References: Hadjidakis DJ, Androulakis II (2006) Bone remodeling. Ann N Y Acad Sci 1092:385–396. https://doi.org/10.1196/annals.1365.035. (PMID: 10.1196/annals.1365.03517308163)
Kim J-M, Lin C, Stavre Z, Greenblatt MB, Shim J-H (2020) Osteoblast-osteoclast communication and bone homeostasis. Cells 9(9):2073. (PMID: 10.3390/cells9092073329279217564526)
Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3(6):889–901. https://doi.org/10.1016/s1534-5807(02)00369-6. (PMID: 10.1016/s1534-5807(02)00369-612479813)
Hwang SY, Putney JW Jr (2011) Calcium signaling in osteoclasts. Biochim Biophys Acta 1813(5):979–983. https://doi.org/10.1016/j.bbamcr.2010.11.002. (PMID: 10.1016/j.bbamcr.2010.11.00221075150)
Danciu TE, Adam RM, Naruse K, Freeman MR, Hauschka PV (2003) Calcium regulates the PI3K-Akt pathway in stretched osteoblasts. FEBS Lett 536(1–3):193–197. https://doi.org/10.1016/s0014-5793(03)00055-3. (PMID: 10.1016/s0014-5793(03)00055-312586362)
Romanello M, Padoan M, Franco L, Veronesi V, Moro L, D’Andrea P (2001) Extracellular NAD(+) induces calcium signaling and apoptosis in human osteoblastic cells. Biochem Biophys Res Commun 285(5):1226–1231. https://doi.org/10.1006/bbrc.2001.5325. (PMID: 10.1006/bbrc.2001.532511478787)
Martinez FO, Gordon S, Locati M, Mantovani A (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177(10):7303–7311. https://doi.org/10.4049/jimmunol.177.10.7303. (PMID: 10.4049/jimmunol.177.10.730317082649)
Mun SH, Park PSU, Park-Min K-H (2020) The M-CSF receptor in osteoclasts and beyond. Exp Mol Med 52(8):1239–1254. https://doi.org/10.1038/s12276-020-0484-z. (PMID: 10.1038/s12276-020-0484-z328013648080670)
Boyce BF, Xing L (2008) Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 473(2):139–146. https://doi.org/10.1016/j.abb.2008.03.018. (PMID: 10.1016/j.abb.2008.03.018183955082413418)
Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423(6937):337–342. https://doi.org/10.1038/nature01658. (PMID: 10.1038/nature0165812748652)
Matsubara T, Kinbara M, Maeda T, Yoshizawa M, Kokabu S, Takano Yamamoto T (2017) Regulation of osteoclast differentiation and actin ring formation by the cytolinker protein plectin. Biochem Biophys Res Commun 489(4):472–476. https://doi.org/10.1016/j.bbrc.2017.05.174. (PMID: 10.1016/j.bbrc.2017.05.17428576497)
Soe K, Delaisse JM (2010) Glucocorticoids maintain human osteoclasts in the active mode of their resorption cycle. J Bone Miner Res 25(10):2184–2192. https://doi.org/10.1002/jbmr.113. (PMID: 10.1002/jbmr.11320499345)
Hansen MS, Soe K, Christensen LL, Fernandez-Guerra P, Hansen NW, Wyatt RA, Martin C, Hardy RS, Andersen TL, Olesen JB, Hartmann B, Rosenkilde MM, Kassem M, Rauch A, Gorvin CM, Frost M (2023) GIP reduces osteoclast activity and improves osteoblast survival in primary human bone cells. Eur J Endocrinol 188(1):144. https://doi.org/10.1093/ejendo/lvac004. (PMID: 10.1093/ejendo/lvac004)
Panwar P, Soe K, Guido RV, Bueno RV, Delaisse JM, Bromme D (2016) A novel approach to inhibit bone resorption: exosite inhibitors against cathepsin K. Br J Pharmacol 173(2):396–410. https://doi.org/10.1111/bph.13383. (PMID: 10.1111/bph.1338326562357)
Vanderoost J, Soe K, Merrild DM, Delaisse JM, van Lenthe GH (2013) Glucocorticoid-induced changes in the geometry of osteoclast resorption cavities affect trabecular bone stiffness. Calcif Tissue Int 92(3):240–250. https://doi.org/10.1007/s00223-012-9674-6. (PMID: 10.1007/s00223-012-9674-623187898)
Abdallah BM, Haack-Sorensen M, Fink T, Kassem M (2006) Inhibition of osteoblast differentiation but not adipocyte differentiation of mesenchymal stem cells by sera obtained from aged females. Bone 39(1):181–188. https://doi.org/10.1016/j.bone.2005.12.082. (PMID: 10.1016/j.bone.2005.12.08216530029)
Tencerova M, Frost M, Figeac F, Nielsen TK, Ali D, Lauterlein JL, Andersen TL, Haakonsson AK, Rauch A, Madsen JS, Ejersted C, Hojlund K, Kassem M (2019) Obesity-associated hypermetabolism and accelerated senescence of bone marrow stromal stem cells suggest a potential mechanism for bone fragility. Cell Rep 27(7):2050–2062. e2056. https://doi.org/10.1016/j.celrep.2019.04.066. (PMID: 10.1016/j.celrep.2019.04.06631091445)
Jafari A, Qanie D, Andersen TL, Zhang Y, Chen L, Postert B, Parsons S, Ditzel N, Khosla S, Johansen HT, Kjaersgaard-Andersen P, Delaisse JM, Abdallah BM, Hesselson D, Solberg R, Kassem M (2017) Legumain regulates differentiation fate of human bone marrow stromal cells and is altered in postmenopausal osteoporosis. Stem Cell Rep 8(2):373–386. https://doi.org/10.1016/j.stemcr.2017.01.003. (PMID: 10.1016/j.stemcr.2017.01.003)
Abdallah BM, Jensen CH, Gutierrez G, Leslie RG, Jensen TG, Kassem M (2004) Regulation of human skeletal stem cells differentiation by Dlk1/Pref-1. J Bone Miner Res 19(5):841–852. https://doi.org/10.1359/JBMR.040118. (PMID: 10.1359/JBMR.04011815068508)
Hansen MS, Madsen K, Price M, Soe K, Omata Y, Zaiss MM, Gorvin CM, Frost M, Rauch A (2024) Transcriptional reprogramming during human osteoclast differentiation identifies regulators of osteoclast activity. Bone Res 12(1):5. https://doi.org/10.1038/s41413-023-00312-6. (PMID: 10.1038/s41413-023-00312-63826316710806178)
Rauch A, Haakonsson AK, Madsen JGS, Larsen M, Forss I, Madsen MR, Van Hauwaert EL, Wiwie C, Jespersen NZ, Tencerova M, Nielsen R, Larsen BD, Rottger R, Baumbach J, Scheele C, Kassem M, Mandrup S (2019) Osteogenesis depends on commissioning of a network of stem cell transcription factors that act as repressors of adipogenesis. Nat Genet 51(4):716–727. https://doi.org/10.1038/s41588-019-0359-1. (PMID: 10.1038/s41588-019-0359-130833796)
No Comments.