Rice husk biochar is more effective in blocking the cadmium and lead accumulation in two Brassica vegetables grown on a contaminated field than sugarcane bagasse biochar.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Kluwer Academic Publishers Country of Publication: Netherlands NLM ID: 8903118 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2983 (Electronic) Linking ISSN: 02694042 NLM ISO Abbreviation: Environ Geochem Health Subsets: MEDLINE
    • Publication Information:
      Publication: 1999- : Dordrecht : Kluwer Academic Publishers
      Original Publication: Kew, Surrey : Science and Technology Letters, 1985-
    • Subject Terms:
    • Abstract:
      Heavy metal-contaminated soil has a great impact on yield reduction of vegetable crops and soil microbial community destruction. Biochar-derived waste biomass is one of the most commonly applied soil conditioners in heavy metal-contaminated soil. Different heavy metal-contaminated soil added with suitable biochars represent an intriguing way of the safe production of crops. This study investigated the effects of two types of biochar [rice husk biochar (RHB) and sugarcane bagasse biochar (SBB)] on Cd and Pb accumulation in Shanghaiqing (SHQ, a variety of Brassica campestris L.) and Fengyou 737 (FY, a variety of Brassica napus), as well as on the soil microbial community, through a field experiment. RHB and SBB were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and Brunauer-Emmet-Teller method. The results showed that RHB and SBB displayed the higher pH, cation exchange capacity and pore properties, and the addition of RHB and SBB enhanced soil pH and rhizosphere microorganisms promoting vegetables yield. RHB treatments were more effective than SBB in reducing upward transfer of Cd and Pb, blocking the accumulation of Cd and Pb in the edible parts of SHQ and FY, and decreasing soil Cd and Pb bioavailability. Additionally, RHB and SBB changed the composition of the rhizosphere soil microbial community. The application of biochar promoted the growth of ecologically beneficial bacteria (Nitrospira, Opitutus, and Gemmatimonas) and fungi (Mortierella and Holtermanniella), whereas reducing the enrichment of plant pathogenic fungi (Alternaria, Stagonosporopsis, Lectera, and Periconia) in rhizosphere soil. Our findings demonstrated that the application of RHB significantly reduces Cd and Pb accumulation in the edible parts by decreasing the soil Cd and Pb bioavailability and altering the rhizosphere microbial community composition in two Brassica vegetables grown on Cd/Pb-contaminated soils. Thus, the application of two biochar, especially RHB is a feasible strategy for the safe production of vegetable crops in Cd/Pb co-contaminated soils.
      (© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)
    • References:
      Aborisade, M. A., Geng, H., Oba, B. T., Kumar, A., Ndudi, E. A., Battamo, A. Y., Liu, J., Chen, D., Okimiji, O. P., Ojekunle, O. Z., Yang, Y., Sun, P., & Zhao, L. (2023). Remediation of soil polluted with Pb and Cd and alleviation of oxidative stress in Brassica rapa plant using nanoscale zerovalent iron supported with coconut-husk biochar. Journal Plant Physiology, 287, 154023. https://doi.org/10.1016/j.jplph.2023.154023. (PMID: 10.1016/j.jplph.2023.154023)
      Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals-concepts and applications. Chemosphere, 91(7), 869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075. (PMID: 10.1016/j.chemosphere.2013.01.075)
      Awasthi, S. K., Liu, T., Awasthi, M. K., & Zhang, Z. (2020). Evaluation of biochar amendment on heavy metal resistant bacteria abundance in biosolids compost. Bioresource Technology, 2(306), 123114. https://doi.org/10.1016/j.biortech.2020.123114. (PMID: 10.1016/j.biortech.2020.123114)
      Azhar, M., Rehman, M., Ali, S., Qayyum, M. F., Naeem, A., Ayub, M., Haq, M., Iqbal, A., & Rizwan, M. (2019). Comparative effectiveness of different biochars and conventional organic materials on growth, photosyn-thesis and cadmium accumulation in cereals. Chemosphere, 227, 72–81. https://doi.org/10.1016/j.chemosphere.2019.04.041. (PMID: 10.1016/j.chemosphere.2019.04.041)
      Bashir, M. A., Naveed, M., Ahmad, Z., Gao, B., Mustafa, A., & Núñez-Delgado, A. (2020). Combined application of biochar and sulfur regulated growth, physiological, antioxidant responses and Cr removal capacity of maize (Zea mays L.) in tannery polluted soils. Journal of Environmental Management, 259, 110051. https://doi.org/10.1016/j.jenvman.2019.110051. (PMID: 10.1016/j.jenvman.2019.110051)
      Bashir, S., Hussain, Q., Shaaban, M., & Hu, H. (2018). Efficiency and surface characterization of different plant derived biochar for cadmium (Cd) mobility, bioaccessibility and bioavailability to Chinese cabbage in highly contaminated soil. Chemosphere, 211, 632–639. https://doi.org/10.1016/j.chemosphere.2018.07.168. (PMID: 10.1016/j.chemosphere.2018.07.168)
      Brennan, A., Jiménez, E. M., Puschenreiter, M., Albuquerque, J. A., & Switzer, C. (2014). Effects of biochar amendment on root traits and contaminant availability of maize plants in a copper and arsenic impacted soil. Plant and Soil, 379(1–2), 351–360. https://doi.org/10.1007/s11104-014-2074-0. (PMID: 10.1007/s11104-014-2074-0)
      Budde-Rodriguez, S., Pasche, J. S., Mallik, I., & Gudmestad, N. C. (2022). Sensitivity of Alternaria spp. from potato to pyrimethanil, cyprodinil, and fludioxonil. Crop Protection, 152, 105855. https://doi.org/10.1016/j.cropro.2021.105855. (PMID: 10.1016/j.cropro.2021.105855)
      Chen, L., Jiang, Y., Liang, C., Luo, Y., Xu, Q., Han, C., Zhao, Q., & Sun, B. (2019). Competitive interaction with keystone taxa induced negative priming under biochar amendments. Microbiome, 7(1), 77. https://doi.org/10.1186/s40168-019-0693-7. (PMID: 10.1186/s40168-019-0693-7)
      Chen, Z., Liu, Q., Chen, D., Wu, Y., Hamid, Y., Lin, Q., Zhang, S., Feng, Y., He, Z., Yin, X., & Yang, X. (2024). Enhancing the phytoextraction efficiency of heavy metals in acidic and alkaline soils by Sedum alfredii Hance: A study on the synergistic effect of plant growth regulator and plant growth-promoting bacteria. Science of the Total Environment, 1(932), 173029. https://doi.org/10.1016/j.scitotenv.2024.173029. (PMID: 10.1016/j.scitotenv.2024.173029)
      Da Silva, E. B., Lessl, J. T., Wilkie, A. C., Liu, X., Liu, Y., & Ma, L. Q. (2018). Arsenic removal by as-hyperaccumulator pteris vittata from two contaminated soils: A 5-year study. Chemosphere, 206, 736–741. https://doi.org/10.1016/j.chemosphere.2018.05.055. (PMID: 10.1016/j.chemosphere.2018.05.055)
      De, T. C., Haegeman, A., Vandecasteele, B., Clement, L., Cremelie, P., Dawyndt, P., Maes, M., & Debode, J. (2016). Dynamics in the strawberry rhizosphere microbiome in response to biochar and Botrytis cinerea leaf infection. Frontiers in Microbiology, 7, 2062. https://doi.org/10.3389/fmicb.2016.02062. (PMID: 10.3389/fmicb.2016.02062)
      Etesami, H. (2018). Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects. Ecotoxicology and Environmental Safety, 147, 175–191. https://doi.org/10.1016/j.ecoenv.2017.08.032. (PMID: 10.1016/j.ecoenv.2017.08.032)
      Gai, X., Wang, H., Liu, J., Zhai, L., Liu, S., Ren, T., & Liu, H. (2014). Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLoS ONE, 9(12), e113888. https://doi.org/10.1371/journal.pone.0113888. (PMID: 10.1371/journal.pone.0113888)
      Gao, Y., Wu, P., Jeyakumar, P., Bolan, N., Wang, H., Gao, B., Wang, S., & Wang, B. (2022). Biochar as a potential strategy for remediation of contaminated mining soils: Mechanisms, applications, and future perspectives. Journal of Environmental Management, 313, 114973. https://doi.org/10.1016/j.jenvman.2022.114973. (PMID: 10.1016/j.jenvman.2022.114973)
      Guo, K., Zhao, Y., Zhang, Y., Yang, J., Chu, Z., Zhang, Q., Xiao, W., Huang, B., & Li, T. (2024). Effects of wollastonite and phosphate treatments on cadmium bioaccessibility in pak choi (Brassica rapa L. ssp. chinensis) grown in contaminated soils. Frontiers in Nutrition, 4(11), 1337996. https://doi.org/10.3389/fnut.2024.1337996. (PMID: 10.3389/fnut.2024.1337996)
      Hamid, Y., Tang, L., Sohail, M. I., Cao, X. R., Hussain, B., Aziz, M. Z., Usman, M., He, Z. L., & Yang, X. E. (2019). An explanation of soil amendments to reduce cadmium phytoavailability and transfer to food chain. Science of the Total Environment, 660, 80–96. https://doi.org/10.1016/j.scitotenv.2018.12.419. (PMID: 10.1016/j.scitotenv.2018.12.419)
      He, L. Z., Zhong, H., Liu, G. H., Dai, Z. M., Philip, C. B., & Xu, J. M. (2019a). Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environmental Pollution, 252, 846–855. https://doi.org/10.1016/j.envpol.2019.05.151. (PMID: 10.1016/j.envpol.2019.05.151)
      He, X. M., Zhang, J., Ren, Y. N., Sun, C. Y., Deng, X. P., Qian, M., Hu, Z. B., Li, R., Chen, Y. H., Shen, Z. G., & Xia, Y. (2019b). Polyaspartate and liquid amino acid fertilizer are appropriate alternatives for promoting the phytoextraction of cadmium and lead in Solanum nigrum L. Chemosphere, 237, 124483. https://doi.org/10.1016/j.chemosphere.2019.124483. (PMID: 10.1016/j.chemosphere.2019.124483)
      Hong, M., Zhang, L., Tan, Z., & Huang, Q. (2019). Effect mechanism of biochar’s zeta potential on farmland soil’s cadmium immobilization. Environmental Science and Pollution Research, 26(19), 19738–19748. https://doi.org/10.1007/s11356-019-05298-5. (PMID: 10.1007/s11356-019-05298-5)
      Hou, Q., Zuo, T., Wang, J., Huang, S., Wang, X., Yao, L., & Ni, W. (2021). Responses of nitrification and bacterial community in three size aggregates of paddy soil to both of initial fertility and biochar addition. Applied Soil Ecology, 166, 104004. https://doi.org/10.1016/j.apsoil.2021.104004. (PMID: 10.1016/j.apsoil.2021.104004)
      Jeong, C. Y., Dodla, S. K., & Wang, J. J. (2016). Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products. Chemosphere, 142, 4–13. https://doi.org/10.1016/j.chemosphere.2015.05.084. (PMID: 10.1016/j.chemosphere.2015.05.084)
      Jiang, J., & Xu, R. K. (2013). Application of crop straw derived biochars to Cu 2+ contaminated ultisol: Evaluating role of alkali and organic functional groups in Cu 2+ immobilization. Bioresource Technology, 133, 537–545. https://doi.org/10.1016/j.biortech.2013.01.161. (PMID: 10.1016/j.biortech.2013.01.161)
      Keiluweit, M., Kleber, M., Sparrow, M. A., Simoneit, B. R., & Prahl, F. G. (2012). Solvent-extractable polycyclic aromatic hydrocarbons in biochar: Influence of pyrolysis temperature and feedstock. Environmental Science and Technology, 46, 9333. https://doi.org/10.1021/es302125k. (PMID: 10.1021/es302125k)
      Kiran, B. R., & Prasad, M. N. V. (2019). Biochar and rice husk ash assisted phytoremediation potentials of Ricinus communis L. for lead-spiked soils. Ecotoxicology and Environmental Safety, 183, 109574. https://doi.org/10.1016/j.ecoenv.2019.109574. (PMID: 10.1016/j.ecoenv.2019.109574)
      Kiran, Y. K., Ali, B., Cui, X., Feng, Y., Yang, X., & Joseph, S. P. (2017). Impact of different feedstocks derived biochar amendment with cadmium low uptake affinity cultivar of pak choi (Brassica rapa ssb. chinensis L.) on phytoavoidation of Cd to reduce potential dietary toxicity. Ecotoxicology and Environmental Safety, 141, 129–138. https://doi.org/10.1016/j.ecoenv.2017.03.020. (PMID: 10.1016/j.ecoenv.2017.03.020)
      Kolton, M., Graber, E. R., Tsehansky, L., Elad, Y., & Cytryn, E. (2017). Biochar stimulated plant performance is strongly linked to microbial diversity and metabolic potential in the rhizosphere. New Phytologist, 213(3), 1393–1404. https://doi.org/10.1111/nph.14253. (PMID: 10.1111/nph.14253)
      Latini, A., Bacci, G., Teodoro, M., Gattia, D. M., Bevivino, A., & Trakal, L. (2019). The impact of soil-applied biochars from different vegetal feedstocks on durum wheat plant performance and rhizospheric bacterial microbiota in low metal-contaminated soil. Frontiers in Microbiology, 10, 2694. https://doi.org/10.3389/fmicb.2019.02694. (PMID: 10.3389/fmicb.2019.02694)
      Lehmann, J., & Joseph, S. (2009). Biochar for environmental management: Science and technology. Earthscan, London, 11, 535–536.
      Li, L., Hou, M. J., Cao, L., Xia, Y., Shen, Z. G., & Hu, Z. B. (2018). Glutathi-one S-transferases modulate Cu tolerance in Oryza sativa. Environmental and Experimental Botany, 155, 313–320. https://doi.org/10.1016/j.envexpbot.2018.07.007. (PMID: 10.1016/j.envexpbot.2018.07.007)
      Liu, C. P., Shen, Z., & Li, X. (2007). Accumulation and detoxification of cadmium in Brassica pekinensis and B. chinensis. Biologia Plantarum, 51, 116–120. https://doi.org/10.1007/s10535-007-0023-y. (PMID: 10.1007/s10535-007-0023-y)
      Lu, K., Yang, X., Gielen, G., Bolan, O. Y., Niazi, N. K., Xu, S., Yuan, G., Chen, X., Zhang, X., Liu, D., Song, Z., Liu, X., & Wang, H. (2017). Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. Journal of Environmental Management, 186(2), 285–292. https://doi.org/10.1016/j.jenvman.2016.05.068. (PMID: 10.1016/j.jenvman.2016.05.068)
      Marques, A., Rangel, A., & Castro, P. M. L. (2009). Remediation of heavy metal contaminated soils: Phytoremediation as a potentially promising clean-up technology. Critical Reviews in Environmental Science and Technology, 39, 622–654. https://doi.org/10.1080/10643380701798272. (PMID: 10.1080/10643380701798272)
      Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. Fems Microbiology Reviews, 37(5), 634–663. https://doi.org/10.1111/1574-6976.12028. (PMID: 10.1111/1574-6976.12028)
      Moon, D. H., Park, J. W., Chang, Y. Y., Ok, Y. S., Lee, S. S., Ahmad, M., Koutsospyros, A., Park, J. H., & Baek, K. (2013). Immobilization of lead in contaminated firing range soil using biochar. Environmental Science and Pollution Research, 20, 8464–8471. https://doi.org/10.1007/s11356-013-1964-7. (PMID: 10.1007/s11356-013-1964-7)
      Munera-Echeverri, J. L., Martinsen, V., Strand, L. T., Zivanovic, V., Cornelissen, G., & Mulder, J. (2018). Cation exchange capacity of biochar: An urgent method modification. Science of the Total Environment, 15(642), 190–197. https://doi.org/10.1016/j.scitotenv.2018.06.017. (PMID: 10.1016/j.scitotenv.2018.06.017)
      O’Connor, D., Peng, T., Zhang, J., Tsang, D. C. W., Alessi, D. S., Shen, Z., Bolan, N. S., & Hou, D. (2018). Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials. Science of the Total Environment, 1(619–620), 815–826. https://doi.org/10.1016/j.scitotenv.2017.11.132. (PMID: 10.1016/j.scitotenv.2017.11.132)
      Oliveira, F. R., Patel, A. K., Jaisi, D. P., Adhikari, S., Lu, H., & Khanal, S. K. (2017). Environmental application of biochar: Current status and perspectives. Bioresource Technology, 246, 110–122. https://doi.org/10.1016/j.biortech.2017.08.122.
      Pandit, N. R., Mulder, J., Hale, S. E., Martinsen, V., Schmidt, H. P., & Cornelissen, G. (2018). Biochar improves maize growth by alleviation of nutrient stress in a moderately acidic low-input Nepalese soil. Science of the Total Environment, 625, 1380–1389. https://doi.org/10.1016/j.scitotenv.2018.01.022. (PMID: 10.1016/j.scitotenv.2018.01.022)
      Park, J. H., Choppala, G. K., Bolan, N. S., Chung, J. W., & Chuasavathi, T. (2011). Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and Soil, 348(1–2), 439–445. https://doi.org/10.1007/s11104-011-0948-y. (PMID: 10.1007/s11104-011-0948-y)
      Puga, A. P., Abreu, C. A., Melo, L. C. A., & Beesley, L. (2015). Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. Journal of Environmental Management, 159, 86. https://doi.org/10.1016/j.jenvman.2015.05.036. (PMID: 10.1016/j.jenvman.2015.05.036)
      Qi, X., Xiao, S., Chen, X., Ali, I., Gou, J., Wang, D., Zhu, B., Zhu, W., Shang, R., & Han, M. (2022). Biochar-based microbial agent reduces U and Cd accumulation in vegetables and improves rhizosphere microecology. Journal of Environmental Management, 436, 129147. https://doi.org/10.1016/j.jhazmat.2022.129147. (PMID: 10.1016/j.jhazmat.2022.129147)
      Quan, L. T., Duan, K., Wei, Z. Z., Li, W. W., Chen, Y., Duan, W. D., Qin, C., Shen, Z. G., & Xia, Y. (2023). Beneficial effects of arbuscular mycorrhizae on Cu detoxification in Mimosa pudica L. grown in Cu-polluted soils. Environmental Science and Pollution Research., 30, 25755–25763. https://doi.org/10.1007/s11356-022-23919-4. (PMID: 10.1007/s11356-022-23919-4)
      Rezapour, S., Atashpaz, B., Moghaddam, S. S., & Damalas, C. A. (2019). Heavy metal bioavailability and accumulation in winter wheat (Triticum aestivum L.) irrigated with treated wastewater in calcareous soils. Science of the Total Environment, 656, 261–269. https://doi.org/10.1016/j.scitotenv.2018.11.288. (PMID: 10.1016/j.scitotenv.2018.11.288)
      Sarathchandra, S. S., Rengel, Z., & Solaiman, Z. M. (2024). Metal uptake from iron ore mine tailings by perennial ryegrass (Lolium perenne L.) is higher after wheat straw than wheat straw biochar amendment. Plant and Soil. https://doi.org/10.1007/s11104-024-06559-0. (PMID: 10.1007/s11104-024-06559-0)
      Sharma, R. K., Agrawal, M., & Marshall, F. M. (2008). Heavy metal (Cu, Zn, Cd and Pb) contamination of vegetables in urban India: A case study in Varanasi. Environmental Pollution, 154(2), 254–263. https://doi.org/10.1016/j.envpol.2007.10.010. (PMID: 10.1016/j.envpol.2007.10.010)
      Shen, X., Dai, M., Yang, J., Sun, L., Tan, X., Peng, C., Ali, I., & Naz, I. (2022). A critical review on the phytoremediation of heavy metals from environment: Performance and challenges. Chemosphere, 291, 132979. (PMID: 10.1016/j.chemosphere.2021.132979)
      Sheoran, V., Sheoran, A., & Poonia, P. (2011). Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: A review. Critical Reviews in Environmental Science and Technology, 41, 168–214. https://doi.org/10.1080/10643380902718418. (PMID: 10.1080/10643380902718418)
      Shi, X., Hu, H. W., Wang, J., He, J. Z., Zheng, C., Wan, X., & Huang, Z. (2018). Niche separation of comammox Nitrospira and canonical ammonia oxidizers in an acidic subtropical forest soil under long-term nitrogen deposition. Soil Biology and Biochemistry, 126, 114–122. https://doi.org/10.1016/j.soilbio.2018.09.004. (PMID: 10.1016/j.soilbio.2018.09.004)
      Shi, Y. L., Liu, X. R., & Zhang, Q. W. (2019). Effects of combined biochar and organic fertilizer on nitrous oxide fluxes and the related nitrifier and denitrifier communities in a saline-alkali soil. Science of the Total Environment, 686, 199–211. https://doi.org/10.1016/j.scitotenv.2019.05.394. (PMID: 10.1016/j.scitotenv.2019.05.394)
      Sun, J., Cui, J., Luo, C., Gao, L., Chen, Y., & Shen, Z. (2013). Contribution of cell walls, nonprotein thiols, and organic acids to cadmium resistance in two cabbage varieties. Archives of Environment Contamination and Toxicology, 64(2), 243–252. https://doi.org/10.1007/s00244-012-9824-x. (PMID: 10.1007/s00244-012-9824-x)
      Uchimiya, M., Lima, I. M., Klasson, K. T., & Wartelle, L. H. (2010). Contaminant immobilization and nutrient release by biochar soil amendment: Roles of natural organic matter. Chemosphere, 80, 935–940. https://doi.org/10.1016/j.chemosphere.2010.05.020. (PMID: 10.1016/j.chemosphere.2010.05.020)
      Van, T. T., Bui, Q. T. P., Nguyen, T. D., Ho, V. T. T., & Bach, L. G. (2017). Application of response surface methodology to optimize the fabrication of ZnCl 2 -activated carbon from sugarcane bagasse for the removal of Cu 2+ . Water Science and Technology, 75(9–10), 2047–2055. https://doi.org/10.2166/wst.2017.066. (PMID: 10.2166/wst.2017.066)
      Wang, P., Song, Y., Xie, Z., Wan, M., Xia, R., Jiao, Y., Zhang, H., Yang, G., Fan, Z., Yang, Q. Y., & Hong, D. (2024). Xiaoyun, a model accession for functional genomics research in Brassica napus. Plant Communications, 5(1), 100727. https://doi.org/10.1016/j.xplc.2023.100727. (PMID: 10.1016/j.xplc.2023.100727)
      Wang, Q., Huang, Q., Guo, G., Qin, J., Luo, J., Zhu, Z., Hong, Y., Xu, Y., Hu, S., Hu, W., Yang, C., & Wang, J. (2020). Reducing bioavailability of heavy metals in contaminated soil and uptake by maize using organic-inorganic mixed fertilizer. Chemosphere, 261, 128122. https://doi.org/10.1016/j.chemosphere.2020.128122. (PMID: 10.1016/j.chemosphere.2020.128122)
      Wu, W., Yang, M., & Feng, Q. (2012). Chemical characterization of rice straw-derived biochar for soil amendment. Biomass and Bioenergy, 47, 268–276. https://doi.org/10.1016/j.biombioe.2012.09.034. (PMID: 10.1016/j.biombioe.2012.09.034)
      Xiao, J., Hu, R., & Chen, G. (2019). Micro-nano-engineered nitrogenous bone biochar developed with a ball-milling technique for high-efficiency removal of aquatic Cd(II), Cu(II) and Pb(II). Journal of Hazardous Materials, 387, 121980. https://doi.org/10.1016/j.jhazmat.2019.121980. (PMID: 10.1016/j.jhazmat.2019.121980)
      Xu, C., Hao-xiang, C., Qian, X., Han-hua, Z., Shuai, W., Qi-hong, Z., Dao-you, H., & Yang-zhu, Z. (2018). Effect of peanut shell and wheat straw biochar on the availability of Cd and Pb in a soil-rice (Oryza sativa L.) system. Environmental Science and Pollution Research, 25, 1147–1156. https://doi.org/10.1007/s11356-017-0495-z. (PMID: 10.1007/s11356-017-0495-z)
      Yuan, J. H., Xu, R. K., & Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 102, 3488–3497. https://doi.org/10.1016/j.biortech.2010.11.018. (PMID: 10.1016/j.biortech.2010.11.018)
      Zama, E. F., Reid, B. J., Arp, H. P. H., Sun, G. X., Yuan, H. Y., & Zhu, Y. G. (2018). Advances in research on the use of biochar in soil for remediation: A review. Journal of Soils and Sediments, 18, 2433. https://doi.org/10.1007/s11368-018-2000-9. (PMID: 10.1007/s11368-018-2000-9)
      Zang, Y., Min Wang, M., Shohag, L. L., He, T., Liao, C., Zhang, Z., Chen, J., You, X., Zhao, Y., Wei, Y., & Tian, S. (2023). Biochar performance for preventing cadmium and arsenic accumulation, and the health risks associated with mustard (Brassica juncea) grown in co-contaminated soils. Ecotoxicology and Environmental Safety, 263, 115216. https://doi.org/10.1016/j.ecoenv.2023.115216. (PMID: 10.1016/j.ecoenv.2023.115216)
      Zeng, X., Li, L., & Mei, X. (2008). Heavy metal content in Chinese vegetable plantation land soils and related source analysis. Agricultural Science China, 7(9), 1115–1126. https://doi.org/10.1016/S1671-2927(08)60154-6. (PMID: 10.1016/S1671-2927(08)60154-6)
      Zhang, R. H., Li, Z. G., Liu, X. D., Wang, B. C., Zhou, G. L., Huang, X. X., Lin, C. F., Wang, A. H., & Brooks, M. (2017). Immobilization and bioavailability of heavy metals in greenhouse soils amended with rice straw-derived biochar. Ecological Engineering, 98, 183–188. https://doi.org/10.1016/j.ecoleng.2016.10.057. (PMID: 10.1016/j.ecoleng.2016.10.057)
      Zhang, S., Quan, L., Zhu, Y., Yan, J., He, X., Zhang, J., Xu, X., Hu, Z., Hu, F., Chen, Y., Shen, Z., & Xia, Y. (2020). Differential effects of three amendments on the immobilisation of cadmium and lead for Triticum aestivum grown on polluted soil. Environmental Science and Pollution Research, 27(32), 40434–40442. https://doi.org/10.1007/s11356-020-10079-6. (PMID: 10.1007/s11356-020-10079-6)
      Zhang, X., Wang, H., He, L., Lu, K., Sarmah, A., Li, J., Bolan, N. S., Pei, J., & Huang, H. (2013). Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environmental Science and Pollution Research, 20, 8472–8483. https://doi.org/10.1007/s11356-013-1659-0. (PMID: 10.1007/s11356-013-1659-0)
      Zheng, X., Xu, W., Dong, J., Yang, T., Shang, G. Z., Qu, J., Li, X., & Tan, X. (2022). The effects of biochar and its applications in the microbial remediation of contaminated soil: A review. Journal of Hazardous Materials, 438, 129557. https://doi.org/10.1016/j.jhazmat.2022.129557. (PMID: 10.1016/j.jhazmat.2022.129557)
      Zhou, Y., Ye, H., Liu, E., Tian, J., Song, L., Ren, Z., Wang, M., Sun, Z., Tang, L., Ren, Z., Li, J., Nie, Q., Wang, A., & Wang, K. (2024). The complexity of structural variations in Brassica rapa revealed by assembly of two complete T2T genomes. Science Bulletin, 69(15), 2346–2351. https://doi.org/10.1016/j.scib.2024.03.030. (PMID: 10.1016/j.scib.2024.03.030)
      Zwieten, V., Kimber, S., Morris, S., Chan, K., Downie, A., Rust, J., Joseph, S., & Cowie, A. (2010). Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 327, 235–246. https://doi.org/10.1007/s11104-009-0050-x. (PMID: 10.1007/s11104-009-0050-x)
    • Grant Information:
      2021YFC1809102 The National Key Research and Development Program of China; BE2021717, BE2021718 The Jiangsu provincial Key Research and Development Program, China; BE2021717, BE2021718 The Jiangsu provincial Key Research and Development Program, China; AW202144 The Science and Technology Project of China Tobacco Henan Industrial Co., Ltd
    • Contributed Indexing:
      Keywords: Brassica vegetables; Biochar; Heavy metal bioavailability; Heavy metal contamination; Soil microbial community
    • Accession Number:
      16291-96-6 (Charcoal)
      0 (biochar)
      0 (Soil Pollutants)
      00BH33GNGH (Cadmium)
      2P299V784P (Lead)
      9006-97-7 (bagasse)
      9004-34-6 (Cellulose)
      0 (Soil)
    • Publication Date:
      Date Created: 20241010 Date Completed: 20241010 Latest Revision: 20241010
    • Publication Date:
      20241014
    • Accession Number:
      10.1007/s10653-024-02245-3
    • Accession Number:
      39387995