Plastid LPAT1 is an integral inner envelope membrane protein with the acyltransferase domain located in the stroma.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: Germany NLM ID: 9880970 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-203X (Electronic) Linking ISSN: 07217714 NLM ISO Abbreviation: Plant Cell Rep Subsets: MEDLINE
    • Publication Information:
      Original Publication: Berlin ; New York : Springer, 1981-
    • Subject Terms:
    • Abstract:
      Key Message: The N-terminal transmembrane domain of LPAT1 crosses the inner membrane placing the N terminus in the intermembrane space and the C-terminal enzymatic domain in the stroma. Galactolipids mono- and di-galactosyl diacylglycerol are the major and vital lipids of photosynthetic membranes. They are synthesized by five enzymes hosted at different sub-chloroplast locations. However, localization and topology of the second-acting enzyme, lysophosphatidic acid acyltransferase 1 (LPAT1), which acylates the sn-2 position of glycerol-3-phosphate (G3P) to produce phosphatidic acid (PA), remain unclear. It is not known whether LPAT1 is located at the outer or the inner envelope membrane and whether its enzymatic domain faces the cytosol, the intermembrane space, or the stroma. Even the size of mature LPAT1 in chloroplasts is not known. More information is essential for understanding the pathways of metabolite flow and for future engineering endeavors to modify glycerolipid biosynthesis. We used LPAT1 preproteins translated in vitro for import assays to determine the precise size of the mature protein and found that the LPAT1 transit peptide is at least 85 residues in length, substantially longer than previously predicted. A construct comprising LPAT1 fused to the Venus fluorescent protein and driven by the LPAT1 promoter was used to complement an Arabidopsis lpat1 knockout mutant. To determine the sub-chloroplast location and topology of LPAT1, we performed protease treatment and alkaline extraction using chloroplasts containing in vitro-imported LPAT1 and chloroplasts isolated from LPAT1-Venus-complemented transgenic plants. We show that LPAT1 traverses the inner membrane via an N-terminal transmembrane domain, with its N terminus protruding into the intermembrane space and the C-terminal enzymatic domain residing in the stroma, hence displaying a different membrane topology from its bacterial homolog, PlsC.
      (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Angkawijaya AE, Nguyen VC, Nakamura Y (2019) Lysophosphatidic acid acyltransferases 4 and 5 are involved in glycerolipid metabolism and nitrogen starvation response in Arabidopsis. New Phytol 224:336–351. (PMID: 3121185910.1111/nph.16000)
      Benning C (2009) Mechanisms of lipid transport involved in organelle biogenesis in plant cells. Annu Rev Cell Dev Biol 25:71–91. (PMID: 1957281010.1146/annurev.cellbio.042308.113414)
      Block MA, Dorne A-J, Joyard J, Douce R (1983) The phosphatidic acid phosphatase of the chloroplast envelope is located on the inner envelope membrane. FEBS Lett 164:111–115. (PMID: 10.1016/0014-5793(83)80030-1)
      Bölter B, May T, Soll J (1998) A protein import receptor in pea chloroplasts, Toc86, is only a proteolytic fragment of a larger polypeptide. FEBS Lett 441:59–62. (PMID: 987716510.1016/S0014-5793(98)01525-7)
      Chen Y-L, Chen L-J, Li H-m (2016) Polypeptide transport-associated domains of the Toc75 channel protein are located in the intermembrane space of chloroplasts. Plant Physiol 172:235–243. (PMID: 27388682507463010.1104/pp.16.00919)
      Chou M-L, Fitzpatrick LM, Tu S-L, Budziszewski G, Potter-Lewis S, Akita M, Levin JZ, Keegstra K, Li H-m (2003) Tic40, a membrane-anchored co-chaperone homolog in the chloroplast protein translocon. EMBO J 22:2970–2980. (PMID: 1280521216213310.1093/emboj/cdg281)
      Chou M-L, Chu C-C, Chen L-J, Akita M, Li H-m (2006) Stimulation of transit-peptide release and ATP hydrolysis by a cochaperone during protein import into chloroplasts. J Cell Biol 175:893–900. (PMID: 17158958206469910.1083/jcb.200609172)
      Chu C-C, Li H-m (2011) Determining the location of an Arabidopsis chloroplast protein using in vitro import followed by fractionation and alkaline extraction. Methods Mol Biol 774:339–350. (PMID: 2182284810.1007/978-1-61779-234-2_20)
      Cook R, Lupette J, Benning C (2021) The role of chloroplast membrane lipid metabolism in plant environmental responses. Cells 10:706. (PMID: 33806748800521610.3390/cells10030706)
      Cook R, Froehlich JE, Yang Y, Korkmaz I, Kramer DM, Benning C (2024) Chloroplast phosphatases LPPγ and LPP ε1 facilitate conversion of extraplastidic phospholipids to galactolipids. Plant Physiol kiae100 195(2):1506–1520. (PMID: 10.1093/plphys/kiae100)
      Emanuelsson O, Nielsen H, Heijne GV (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984. (PMID: 10338008214433010.1110/ps.8.5.978)
      Ferro M, Salvi D, Brugière S, Miras S, Kowalski S, Louwagie M, Garin J, Joyard J, Rolland N (2003) Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol Cell Proteomics 2:325–345. (PMID: 1276623010.1074/mcp.M300030-MCP200)
      Frentzen M (1986) Biosynthesis and desaturation of the different diacylglycerol moieties in higher plants. J Plant Physiol 124:193–209. (PMID: 10.1016/S0176-1617(86)80034-7)
      Frentzen M, Heinz E, Mckeno TA, Stumpf PK (1983) Specificities and selectivities of glycerol-3-phosphate acyltransferase and monoacylglycerol-3-phosphate acyltransferase from pea and spinach chloroplasts. Eur J Biochem 129:629–636. (PMID: 682567910.1111/j.1432-1033.1983.tb07096.x)
      Hernández ML, Cejudo FJ (2021) Chloroplast lipids metabolism and function a redox perspective. Front Plant Sci 12:712022. https://doi.org/10.3389/fpls.2021.712022. (PMID: 10.3389/fpls.2021.712022344219628375268)
      Hölzl G, Dörmann P (2019) Chloroplast lipids and their biosynthesis. Annu Rev Plant Biol 70:51–81. (PMID: 3078623610.1146/annurev-arplant-050718-100202)
      Jackson DT, Froehlich JE, Keegstra K (1998) The hydrophilic domain of Tic110, an inner envelope membrane component of the chloroplastic protein translocation apparatus, faces the stromal compartment. J Biol Chem 273:16583–16588. (PMID: 963273010.1074/jbc.273.26.16583)
      Jin Z, Wan L, Zhang Y, Li X, Cao Y, Liu H, Fan S, Cao D, Wang Z, Li X (2022) Structure of a TOC-TIC supercomplex spanning two chloroplast envelope membranes. Cell 185(4788–4800):e4713.
      Joyard J, Douce R (1977) Site of synthesis of phosphatidic acid and diacyglycerol in spinach chloroplasts. Biochimica Biophysica Acta (BBA) Lipids Lipid Metabolism 486:273–285. (PMID: 10.1016/0005-2760(77)90023-6)
      Kim HU, Huang AH (2004) Plastid lysophosphatidyl acyltransferase is essential for embryo development in Arabidopsis. Plant Physiol 134:1206–1216. (PMID: 1497623738994510.1104/pp.103.035832)
      Kim HU, Li Y, Huang AH (2005) Ubiquitous and endoplasmic reticulum–located lysophosphatidyl acyltransferase, LPAT2, is essential for female but not male gametophyte development in Arabidopsis. Plant Cell 17:1073–1089. (PMID: 15772283108798710.1105/tpc.104.030403)
      Kobayashi K, Kondo M, Fukuda H, Nishimura M, Ohta H (2007) Galactolipid synthesis in chloroplast inner envelope is essential for proper thylakoid biogenesis, photosynthesis, and embryogenesis. Proc Natl Acad Sci 104:17216–17221. (PMID: 17940034204046310.1073/pnas.0704680104)
      Kornberg A, Pricer W Jr (1953) Enzymatic esterification of α-glycerophosphate by long chain fatty acids. J Biol Chem 204:345–357. (PMID: 1308460610.1016/S0021-9258(18)66143-5)
      Kunst L, Browse J, Somerville C (1988) Altered regulation of lipid biosynthesis in a mutant of Arabidopsis deficient in chloroplast glycerol-3-phosphate acyltransferase activity. Proc Natl Acad Sci 85:4143–4147. (PMID: 1659393928038210.1073/pnas.85.12.4143)
      Liu H, Li A, Rochaix J-D, Liu Z (2023) Architecture of chloroplast TOC–TIC translocon supercomplex. Nature 615:349–357. (PMID: 3670215710.1038/s41586-023-05744-y)
      Mongrand S, Bessoule J-J, Cabantous F, Cassagne C (1998) The C16: 3\C18: 3 fatty acid balance in photosynthetic tissues from 468 plant species. Phytochemistry 49:1049–1064. (PMID: 10.1016/S0031-9422(98)00243-X)
      Nakamura Y, Tsuchiya M, Ohta H (2007) Plastidic phosphatidic acid phosphatases identified in a distinct subfamily of lipid phosphate phosphatases with prokaryotic origin. J Biol Chem 282:29013–29021. (PMID: 1765209510.1074/jbc.M704385200)
      Nguyen VC, Nakamura Y (2023) Distinctly localized lipid phosphate phosphatases mediate endoplasmic reticulum glycerolipid metabolism in Arabidopsis. Plant Cell 35:1548–1571. (PMID: 367185301011827710.1093/plcell/koad021)
      Perry SE, Li H-M, Keegstra K (1991) In vitro reconstitution of protein transport into chloroplasts. Methods Cell Biol 34:327–344. (PMID: 194380710.1016/S0091-679X(08)61688-X)
      Rath A, Deber CM (2013) Correction factors for membrane protein molecular weight readouts on sodium dodecyl sulfate–polyacrylamide gel electrophoresis. Anal Biochem 434:67–72. (PMID: 2320139110.1016/j.ab.2012.11.007)
      Robertson RM, Yao J, Gajewski S, Kumar G, Martin EW, Rock CO, White SW (2017) A two-helix motif positions the lysophosphatidic acid acyltransferase active site for catalysis within the membrane bilayer. Nat Struct Mol Biol 24:666–671. (PMID: 28714993561621010.1038/nsmb.3436)
      Roughan P, Slack C (1982) Cellular organization of glycerolipid metabolism. Annu Rev Plant Physiol 33:97–132. (PMID: 10.1146/annurev.pp.33.060182.000525)
      Schnell DJ, Kessler F, Blobel G (1994) Isolation of components of the chloroplast protein import machinery. Science 266:1007–1012. (PMID: 797364910.1126/science.7973649)
      Somerville C, Browse J, Jaworski JG, Ohlrogge JB (2000) Lipids. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, Maryland, pp 456–527.
      Tamada T, Feese MD, Ferri SR, Kato Y, Yajima R, Toguri T, Kuroki R (2004) Substrate recognition and selectivity of plant glycerol-3-phosphate acyltransferases (GPATs) from Cucurbita moscata and Spinacea oleracea. Acta Crystallogr D Biol Crystallogr 60:13–21. (PMID: 1468488710.1107/S0907444903020778)
      Tu S-L, Chen L-J, Smith MD, Su Y-s, Schnell DJ, Li H-m (2004) Import pathways of chloroplast interior proteins and the outer-membrane protein OEP14 converge at Toc75. Plant Cell 16:2078–2088. (PMID: 1525826751919910.1105/tpc.104.023952)
      Turnbull AP, Rafferty JB, Sedelnikova SE, Slabas AR, Schierer TP, Kroon JT, Simon JW, Fawcett T, Nishida I, Murata N (2001) Analysis of the structure, substrate specificity, and mechanism of squash glycerol-3-phosphate (1)-acyltransferase. Structure 9:347–353. (PMID: 1137719510.1016/S0969-2126(01)00595-0)
      Voelker T, Kinney AJ (2001) Variations in the Biosynthesis of Seed-Storage Lipids. Annu Rev Plant Physiol Plant Mol Biol 52:335-361. (PMID: 1133740210.1146/annurev.arplant.52.1.335)
      Wattelet-Boyer V, Le Guédard M, Dittrich-Domergue F, Maneta-Peyret L, Kriechbaumer V, Boutté Y, Bessoule J-J, Moreau P (2022) Lysophosphatidic acid acyltransferases: a link with intracellular protein trafficking in Arabidopsis root cells? J Exp Bot 73:1327–1343. (PMID: 3498282510.1093/jxb/erab504)
      Xu C, Yu B, Cornish AJ, Froehlich JE, Benning C (2006) Phosphatidylglycerol biosynthesis in chloroplasts of Arabidopsis mutants deficient in acyl-ACP glycerol-3-phosphate acyltransferase. Plant J 47(2):296–309. (PMID: 1677464610.1111/j.1365-313X.2006.02790.x)
      You L, Połońska A, Jasieniecka-Gazarkiewicz K, Richard F, Jouhet J, Maréchal E, Banaś A, Hu H, Pan Y, Hao X (2024) Two plastidial lysophosphatidic acid acyltransferases differentially mediate the biosynthesis of membrane lipids and triacylglycerols in Phaeodactylum tricornutum. New Phytol 241:1543–1558. (PMID: 3803146210.1111/nph.19434)
      Yu B, Wakao S, Fan J, Benning C (2004) Loss of plastidic lysophosphatidic acid acyltransferase causes embryo-lethality in Arabidopsis. Plant Cell Physiol 45:503–510. (PMID: 1516993110.1093/pcp/pch064)
    • Grant Information:
      112-2923-B-001-001-MY2 National Science and Technology Council; 113-2311-B-002-007 National Science and Technology Council; JPMJGX23B0 GteX Program Japan
    • Contributed Indexing:
      Keywords: Chloroplast; Galactolipid; Inner envelope membrane; Lysophosphatidic acid acyltransferase; Phosphatidic acid; Topology
    • Accession Number:
      EC 2.3.- (Acyltransferases)
      0 (Arabidopsis Proteins)
      EC 2.3.1.52 (2-acylglycerophosphate acyltransferase)
      0 (Membrane Proteins)
    • Publication Date:
      Date Created: 20241009 Date Completed: 20241009 Latest Revision: 20241113
    • Publication Date:
      20241114
    • Accession Number:
      10.1007/s00299-024-03347-z
    • Accession Number:
      39382709