Development of a label-free electrochemical aptasensor for Rift Valley fever virus detection.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • Subject Terms:
    • Abstract:
      In this research, we describe the first aptasensor for the detection of the Rift Valley Fever virus (RVFV). The process involved the selection of aptamers through the systematic evolution of ligands by the exponential enrichment (SELEX) technique. After 12 rounds of selection, 6 aptamers were selected and the corresponding binding affinities were assessed using fluorescence binding assays, revealing dissociation constants ranging from 15.45 to 40.98 nM. Notably, among the aptamers, RV2 and RV3 exhibited the highest binding affinities toward RVFV, with dissociation constants of 15.45 and 18.62 nM, respectively. Thiol-modified aptamers were subsequently immobilized onto screen-printed gold electrodes, facilitating the label-free detection of RVFV through square wave voltammetry. The voltammetric aptasensor demonstrated an excellent sensitivity, with a detection limit of 0.015 ng/mL. In addition, cross-reactivity assessments were conducted, where negligible response was obtained when the aptasensor was exposed to non-specific proteins.
      (© 2024. The Author(s).)
    • References:
      Maes, P. et al. Taxonomy of the family Arenaviridae and the order Bunyavirales: Update 2018. Arch. Virol. 163, 2295–2310 (2018). (PMID: 10.1007/s00705-018-3843-529680923)
      Nair, N. et al. Rift Valley fever virus—Infection, pathogenesis and host immune responses. Pathogens 12(9), 1174 (2023). (PMID: 10.3390/pathogens120911743776498210535968)
      Bird, B. H. et al. Rift Valley fever virus. J. Am. Vet. Med. Assoc. 234(7), 883–893 (2009). (PMID: 10.2460/javma.234.7.88319335238)
      Muturi, M. et al. Ecological and subject-level drivers of interepidemic Rift Valley fever virus exposure in humans and livestock in Northern Kenya. Sci. Rep. 13(1), 15342 (2023). (PMID: 10.1038/s41598-023-42596-y3771494110504342)
      Versteirt, V. et al. Systematic literature review on the geographic distribution of Rift Valley fever vectors in Europe and the neighbouring countries of the Mediterranean Basin. EFSA Support. Publ. 10(4), 412E (2013).
      Al-Afaleq, A.I., M.F.J.V.-B. Hussein, and Z. Diseases, The status of Rift Valley fever in animals in Saudi Arabia: A mini review. Vector-Borne Zoonotic Dis. 2011. 11(12): p. 1513–1520.
      WHO. 2018 Annual review of diseases prioritized under the Research and Development Blueprint (World Health Organization Geneva, 2018).
      Bird, B. H. et al. Rift Valley fever virus lacking the NSs and NSm genes is highly attenuated, confers protective immunity from virulent virus challenge, and allows for differential identification of infected and vaccinated animals. J. Virol. 82(6), 2681–2691 (2008). (PMID: 10.1128/JVI.02501-07181996472258974)
      Archer, B.N., et al. Outbreak of Rift Valley fever affecting veterinarians and farmers in South Africa. S. Afr. Med. J.101(4), 263–266 (2008).
      Mwaengo, D. et al. Detection and identification of Rift Valley fever virus in mosquito vectors by quantitative real-time PCR. Virus Res. 169(1), 137–143 (2012). (PMID: 10.1016/j.virusres.2012.07.01922841800)
      Han, Q. et al. Development of a visible reverse transcription-loop-mediated isothermal amplification assay for the detection of Rift Valley fever virus. Front. Microbiol. 11, 590732 (2020). (PMID: 10.3389/fmicb.2020.590732332817877691480)
      Paweska, J. T. et al. IgG-sandwich and IgM-capture enzyme-linked immunosorbent assay for the detection of antibody to Rift Valley fever virus in domestic ruminants. J. Virol. Methods 113(2), 103–112 (2003). (PMID: 10.1016/S0166-0934(03)00228-314553896)
      Paweska, J. T., van Vuren, P. J. & Swanepoel, R. J. Validation of an indirect ELISA based on a recombinant nucleocapsid protein of Rift Valley fever virus for the detection of IgG antibody in humans. J. Virol. Methods 146(1–2), 119–124 (2007). (PMID: 10.1016/j.jviromet.2007.06.00617645952)
      Wilson, W., et al., Diagnostic approaches for Rift Valley fever. In Vaccines and Diagnostics for Transboundary Animal Diseases 73–78. (Karger Publishers, 2013).
      Sayed, R. H. et al. Development of a lateral flow kit for detection of IgG and IgM antibodies against Rift Valley fever virus in sheep. Indian J. Vet. Sci. Biotechnol. 15(2), 63–68 (2019). (PMID: 10.21887/ijvsbt.15.2.17)
      Domfe, T. et al. Development of a versatile half-strip lateral flow assay toward the detection of Rift Valley fever virus antibodies. Diagnostics 12(11), 2664 (2022). (PMID: 10.3390/diagnostics12112664363595079689200)
      Duburcq, X. et al. Peptide–protein microarrays for the simultaneous detection of pathogen infections. Bioconjug. Chem. 15(2), 307–316 (2004). (PMID: 10.1021/bc034226d15025526)
      Sobarzo, A. et al. Optical fiber immunosensor for the detection of IgG antibody to Rift Valley fever virus in humans. J. Virol. Methods 146(1–2), 327–334 (2007). (PMID: 10.1016/j.jviromet.2007.07.01717869352)
      Zhang, H., et al., Surface-enhanced Raman scattering detection of DNAs derived from virus genomes using Au-coated paramagnetic nanoparticles. Langmuir 22012. 28(8): p. 4030–4037.
      Cesewski, E. & Johnson, B. N. Electrochemical biosensors for pathogen detection. Biosens. Bioelectron. 159, 112214 (2020). (PMID: 10.1016/j.bios.2020.112214323649367152911)
      Cooper, M.A. Label-Free Biosensors: Techniques and Applications (Cambridge University Press, 2009).
      Williams, R. et al. Validation of an IgM antibody capture ELISA based on a recombinant nucleoprotein for identification of domestic ruminants infected with Rift Valley fever virus. J. Virol. Methods 177(2), 140–146 (2011). (PMID: 10.1016/j.jviromet.2011.07.01121827790)
      Chinnappan, R. et al. In vitro selection of DNA aptamers and their integration in a competitive voltammetric biosensor for azlocillin determination in waste water. Analytica Chimica Acta 1101, 149–156 (2020). (PMID: 10.1016/j.aca.2019.12.02332029106)
      Gaberc-Porekar, V. & Menart, V. Perspectives of immobilized-metal affinity chromatography. J. Biochem. Biophys. Methods 49(1–3), 335–360 (2001). (PMID: 10.1016/S0165-022X(01)00207-X11694288)
      Freitas, A. I., Domingues, L. & Aguiar, T. Q. Tag-mediated single-step purification and immobilization of recombinant proteins toward protein-engineered advanced materials. J. Adv. Res. 36, 249–264 (2022). (PMID: 10.1016/j.jare.2021.06.01035127175)
      Mahanta, S. et al. A minimal fragment of MUC1 mediates growth of cancer cells. PLoS ONE 3(4), e2054 (2008). (PMID: 10.1371/journal.pone.0002054184462422329594)
      Chinnappan, R. et al. Aptamer selection and aptasensor construction for bone density biomarkers. Talanta 224, 121818 (2021). (PMID: 10.1016/j.talanta.2020.12181833379043)
      Kohlberger, M. & Gadermaier, G. SELEX: Critical factors and optimization strategies for successful aptamer selection. Biotechnol. Appl. Biochem. 69(5), 1771–1792 (2022). (PMID: 10.1002/bab.224434427974)
      Marimuthu, C., Tang, T. H., Tominaga, J., Tan, S. C. & Gopinath, S. C. Single-stranded DNA (ssDNA) production in DNA aptamer generation. Analyst 137(6), 1307–1315 (2012). (PMID: 10.1039/c2an15905h22314701)
      Eissa, S. & Zourob, M. Aptamer-based label-free electrochemical biosensor array for the detection of total and glycated hemoglobin in human whole blood. Sci. Rep. 7(1), 1016 (2017). (PMID: 10.1038/s41598-017-01226-0284323445430690)
      Eissa, S. & Zourob, M. Selection and characterization of DNA aptamers for electrochemical biosensing of carbendazim. Anal. Chem. 89(5), 3138–3145 (2017). (PMID: 10.1021/acs.analchem.6b0491428264568)
      Eissa, S., Almusharraf, A. Y. & Zourob, M. A comparison of the performance of voltammetric aptasensors for glycated haemoglobin on different carbon nanomaterials-modified screen printed electrodes. Mate. Sci. Eng. C. 101, 423–430 (2019). (PMID: 10.1016/j.msec.2019.04.001)
    • Contributed Indexing:
      Keywords: Aptamer; Aptasensor; Electrochemistry; Label-free detection; Rift Valley fever virus; SELEX
    • Accession Number:
      0 (Aptamers, Nucleotide)
      7440-57-5 (Gold)
    • Publication Date:
      Date Created: 20241012 Date Completed: 20241012 Latest Revision: 20241015
    • Publication Date:
      20241016
    • Accession Number:
      PMC11470950
    • Accession Number:
      10.1038/s41598-024-74314-7
    • Accession Number:
      39396078