Measuring Calcium Levels in Bone-Resorbing Osteoclasts and Bone-Forming Osteoblasts.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Hansen MS;Hansen MS
  • Source:
    Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2025; Vol. 2861, pp. 167-186.
  • Publication Type:
    Journal Article
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Humana Press Country of Publication: United States NLM ID: 9214969 Publication Model: Print Cited Medium: Internet ISSN: 1940-6029 (Electronic) Linking ISSN: 10643745 NLM ISO Abbreviation: Methods Mol Biol Subsets: MEDLINE
    • Publication Information:
      Publication: Totowa, NJ : Humana Press
      Original Publication: Clifton, N.J. : Humana Press,
    • Subject Terms:
    • Abstract:
      Bone remodeling is a crucial, dynamic process that renews bone and maintains mineral homeostasis. It consists of several steps, including osteoclastic bone resorption and osteoblastic bone formation and mineralization. Intracellular calcium signaling is essential for osteoclast and osteoblast differentiation and activity. Here, we describe the differentiation of human osteoclasts and osteoblasts in vitro and provide common methods to determine cell differentiation and activity. We then describe protocols for measuring intracellular calcium in these cells using Fura2-AM.
      (© 2025. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)
    • References:
      Hadjidakis DJ, Androulakis II (2006) Bone remodeling. Ann N Y Acad Sci 1092:385–396. https://doi.org/10.1196/annals.1365.035. (PMID: 10.1196/annals.1365.03517308163)
      Kim J-M, Lin C, Stavre Z, Greenblatt MB, Shim J-H (2020) Osteoblast-osteoclast communication and bone homeostasis. Cells 9(9):2073. (PMID: 10.3390/cells9092073329279217564526)
      Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3(6):889–901. https://doi.org/10.1016/s1534-5807(02)00369-6. (PMID: 10.1016/s1534-5807(02)00369-612479813)
      Hwang SY, Putney JW Jr (2011) Calcium signaling in osteoclasts. Biochim Biophys Acta 1813(5):979–983. https://doi.org/10.1016/j.bbamcr.2010.11.002. (PMID: 10.1016/j.bbamcr.2010.11.00221075150)
      Danciu TE, Adam RM, Naruse K, Freeman MR, Hauschka PV (2003) Calcium regulates the PI3K-Akt pathway in stretched osteoblasts. FEBS Lett 536(1–3):193–197. https://doi.org/10.1016/s0014-5793(03)00055-3. (PMID: 10.1016/s0014-5793(03)00055-312586362)
      Romanello M, Padoan M, Franco L, Veronesi V, Moro L, D’Andrea P (2001) Extracellular NAD(+) induces calcium signaling and apoptosis in human osteoblastic cells. Biochem Biophys Res Commun 285(5):1226–1231. https://doi.org/10.1006/bbrc.2001.5325. (PMID: 10.1006/bbrc.2001.532511478787)
      Martinez FO, Gordon S, Locati M, Mantovani A (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177(10):7303–7311. https://doi.org/10.4049/jimmunol.177.10.7303. (PMID: 10.4049/jimmunol.177.10.730317082649)
      Mun SH, Park PSU, Park-Min K-H (2020) The M-CSF receptor in osteoclasts and beyond. Exp Mol Med 52(8):1239–1254. https://doi.org/10.1038/s12276-020-0484-z. (PMID: 10.1038/s12276-020-0484-z328013648080670)
      Boyce BF, Xing L (2008) Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 473(2):139–146. https://doi.org/10.1016/j.abb.2008.03.018. (PMID: 10.1016/j.abb.2008.03.018183955082413418)
      Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423(6937):337–342. https://doi.org/10.1038/nature01658. (PMID: 10.1038/nature0165812748652)
      Matsubara T, Kinbara M, Maeda T, Yoshizawa M, Kokabu S, Takano Yamamoto T (2017) Regulation of osteoclast differentiation and actin ring formation by the cytolinker protein plectin. Biochem Biophys Res Commun 489(4):472–476. https://doi.org/10.1016/j.bbrc.2017.05.174. (PMID: 10.1016/j.bbrc.2017.05.17428576497)
      Soe K, Delaisse JM (2010) Glucocorticoids maintain human osteoclasts in the active mode of their resorption cycle. J Bone Miner Res 25(10):2184–2192. https://doi.org/10.1002/jbmr.113. (PMID: 10.1002/jbmr.11320499345)
      Hansen MS, Soe K, Christensen LL, Fernandez-Guerra P, Hansen NW, Wyatt RA, Martin C, Hardy RS, Andersen TL, Olesen JB, Hartmann B, Rosenkilde MM, Kassem M, Rauch A, Gorvin CM, Frost M (2023) GIP reduces osteoclast activity and improves osteoblast survival in primary human bone cells. Eur J Endocrinol 188(1):144. https://doi.org/10.1093/ejendo/lvac004. (PMID: 10.1093/ejendo/lvac004)
      Panwar P, Soe K, Guido RV, Bueno RV, Delaisse JM, Bromme D (2016) A novel approach to inhibit bone resorption: exosite inhibitors against cathepsin K. Br J Pharmacol 173(2):396–410. https://doi.org/10.1111/bph.13383. (PMID: 10.1111/bph.1338326562357)
      Vanderoost J, Soe K, Merrild DM, Delaisse JM, van Lenthe GH (2013) Glucocorticoid-induced changes in the geometry of osteoclast resorption cavities affect trabecular bone stiffness. Calcif Tissue Int 92(3):240–250. https://doi.org/10.1007/s00223-012-9674-6. (PMID: 10.1007/s00223-012-9674-623187898)
      Abdallah BM, Haack-Sorensen M, Fink T, Kassem M (2006) Inhibition of osteoblast differentiation but not adipocyte differentiation of mesenchymal stem cells by sera obtained from aged females. Bone 39(1):181–188. https://doi.org/10.1016/j.bone.2005.12.082. (PMID: 10.1016/j.bone.2005.12.08216530029)
      Tencerova M, Frost M, Figeac F, Nielsen TK, Ali D, Lauterlein JL, Andersen TL, Haakonsson AK, Rauch A, Madsen JS, Ejersted C, Hojlund K, Kassem M (2019) Obesity-associated hypermetabolism and accelerated senescence of bone marrow stromal stem cells suggest a potential mechanism for bone fragility. Cell Rep 27(7):2050–2062. e2056. https://doi.org/10.1016/j.celrep.2019.04.066. (PMID: 10.1016/j.celrep.2019.04.06631091445)
      Jafari A, Qanie D, Andersen TL, Zhang Y, Chen L, Postert B, Parsons S, Ditzel N, Khosla S, Johansen HT, Kjaersgaard-Andersen P, Delaisse JM, Abdallah BM, Hesselson D, Solberg R, Kassem M (2017) Legumain regulates differentiation fate of human bone marrow stromal cells and is altered in postmenopausal osteoporosis. Stem Cell Rep 8(2):373–386. https://doi.org/10.1016/j.stemcr.2017.01.003. (PMID: 10.1016/j.stemcr.2017.01.003)
      Abdallah BM, Jensen CH, Gutierrez G, Leslie RG, Jensen TG, Kassem M (2004) Regulation of human skeletal stem cells differentiation by Dlk1/Pref-1. J Bone Miner Res 19(5):841–852. https://doi.org/10.1359/JBMR.040118. (PMID: 10.1359/JBMR.04011815068508)
      Hansen MS, Madsen K, Price M, Soe K, Omata Y, Zaiss MM, Gorvin CM, Frost M, Rauch A (2024) Transcriptional reprogramming during human osteoclast differentiation identifies regulators of osteoclast activity. Bone Res 12(1):5. https://doi.org/10.1038/s41413-023-00312-6. (PMID: 10.1038/s41413-023-00312-63826316710806178)
      Rauch A, Haakonsson AK, Madsen JGS, Larsen M, Forss I, Madsen MR, Van Hauwaert EL, Wiwie C, Jespersen NZ, Tencerova M, Nielsen R, Larsen BD, Rottger R, Baumbach J, Scheele C, Kassem M, Mandrup S (2019) Osteogenesis depends on commissioning of a network of stem cell transcription factors that act as repressors of adipogenesis. Nat Genet 51(4):716–727. https://doi.org/10.1038/s41588-019-0359-1. (PMID: 10.1038/s41588-019-0359-130833796)
    • Contributed Indexing:
      Keywords: Bone formation; Bone mineralization; Bone resorption; Fura-2; Osteoblasts; Osteoclasts
    • Accession Number:
      SY7Q814VUP (Calcium)
      TSN3DL106G (Fura-2)
    • Publication Date:
      Date Created: 20241012 Date Completed: 20241012 Latest Revision: 20241012
    • Publication Date:
      20241013
    • Accession Number:
      10.1007/978-1-0716-4164-4_13
    • Accession Number:
      39395105