biomech Eng. 1979;101:53‐57.
      Shen M, Liu S, Jin X, et al. Porcine growth plate experimental study and estimation of human pediatric growth plate properties. J Mech Behav Biomed Mater. 2020;101:103446. doi:10.1016/j.jmbbm.2019.103446.
      Sadeghian SM, Lewis CL, Shefelbine SJ. Predicting growth plate orientation with altered hip loading: potential cause of cam morphology. Biomech Model Mechanobiol. 2020;19:701‐712. doi:10.1007/s10237‐019‐01241‐2.
      Yang S, Qu L, Yuan L, et al. Finite element analysis of spinal cord stress in a single segment cervical spondylotic myelopathy. Front Surg. 2022;9:849096. doi:10.3389/fsurg.2022.849096.
      Schultz A, Andersson G, Ortengren R, Nachemson A. Loads on the lumbar spine. Validation of a biomechanical analysis by measurement of intradiscal pressures and myoelectric signals. J Bone Joint Surg. 1982;64(5):713‐720.
      Wilke H, Neef P, Caimi M, Hoogland T, Claes L. New in vivo measurements of pressures in the intervertebral disc in daily life. Spine. 1999;24(8):755‐762.
      Meir A, Fairbank J, Jones D, McNally D, Urban J. High pressures and asymmetrical stresses in the scoliotic disc in the absence of muscle loading. Scoliosis. 2007;2:4.
      Stokes I. Analysis and simulation of progressive adolescent scoliosis by biomechanical growth simulation. Eur Spine J. 2007;16:1621‐1628.
      Dreischarf M, Zander T, Shirazi‐Adl A, et al. Comparison of eight published static finite element models 8 of the intact lumbar spine: predictive power of models improves when combined together. J Biomech. 2014;47:1757‐1766.
      Azari F, Arjmand N, Shirazi‐Adl A, Rahimi‐Moghaddam T. A combined passive and active musculoskeletal model study to estimate L4‐L5 load sharing. J Biomech. 2018;21(70):157‐165.
      Liebsch C, Graf N, Appelt K, Wilke HJ. The rib cage stabilizes the human thoracic spine: an in vitro study using stepwise reduction of rib cage structures. PLoS One. 2017;12(6):e0178733. doi:10.1371/journal.pone.0178733.
      Ignasiak D, Ferguson SJ, Arjmand N. A rigid thorax assumption affects model loading predictions at the upper but not lower lumbar levels. J Biomech. 2016;49:3074‐3078.
      Kamal Z, Hekman EE, Verkerke GJ. A combined musculoskeletal and finite element model of a foot to predict plantar pressure distribution. Biomed Phys Eng Express. 2024;10:035024. doi:10.1088/2057‐1976/ad233d.
      Bago J, Perez‐Grueso FJ, Pellise F, Les E. How do idiopathic scoliosis patients who improve after surgery differ from those who do not exceed a minimum detectable change? Eur Spine J. 2012;21(1):50‐56. doi:10.1007/s00586‐011‐2017‐x.
    • Contributed Indexing:
      Keywords: adolescent idiopathic scoliosis; finite element analysis; intervertebral disc; muscle weakening; musculoskeletal model; spine stability
    • Publication Date:
      Date Created: 20241015 Date Completed: 20241205 Latest Revision: 20241205
    • Publication Date:
      20241209
    • Accession Number:
      10.1002/cnm.3863
    • Accession Number:
      39404044