SKYQUANT 3D: Quantifying Vascular Anatomy With an Open-Source Workflow for Comprehensive Analysis of Volumetric Optoacoustic Angiography Data.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 101318567 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1864-0648 (Electronic) Linking ISSN: 1864063X NLM ISO Abbreviation: J Biophotonics Subsets: MEDLINE
    • Publication Information:
      Original Publication: Weinheim : Wiley-VCH
    • Subject Terms:
    • Abstract:
      Efficient visualization of the vascular system is of key importance in biomedical research into tumor angiogenesis, cerebrovascular alterations, and other angiopathies. Optoacoustic (OA) angiography offers a promising solution combining molecular optical contrast with high resolution and deep penetration of ultrasound. However, its hybrid nature implies complex data collection and processing workflows, with significant variability in methodologies across developers and users. To streamline interoperability, we introduce SKYQUANT 3D, a Python-based set of instructions for the Thermo Fisher Scientific Amira/Avizo 3D Visualization & Analysis Software. Our workflow simplifies the batch processing of volumetric optoacoustic angiography images, extracting meaningful quantitative information while also providing statistical analysis and graphical representation of the results. Quantification performance of SKYQUANT 3D is demonstrated using functional preclinical and clinical in vivo 3D OA angiographic tests involving ambient temperature variations and repositioning of the imaged limb.
      (© 2024 The Author(s). Journal of Biophotonics published by Wiley‐VCH GmbH.)
    • References:
      S. Hu and L. V. Wang, “Photoacoustic Imaging and Characterization of the Microvasculature,” Journal of Biomedical Optics 15 (2010): 011101.
      J. Feng, J. Lu, C. Jin, et al., “Diagnostic Value of Superb Microvascular Imaging in Differentiating Benign and Malignant Breast Tumors: A Systematic Review and Meta‐Analysis,” Diagnostics (Basel) 12 (2022): 2648.
      P. Theer and W. Denk, “On the Fundamental Imaging‐Depth Limit in Two‐Photon Microscopy,” Journal of the Optical Society of America. A, Optics, Image Science, and Vision 23 (2006): 3139–3149.
      B. Lashkari and A. Mandelis, “Photoacoustic Radar Imaging Signal‐To‐Noise Ratio, Contrast, and Resolution Enhancement Using Nonlinear Chirp Modulation,” Optics Letters 35 (2010): 1623–1625.
      M. A. Lediju Bell, “Photoacoustic Imaging for Surgical Guidance: Principles, Applications, and Outlook,” Journal of Applied Physics 128 (2020): 060904.
      L. V. Wang, “Multiscale Photoacoustic Microscopy and Computed Tomography,” Nature Photonics 3 (2009): 503–509.
      C. Li and L. V. Wang, “Photoacoustic Tomography and Sensing in Biomedicine,” Physics in Medicine and Biology 54 (2009): R59–R97.
      S. Mallidi, G. P. Luke, and S. Emelianov, “Photoacoustic Imaging in Cancer Detection, Diagnosis, and Treatment Guidance,” Trends in Biotechnology 29 (2011): 213–221.
      O. Abeyakoon, R. Woitek, M. G. Wallis, et al., “An Optoacoustic Imaging Feature set to Characterise Blood Vessels Surrounding Benign and Malignant Breast Lesions,” Photoacoustics 27 (2022): 100383.
      P. Beard, “Biomedical Photoacoustic Imaging,” Interface Focus 1 (2011): 602–631.
      C.‐L. Tsai, J.‐C. Chen, and W.‐J. Wang, “Near‐Infrared Absorption Property of Biological Soft Tissue Constituents,” accessed November 19, 2023, https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a49d620d50bac2f52592d3b0bf080d8b9dadf182.
      A. P. Regensburger, E. Brown, G. Krönke, M. J. Waldner, and F. Knieling, “Optoacoustic Imaging in Inflammation,” Biomedicine 9 (2021): 483.
      J. Yao and L. V. Wang, “Photoacoustic Microscopy,” Laser & Photonics Reviews 7 (2013): 758–773.
      M. Omar, J. Aguirre, and V. Ntziachristos, “Optoacoustic Mesoscopy for Biomedicine,” Nature Biomedical Engineering 3 (2019): 354–370.
      X. L. Deán‐Ben, S. Gottschalk, B. Mc Larney, S. Shoham, and D. Razansky, “Advanced Optoacoustic Methods for Multiscale Imaging of in Vivo Dynamics,” Chemical Society Reviews 46 (2017): 2158–2198.
      B. A. Corliss, C. Mathews, R. Doty, G. Rohde, and S. M. Peirce, “Methods to Label, Image, and Analyze the Complex Structural Architectures of Microvascular Networks,” Microcirculation 26 (2019): e12520.
      S. Berg, D. Kutra, T. Kroeger, et al., “Ilastik: Interactive Machine Learning for (Bio)image Analysis,” Nature Methods 16 (2019): 1226–1232.
      Q. Yu, Y. Liao, K. Liu, et al., “Registration of Photoacoustic Tomography Vascular Images: Comparison and Analysis of Automatic Registration Approaches,” Frontiers of Physics 10 (2022), https://doi.org/10.3389/fphy.2022.1045192.
      S. Nemirova, A. Orlova, A. Kurnikov, et al., “Scanning Optoacoustic Angiography for Assessing Structural and Functional Alterations in Superficial Vasculature of Patients With Post‐Thrombotic Syndrome: A Pilot Study,” Photoacoustics 38 (2024): 100616.
      H. Kye, Y. Song, T. Ninjbadgar, C. Kim, and J. Kim, “Whole‐Body Photoacoustic Imaging Techniques for Preclinical Small Animal Studies,” Sensors 22 (2022): 5130.
      D. Razansky, J. Klohs, and R. Ni, “Multi‐Scale Optoacoustic Molecular Imaging of Brain Diseases,” European Journal of Nuclear Medicine and Molecular Imaging 48 (2021): 4152–4170.
      Y. Ito, T. Ishii, S. Yamazaki, A. Yoshida, K. Nagaya, and Y. Saijo, “Evaluation of Temperature‐Dependent Fluctuations in Skin Microcirculation Flow Using a Light‐Emitting Diode Based Photoacoustic Imaging Device,” Journal of Clinical Monitoring and Computing 37 (2023): 1361–1367.
      K. G. Akhmedzhanova, A. A. Kurnikov, D. A. Khochenkov, et al., “In Vivo Monitoring of Vascularization and Oxygenation of Tumor Xenografts Using Optoacoustic Microscopy and Diffuse Optical Spectroscopy,” Biomedical Optics Express 13, no. 11 (2022): 5695–5708.
      A. Glyavina, K. Akhmedzhanova, A. Kurnikov, et al., “Optoacoustic Angiography for Noninvasive Monitoring of Experimental Tumor Angiogenesis,” Laser Physics Letters 20 (2023): 115601.
      A. G. Orlova, P. V. Subochev, A. A. Moiseev, et al., “Bimodal Imaging of Functional Changes in Blood Flow Using Optoacoustic and Optical Coherent Angiography,” Quantum Electronics 49 (2019): 25–28.
      T. Oruganti, J. G. Laufer, and B. E. Treeby, “Vessel Filtering of Photoacoustic Images,” in Photons Plus Ultrasound: Imaging and Sensing 2013 (San Francisco, CA: SPIE, 2013), 319–328.
      A. A. Kurnikov, K. G. Pavlova, A. G. Orlova, et al., “Broadband (100 kHz–100 MHz) Ultrasound PVDF Detectors for Raster‐Scan Optoacoustic Angiography With Acoustic Resolution,” Quantum Electronics 51, no. 5 (2021): 383–388.
      P. Subochev, A. Orlova, E. Smolina, A. Kirillov, N. Shakhova, and I. Turchin, “Raster‐Scan Optoacoustic Angiography Reveals 3D Microcirculatory Changes During Cuffed Occlusion,” Laser Physics Letters 15 (2018): 045602.
      A. A. Anosov, M. Y. Kirillin, A. G. Orlova, et al., “Volumetric Quantification of Skin Microcirculation Disturbance Induced by Local Compression,” Laser Physics Letters 17, no. 8 (2020): 085601.
      A. Longo, S. Morscher, J. M. Najafababdi, D. Jüstel, C. Zakian, and V. Ntziachristos, “Assessment of Hessian‐Based Frangi Vesselness Filter in Optoacoustic Imaging,” Photoacoustics 20 (2020): 100200.
      W. Dubitzky, O. Wolkenhauer, H. Yokota, and K.‐H. Cho, Encyclopedia of Systems Biology (New York: Springer, 2013).
      M. Sato, I. Bitter, M. A. Bender, A. E. Kaufman, and M. Nakajima, “TEASAR: Tree‐Structure Extraction Algorithm for Accurate and Robust Skeletons,” in Proceedings the Eighth Pacific Conference on Computer Graphics and Applications (Hong Kong: IEEE Computer Society, 2002).
      R. Dyckerhoff and K. Mosler, “Weighted‐Mean Trimming of Multivariate Data,” Journal of Multivariate Analysis 102 (2011): 405–421.
      A. Korobov, Z. Besedovskaia, A. Orlova, et al., Quantifying Anatomy of Vascular Structures: An Open‐Source Workflow for Comprehensive Analysis of 3D Angiographic Data Acquired Using Optoacoustic Imaging (Moscow: Github Repository, 2023), https://github.com/KAY‐imaging/OA‐pipeline.
      E. L. Brown, T. L. Lefebvre, P. W. Sweeney, et al., “Quantification of Vascular Networks in Photoacoustic Mesoscopy,” Photoacoustics 26 (2022): 100357.
      E. Brown, T. Lefebvre, P. Sweeney, et al., Dataset for: Quantification of Vascular Networks in Photoacoustic Mesoscopy (Cambridge: Apollo—University of Cambridge Repository, 2022), https://doi.org/10.17863/CAM.78208.
      A. Kurnikov, G. Volkov, A. Orlova, et al., “Fisheye Piezo Polymer Detector for Scanning Optoacoustic Angiography of Experimental Neoplasms,” Photoacoustics 31 (2023): 100507.
      A. Orlova, K. Pavlova, A. Kurnikov, et al., “Noninvasive Optoacoustic Microangiography Reveals Dose and Size Dependency of Radiation‐Induced Deep Tumor Vasculature Remodeling,” Neoplasia 26 (2022): 100778.
      P. Subochev, F. Spadin, V. Perekatova, et al., “Toward Real‐Time Giga‐Voxel Optoacoustic/Photoacoustic Microscopy: GPU‐Accelerated Fourier Reconstruction With Quasi‐3D Implementation,” Photonics 9 (2021): 15.
      E. M. Timanin, I. S. Mikhailova, I. I. Fiks, et al., “Improvement of Optoacoustic Angiographic Images Using One‐Dimensional Deconvolution With Adaptive Real‐Time Self‐Calibration,” Acoustical Physics 69, no. 6 (2023): 914–920.
      R. Zhang, X. Li, G. Balasundaram, et al., “Hybrid Photoacoustic Ultrasound Imaging System for Cold‐Induced Vasoconstriction and Vasodilation Monitoring,” IEEE Transactions on Biomedical Engineering 71 (2023): 712–716.
      F. Chang, S. Flavahan, and N. A. Flavahan, “Cooling‐Induced Cutaneous Vasodilatation Is Mediated by Small‐Conductance, Calcium‐Activated Potassium Channels in Tail Arteries From Male Mice,” Physiological Reports 11 (2023): e15884.
      P. van den Brande, A. De Coninck, and P. Lievens, “Skin Microcirculation Responses to Severe Local Cooling,” International Journal of Microcirculation 17 (1997): 55–60.
      G. R. Untracht, R. S. Matos, N. Dikaios, et al., “OCTAVA: An Open‐Source Toolbox for Quantitative Analysis of Optical Coherence Tomography Angiography Images,” PLoS One 16 (2021): e0261052.
      G. C. Maccagnan, J. Schmith, M. Santos, and R. M. de Figueiredo, “Toolbox for Vessel X‐Ray Angiography Images Simulation,” in Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (São Paulo: SBC, 2023), 59–70.
    • Grant Information:
      19-75-10055 Russian Science Foundation (RSF) Project; FFUF-2021-0014 Governmental Project of the Institute of Applied Physics RAS; FSWR-2020-0035 Ministry of Science and Higher Education of the Russian Federation; 075-15-2022-316 Ministry of Science and Higher Education of the Russian Federation; 62022037 National Natural Science Foundation of China; KFS-5234-02-2021 Swiss Cancer Research
    • Contributed Indexing:
      Keywords: 3D imaging; Amira; Avizo; angiographic imaging; angiography; image analysis; optoacoustics; vascular anatomy; workflow
    • Publication Date:
      Date Created: 20241009 Date Completed: 20241110 Latest Revision: 20241110
    • Publication Date:
      20241114
    • Accession Number:
      10.1002/jbio.202400143
    • Accession Number:
      39384323