Preparation of biocompatible Zein/Gelatin/Chitosan/PVA based nanofibers loaded with vitamin E-TPGS via dual-opposite electrospinning method.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • Subject Terms:
    • Abstract:
      Wound management is a critical aspect of healthcare, necessitating effective and innovative wound dressing materials. Many existing wound dressings lack effectiveness and exhibit limitations, including poor antimicrobial activity, toxicity, inadequate moisture regulation, and weak mechanical performance. The aim of this study is to develop a natural-based nanofibrous structure that possesses desirable characteristics for use as a wound dressing. The chemical analysis confirmed the successful creation of Zein (Ze) (25% w/v) /gelatin (Gel) (10% w/v) /chitosan (CS) (2% w/v) /Polyvinyl alcohol (PVA) (10% w/v) nanofibrous scaffolds loaded with vitamin E tocopheryl polyethylene glycol succinate (Vit E). The swelling percentages of nanofiber (NF), NF + Vit E, cross-linked nanofiber (CNF), and CNF + Vit E were 49%, 110%, 410%, and 676%, respectively; and the degradation rates of NF, NF + Vit E, CNF, and CNF + Vit E were 29.57 ± 5.06%, 33.78 ± 7.8%, 14.03 ± 7.52%, 43 ± 6.27%, respectively. The antibacterial properties demonstrated that CNF impregnated with antibiotics reduced Escherichia coli (E. coli) counts by approximately 27-28% and Staphylococcus aureus (S. aureus) counts by about 34-35% compared to negative control. In conclusion, cross-linked Ze/Gel/CS/PVA nanofibrous scaffolds loaded with Vit E have potential as suitable wound dressing materials because environmentally friendly materials contribute to sustainable wound care and controlled degradation ensures wound dressings breakdown harmlessly.
      (© 2024. The Author(s).)
    • References:
      El Ayadi, A., Jay, J. W. & Prasai, A. Current approaches targeting the wound healing phases to attenuate fibrosis and scarring. Int. J. Mol. Sci. 21, 1105 (2020). (PMID: 32046094703711810.3390/ijms21031105)
      Chen, M. et al. Dynamic covalent constructed self-healing hydrogel for sequential delivery of antibacterial agent and growth factor in wound healing. Chem. Eng. J. 373, 413–424 (2019). (PMID: 10.1016/j.cej.2019.05.043)
      Fahimirad, S. & Ajalloueian, F. Naturally-derived electrospun wound dressings for target delivery of bio-active agents. Int. J. Pharm. 566, 307–328 (2019). (PMID: 3112571410.1016/j.ijpharm.2019.05.053)
      Esmaeili Abdar, Z., Jafari, R., Mohammadi, P. & Nadri, S. The optimal electrical stimulation for neural differentiation of conjunctiva mesenchymal stem cells. Int. J. Artif. Organs. 45, 695–703 (2022). (PMID: 3577394610.1177/03913988221109618)
      Adeli, H., Khorasani, M. T. & Parvazinia, M. Wound dressing based on Electrospun PVA/chitosan/starch nanofibrous mats: fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay. Int. J. Biol. Macromol. 122, 238–254 (2019). (PMID: 3034212510.1016/j.ijbiomac.2018.10.115)
      Farhaj, S., Conway, B. R. & Ghori, M. U. Nanofibres in drug delivery applications. Fibers. 11, 21 (2023). (PMID: 10.3390/fib11020021)
      Alven, S., Peter, S., Mbese, Z. & Aderibigbe, B. A. Polymer-based wound dressing materials loaded with bioactive agents: potential materials for the treatment of diabetic wounds. Polymers. 14, 724 (2022). (PMID: 35215637887461410.3390/polym14040724)
      Rodríguez-Rodríguez, R., Espinosa-Andrews, H., Velasquillo-Martínez, C. & García-Carvajal, Z. Y. Composite hydrogels based on gelatin, Chitosan and polyvinyl alcohol to biomedical applications: a review. Int. J. Polym. Mater. Polym. Biomaterials. 69, 1–20 (2020). (PMID: 10.1080/00914037.2019.1581780)
      Abid, S. et al. Investigating alginate and chitosan electrospun nanofibers as a potential wound dressing: an in vitro study. Nanocomposites. 10, 254–267 (2024). (PMID: 10.1080/20550324.2024.2362534)
      Jayakumar, R., Prabaharan, M., Kumar, P. S., Nair, S. & Tamura, H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv. 29, 322–337 (2011). (PMID: 2126233610.1016/j.biotechadv.2011.01.005)
      Gomes, S. R. et al. In vitro and in vivo evaluation of electrospun nanofibers of PCL, chitosan and gelatin: a comparative study. Mater. Sci. Engineering: C. 46, 348–358 (2015). (PMID: 10.1016/j.msec.2014.10.051)
      Mohammadi, M. R., Kargozar, S., Bahrami, S. & Rabbani, S. An excellent nanofibrous matrix based on gum tragacanth-poly (Ɛ-caprolactone)-poly (vinyl alcohol) for application in diabetic wound healing. Polym. Degrad. Stab. 174, 109105 (2020). (PMID: 10.1016/j.polymdegradstab.2020.109105)
      Zhou, Y. et al. Photocrosslinked maleilated chitosan/methacrylated poly (vinyl alcohol) bicomponent nanofibrous scaffolds for use as potential wound dressings. Carbohydr. Polym. 168, 220–226 (2017). (PMID: 2845744410.1016/j.carbpol.2017.03.044)
      Deng, L. et al. Characterization of gelatin/zein nanofibers by hybrid electrospinning. Food Hydrocoll. 75, 72–80 (2018). (PMID: 10.1016/j.foodhyd.2017.09.011)
      Naghibzadeh, M. et al. Application of electrospun gelatin nanofibers in tissue engineering. Biointerface Res. Appl. Chem. 8, 3048–3052 (2018).
      Shukla, R. & Cheryan, M. Zein: the industrial protein from corn. Ind. Crops Prod. 13, 171–192 (2001). (PMID: 10.1016/S0926-6690(00)00064-9)
      Gorham, J. Chemical analysis of Indian corn. New. Engl. J. Med. Surg. Collateral Branches Sci. 9, 320–328 (1820). (PMID: 10.1056/NEJM182010010090402)
      Paliwal, R. & Palakurthi, S. Zein in controlled drug delivery and tissue engineering. J. Controlled Release. 189, 108–122 (2014). (PMID: 10.1016/j.jconrel.2014.06.036)
      Ullah, A. et al. Clay-corn-caprolactone a novel bioactive clay polymer nanofibrous scaffold for bone tissue engineering. Appl. Clay Sci. 220, 106455 (2022). (PMID: 10.1016/j.clay.2022.106455)
      Li, H. et al. Electrospun gelatin nanofibers loaded with vitamins a and E as antibacterial wound dressing materials. RSC Adv. 6, 50267–50277 (2016). (PMID: 10.1039/C6RA05092A)
      Kheradvar, S. A., Nourmohammadi, J., Tabesh, H. & Bagheri, B. Starch nanoparticle as a vitamin E-TPGS carrier loaded in silk fibroin-poly (vinyl alcohol)-Aloe vera nanofibrous dressing. Colloids Surf., B. 166, 9–16 (2018). (PMID: 10.1016/j.colsurfb.2018.03.004)
      Celebioglu, A. & Uyar, T. Antioxidant vitamin E/cyclodextrin inclusion complex electrospun nanofibers: enhanced water solubility, prolonged shelf life, and photostability of vitamin E. J. Agric. Food Chem. 65, 5404–5412 (2017). (PMID: 2860868410.1021/acs.jafc.7b01562)
      DeFrates, K. et al. Air-jet spinning corn zein protein nanofibers for drug delivery: Effect of biomaterial structure and shape on release properties. Mater. Sci. Engineering: C. 118, 111419 (2021). (PMID: 10.1016/j.msec.2020.111419)
      Ferreira, C. A. et al. Multifunctional gelatin/chitosan electrospun wound dressing dopped with Undaria Pinnatifida phlorotannin-enriched extract for skin regeneration. Pharmaceutics. 13, 2152 (2021). (PMID: 34959432870481810.3390/pharmaceutics13122152)
      Zahra, F. T., Quick, Q. & Mu, R. Electrospun PVA fibers for drug delivery: a review. Polymers. 15, 3837 (2023). (PMID: 377656911053658610.3390/polym15183837)
      Balouiri, M., Sadiki, M. & Ibnsouda, S. K. Methods for in vitro evaluating antimicrobial activity: a review. J. Pharm. Anal. 6, 71–79 (2016). (PMID: 2940396510.1016/j.jpha.2015.11.005)
      Hasan, A. et al. Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater. 10, 11–25 (2014). (PMID: 2397339110.1016/j.actbio.2013.08.022)
      Sobhanian, P., Khorram, M., Hashemi, S. S. & Mohammadi, A. Development of nanofibrous collagen-grafted poly (vinyl alcohol)/gelatin/alginate scaffolds as potential skin substitute. Int. J. Biol. Macromol. 130, 977–987 (2019). (PMID: 3085132910.1016/j.ijbiomac.2019.03.045)
      Amand, F. K. & Esmaeili, A. Investigating the properties of electrospun nanofibers made of hybride polymer containing anticoagulant drugs. Carbohydr. Polym. 228, 115397 (2020). (PMID: 10.1016/j.carbpol.2019.115397)
      Manikandan, A., Mani, M. P., Jaganathan, S. K., Rajasekar, R. & Jagannath, M. Formation of functional nanofibrous electrospun polyurethane and murivenna oil with improved haemocompatibility for wound healing. Polym. Test. 61, 106–113 (2017). (PMID: 10.1016/j.polymertesting.2017.05.008)
      Varma, R. & Vasudevan, S. Extraction, characterization, and antimicrobial activity of chitosan from horse mussel modiolus modiolus. ACS Omega. 5, 20224–20230 (2020). (PMID: 32832775743937510.1021/acsomega.0c01903)
      Agarwal, M. et al. Preparation of Chitosan nanoparticles and their in-vitro characterization. Int. J. Life-Sciences Sci. Res. 4, 1713–1720 (2018). (PMID: 10.21276/ijlssr.2018.4.2.17)
      Qashou, S. I., El-Zaidia, E., Darwish, A. & Hanafy, T. Methylsilicon phthalocyanine hydroxide doped PVA films for optoelectronic applications: FTIR spectroscopy, electrical conductivity, linear and nonlinear optical studies. Phys. B: Condens. Matter. 571, 93–100 (2019). (PMID: 10.1016/j.physb.2019.06.063)
      Alrowaili, Z., Taha, T., El-Nasser, K. S. & Donya, H. Significant enhanced optical parameters of PVA-Y 2 O 3 polymer nanocomposite films. J. Inorg. Organomet. Polym Mater. 31, 3101–3110 (2021). (PMID: 10.1007/s10904-021-01995-2)
      Kadry, G. Comparison between gelatin/carboxymethyl cellulose and gelatin/carboxymethyl nanocellulose in tramadol drug loaded capsule. Heliyon. 5, e02404 (2019).
      da Almeida, P. F., da Silva Lannes, S. C., Calarge, F. A., da Brito Farias, T. M. & Santana, J. C. C. FTIR characterization of gelatin from chicken feet. J. Chem. Chem. Eng. 6, 1029 (2012).
      Hussain, K., Aslam, Z., Ullah, S. & Shah, M. R. Synthesis of pH responsive, photocrosslinked gelatin-based hydrogel system for control release of ceftriaxone. Chem. Phys. Lipids. 238, 105101 (2021). (PMID: 3402953710.1016/j.chemphyslip.2021.105101)
      Hassan, N., Ahmad, T., Zain, N. M. & Awang, S. R. Identification of bovine, porcine and fish gelatin signatures using chemometrics fuzzy graph method. Sci. Rep. 11, 9793 (2021). (PMID: 33963261810540510.1038/s41598-021-89358-2)
      Sadeghinia, A., Soltani, S., Aghazadeh, M., Khalilifard, J. & Davaran, S. Design and fabrication of clinoptilolite–nanohydroxyapatite/chitosan–gelatin composite scaffold and evaluation of its effects on bone tissue engineering. J. Biomedical Mater. Res. Part. A. 108, 221–233 (2020). (PMID: 10.1002/jbm.a.36806)
      Schmitz, F., de Albuquerque, M. B. S., Alberton, M. D., Riegel-Vidotti, I. C. & Zimmermann, L. M. Zein films with ZnO and ZnO: mg quantum dots as functional nanofillers: new nanocomposites for food package with UV-blocker and antimicrobial properties. Polym. Test. 91, 106709 (2020). (PMID: 10.1016/j.polymertesting.2020.106709)
      Esnaashari, S. S., Muhammadnejad, S., Amanpour, S. & Amani, A. A combinational approach towards treatment of breast cancer: an analysis of noscapine-loaded polymeric nanoparticles and doxorubicin. AAPS PharmSciTech. 21, 1–12 (2020). (PMID: 10.1208/s12249-020-01710-3)
      Fadeikina, I., Peunkova, E. & Zuev, B. Determination of vitamin E (α-tocopherol acetate) on the surface of human skin by IR Fourier-transform spectrometry and study of some aspects of its transdermal transfer. J. Anal. Chem. 76, 191–195 (2021). (PMID: 10.1134/S1061934821020088)
      Lin, S. J. & Pascall, M. A. Incorporation of vitamin E into chitosan and its effect on the film forming solution (viscosity and drying rate) and the solubility and thermal properties of the dried film. Food Hydrocoll. 35, 78–84 (2014). (PMID: 10.1016/j.foodhyd.2013.04.015)
      Yeamsuksawat, T. & Liang, J. Characterization and release kinetic of crosslinked chitosan film incorporated with α-tocopherol. Food Packaging Shelf Life. 22, 100415 (2019). (PMID: 10.1016/j.fpsl.2019.100415)
      Martins, J. T., Cerqueira, M. A. & Vicente, A. A. Influence of α-tocopherol on physicochemical properties of chitosan-based films. Food Hydrocoll. 27, 220–227 (2012). (PMID: 10.1016/j.foodhyd.2011.06.011)
      Tonkin, M., Khan, S., Wani, M. Y. & Ahmad, A. Quorum Sensing-A stratagem for conquering multi-drug resistant pathogens. Curr. Pharm. Design. 27, 2835–2847 (2021). (PMID: 10.2174/1381612826666201210105638)
      Baker, S., Pasha, A. & Satish, S. Biogenic nanoparticles bearing antibacterial activity and their synergistic effect with broad spectrum antibiotics: emerging strategy to combat drug resistant pathogens. Saudi Pharm. J. 25, 44–51 (2017). (PMID: 2822386110.1016/j.jsps.2015.06.011)
      Worthington, R. J. & Melander, C. Combination approaches to combat multidrug-resistant bacteria. Trends Biotechnol. 31, 177–184 (2013). (PMID: 23333434359466010.1016/j.tibtech.2012.12.006)
      Sharma, G. K. & James, N. R. In Recent Developments in Nanofibers Research (IntechOpen, 2022).
      Liu, Y. et al. Advances in the Preparation of Nanofiber Dressings by Electrospinning for promoting Diabetic Wound Healing. Biomolecules. 12, 1727 (2022). (PMID: 36551155977518810.3390/biom12121727)
      Keshvardoostchokami, M. et al. Electrospun nanofibers of natural and synthetic polymers as artificial extracellular matrix for tissue engineering. Nanomaterials. 11, 21 (2020). (PMID: 33374248782353910.3390/nano11010021)
      Ignatova, M., Manolova, N. & Rashkov, I. Electrospun Antibacterial Chitosan-B ased fibers. Macromol. Biosci. 13, 860–872 (2013). (PMID: 2375460010.1002/mabi.201300058)
      Iacob, A. T. et al. An overview of biopolymeric electrospun nanofibers based on polysaccharides for wound healing management. Pharmaceutics. 12, 983 (2020). (PMID: 33080849758985810.3390/pharmaceutics12100983)
      Zhu, L., Liu, X., Du, L. & Jin, Y. Preparation of asiaticoside-loaded coaxially electrospinning nanofibers and their effect on deep partial-thickness burn injury. Biomed. Pharmacother. 83, 33–40 (2016). (PMID: 2747054710.1016/j.biopha.2016.06.016)
      Dorati, R. et al. Study on hydrophilicity and degradability of chitosan/polylactide-co-polycaprolactone nanofibre blend electrospun membrane. Carbohydr. Polym. 199, 150–160 (2018). (PMID: 3014311510.1016/j.carbpol.2018.06.050)
      Ohkawa, K., Cha, D., Kim, H., Nishida, A. & Yamamoto, H. Electrospinning of Chitosan. Macromol. Rapid Commun. 25, 1600–1605 (2004). (PMID: 10.1002/marc.200400253)
      Jia, Y. T. et al. Fabrication and characterization of poly (vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method. Carbohydr. Polym. 67, 403–409 (2007). (PMID: 10.1016/j.carbpol.2006.06.010)
      Adibzadeh, S., Bazgir, S. & Katbab, A. A. Fabrication and characterization of chitosan/poly (vinyl alcohol) electrospun nanofibrous membranes containing silver nanoparticles for antibacterial water filtration. Iran. Polym. J. 23, 645–654 (2014). (PMID: 10.1007/s13726-014-0258-3)
      Magana, M. et al. Options and limitations in clinical investigation of bacterial biofilms. Clin. Microbiol. Rev. 31, 101128cmr00084–101128cmr00016 (2018). (PMID: 10.1128/CMR.00084-16)
      Haider, A., Haider, S. & Kang, I. K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem. 11, 1165–1188 (2018). (PMID: 10.1016/j.arabjc.2015.11.015)
      Vilchez, A., Acevedo, F., Cea, M., Seeger, M. & Navia, R. Applications of electrospun nanofibers with antioxidant properties: a review. Nanomaterials. 10, 175 (2020). (PMID: 31968539702275510.3390/nano10010175)
      Fathi, M., Nasrabadi, M. N. & Varshosaz, J. Characteristics of vitamin E-loaded nanofibres from dextran. Int. J. Food Prop. 20, 2665–2674 (2017). (PMID: 10.1080/10942912.2016.1247365)
      Kalantary, S., Golbabaei, F., Latifi, M., Shokrgozar, M. A. & Yaseri, M. Feasibility of using vitamin E-loaded poly (ε-caprolactone)/gelatin nanofibrous mat to prevent oxidative stress in skin. J. Nanosci. Nanotechnol. 20, 3554–3562 (2020). (PMID: 3174805110.1166/jnn.2020.17486)
      Nguyen, H. M., Le, T. T. N., Nguyen, A. T., Le, H. N. T. & Pham, T. T. Biomedical materials for wound dressing: recent advances and applications. RSC Adv. 13, 5509–5528 (2023). (PMID: 36793301992422610.1039/D2RA07673J)
      Nosrati, H. et al. Nanocomposite scaffolds for accelerating chronic wound healing by enhancing angiogenesis. J. Nanobiotechnol. 19, 1–21 (2021). (PMID: 10.1186/s12951-020-00755-7)
      Bazmandeh, A. Z., Mirzaei, E., Fadaie, M., Shirian, S. & Ghasemi, Y. Dual spinneret electrospun nanofibrous/gel structure of chitosan-gelatin/chitosan-hyaluronic acid as a wound dressing: In-vitro and in-vivo studies. Int. J. Biol. Macromol. 162, 359–373 (2020). (PMID: 3257473410.1016/j.ijbiomac.2020.06.181)
      Kim, M. S., Park, S. J., Gu, B. K. & Kim, C. H. Fabrication of chitosan nanofibers scaffolds with small amount gelatin for enhanced cell viability. Appl. Mech. Mater. 749, 220–224 (2015).
      Wang, D. et al. Fabrication and characterization of gelatin/zein nanofiber films loading perillaldehyde for the preservation of chilled chicken. Foods. 10, 1277 (2021). (PMID: 34205088822945310.3390/foods10061277)
      Pollack, S. V. & Wound Healing A review: II. Environmental factors affecting Wound Healing. J. Dermatol. Surg. Oncol. 5, 477–481 (1979). (PMID: 37907610.1111/j.1524-4725.1979.tb00699.x)
      Jones, J. Winter’s concept of moist wound healing: a review of the evidence and impact on clinical practice. J. Wound Care. 14, 273–276 (2005). (PMID: 1597441410.12968/jowc.2005.14.6.26794)
      Nuutila, K. & Eriksson, E. Moist wound healing with commonly available dressings. Adv. Wound Care. 10, 685–698 (2021). (PMID: 10.1089/wound.2020.1232)
      Alven, S. & Aderibigbe, B. A. Fabrication of Hybrid nanofibers from Biopolymers and Poly (Vinyl Alcohol)/Poly (ε-Caprolactone) for wound dressing applications. Polymers. 13, 2104 (2021). (PMID: 34206747827169110.3390/polym13132104)
      Christopherson, G. T., Song, H. & Mao, H. Q. The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials. 30, 556–564 (2009). (PMID: 1897702510.1016/j.biomaterials.2008.10.004)
      Haycock, J. W. 3D cell culture: a review of current approaches and techniques. 3D cell culture: methods and protocols, 1–15 (2011).
      Kuo, C. W., Chueh, D. Y. & Chen, P. Investigation of size–dependent cell adhesion on Nanostructured interfaces. J. Nanobiotechnol. 12, 1–10 (2014). (PMID: 10.1186/s12951-014-0054-4)
      Zhou, Y. et al. Electrospun water-soluble carboxyethyl chitosan/poly (vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration. Biomacromolecules. 9, 349–354 (2008). (PMID: 1806726610.1021/bm7009015)
      Sheng, X. et al. Vitamin E-loaded silk fibroin nanofibrous mats fabricated by green process for skin care application. Int. J. Biol. Macromol. 56, 49–56 (2013). (PMID: 2339606610.1016/j.ijbiomac.2013.01.029)
      ASTM, F. 756-00. Standard practice for assessment of hemolytic properties of materials. Philadelphia: Am. Soc. Test. Mater. (2000).
      Wang, F., Hu, S., Jia, Q. & Zhang, L. Advances in electrospinning of natural biomaterials for wound dressing. Journal of Nanomaterials. 2020, 8719859 (2020). (PMID: 10.1155/2020/8719859)
    • Contributed Indexing:
      Keywords: Chitosan; Electrospinning; Gelatin; Nanofibers; Zein
    • Accession Number:
      9010-66-6 (Zein)
      1406-18-4 (Vitamin E)
      9000-70-8 (Gelatin)
      9012-76-4 (Chitosan)
      9002-89-5 (Polyvinyl Alcohol)
      0 (Biocompatible Materials)
      0 (Anti-Bacterial Agents)
      O03S90U1F2 (tocophersolan)
    • Publication Date:
      Date Created: 20241011 Date Completed: 20241011 Latest Revision: 20241015
    • Publication Date:
      20241015
    • Accession Number:
      PMC11470087
    • Accession Number:
      10.1038/s41598-024-74865-9
    • Accession Number:
      39394234