Actin-driven nanotopography promotes stable integrin adhesion formation in developing tissue.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
    • Publication Information:
      Original Publication: [London] : Nature Pub. Group
    • Subject Terms:
    • Abstract:
      Morphogenesis requires building stable macromolecular structures from highly dynamic proteins. Muscles are anchored by long-lasting integrin adhesions to resist contractile force. However, the mechanisms governing integrin diffusion, immobilization, and activation within developing tissues remain elusive. Here, we show that actin polymerization-driven membrane protrusions form nanotopographies that enable strong adhesion at Drosophila muscle attachment sites (MASs). Super-resolution microscopy reveals that integrins assemble adhesive belts around Arp2/3-dependent actin protrusions, forming invadosome-like structures with membrane nanotopographies. Single protein tracking shows that, during MAS development, integrins become immobile and confined within diffusion traps formed by the membrane nanotopographies. Actin filaments also display restricted motion and confinement, indicating strong mechanical connection with integrins. Using isolated muscle cells, we show that substrate nanotopography, rather than rigidity, drives adhesion maturation by regulating actin protrusion, integrin diffusion and immobilization. These results thus demonstrate that actin-polymerization-driven membrane protrusions are essential for the formation of strong integrin adhesions sites in the developing embryo, and highlight the important contribution of geometry to morphogenesis.
      (© 2024. The Author(s).)
    • References:
      Lecuit, T., Lenne, P.-F. F. & Munro, E. Force generation, transmission, and integration during cell and tissue morphogenesis. Annu. Rev. Cell Dev. Biol. 27, 157–184 (2011). (PMID: 2174023110.1146/annurev-cellbio-100109-104027)
      Goodwin, K. et al. Basal cell-extracellular matrix adhesion regulates force transmission during tissue morphogenesis. Dev. Cell 39, 611–625 (2016). (PMID: 2792312110.1016/j.devcel.2016.11.003)
      Subramanian, A. & Schilling, T. F. Tendon development and musculoskeletal assembly: emerging roles for the extracellular matrix. Development 142, 4191–4204 (2015). (PMID: 2667209210.1242/dev.1147774689213)
      Maartens, A. P. & Brown, N. H. The many faces of cell adhesion during Drosophila muscle development. Dev. Biol. 401, 62–74 (2015). (PMID: 2559633510.1016/j.ydbio.2014.12.038)
      Valdivia, M., Vega-Macaya, F. & Olguín, P. Mechanical control of myotendinous junction formation and tendon differentiation during development. Front. Cell Dev. Biol. 5, 26 (2017). (PMID: 2838654210.3389/fcell.2017.000265362613)
      Kechagia, J. Z., Ivaska, J. & Roca-Cusachs, P. Integrins as biomechanical sensors of the microenvironment. Nat. Rev. Mol. Cell Biol. 20, 457–473 (2019). (PMID: 3118286510.1038/s41580-019-0134-2)
      Vicente, F. N., Chen, T., Rossier, O. & Giannone, G. Novel imaging methods and force probes for molecular mechanobiology of cytoskeleton and adhesion. Trends Cell Biol. 33, 204–220 (2023). (PMID: 10.1016/j.tcb.2022.07.008)
      Kanchanawong, P. & Calderwood, D. A. Organization, dynamics and mechanoregulation of integrin-mediated cell–ECM adhesions. Nat. Rev. Mol. Cell Biol. 24, 142–161 (2023). (PMID: 3616806510.1038/s41580-022-00531-5)
      Jiang, G., Giannone, G., Critchley, D. R., Fukumoto, E. & Sheetz, M. P. Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature 424, 334–337 (2003). (PMID: 1286798610.1038/nature01805)
      Thievessen, I. et al. Vinculin-actin interaction couples actin retrograde flow to focal adhesions, but is dispensable for focal adhesion growth. J. Cell Biol. 202, 163–177 (2013).
      Chan, C. E. & Odde, D. J. Traction dynamics of filopodia on compliant substrates. Science 322, 1687–1691 (2008). (PMID: 1907434910.1126/science.1163595)
      Jaumouillé, V., Cartagena-Rivera, A. X. & Waterman, C. M. Coupling of β2 integrins to actin by a mechanosensitive molecular clutch drives complement receptor-mediated phagocytosis. Nat. Cell Biol. 21, 1357–1369 (2019).
      Gardel, M. L. et al. Traction stress in focal adhesions correlates biphasically with actin retrograde flow speed. J. Cell Biol. 183, 999–1005 (2008). (PMID: 1907511010.1083/jcb.2008100602600750)
      Hu, K., Ji, L., Applegate, K. T., Danuser, G. & Waterman-Storer, C. M. Differential transmission of actin motion within focal adhesions. Science 315, 111–115 (2007). (PMID: 1720465310.1126/science.1135085)
      Kanchanawong, P. et al. Nanoscale architecture of integrin-based cell adhesions. Nature 468, 580 (2010). (PMID: 2110743010.1038/nature096213046339)
      Stubb, A. et al. Superresolution architecture of cornerstone focal adhesions in human pluripotent stem cells. Nat. Commun. 10, 4756 (2019). (PMID: 3162831210.1038/s41467-019-12611-w6802214)
      Rossier, O. et al. Integrins β1 and β3 exhibit distinct dynamic nanoscale organizations inside focal adhesions. Nat. Cell Biol. 14, 1057–1067 (2012). (PMID: 2302322510.1038/ncb2588)
      Orré, T. et al. Molecular motion and tridimensional nanoscale localization of kindlin control integrin activation in focal adhesions. Nat. Commun. 12, 3104 (2021). (PMID: 3403528010.1038/s41467-021-23372-w8149821)
      Tsunoyama, T. A. et al. Super-long single-molecule tracking reveals dynamic-anchorage-induced integrin function. Nat. Chem. Biol. 14, 497–506 (2018). (PMID: 2961048510.1038/s41589-018-0032-5)
      Labernadie, A. et al. Protrusion force microscopy reveals oscillatory force generation and mechanosensing activity of human macrophage podosomes. Nat. Commun. 5, 5343 (2014). (PMID: 2538567210.1038/ncomms6343)
      Dries, Kvanden et al. Modular actin nano-architecture enables podosome protrusion and mechanosensing. Nat. Commun. 10, 5171 (2019). (PMID: 3172938610.1038/s41467-019-13123-36858452)
      Kuhn, T. et al. Single-molecule tracking of Nodal and Lefty in live zebrafish embryos supports hindered diffusion model. Nat. Commun. 13, 6101 (2022). (PMID: 3624373410.1038/s41467-022-33704-z9569377)
      Massou, S. et al. Cell stretching is amplified by active actin remodelling to deform and recruit proteins in mechanosensitive structures. Nat. Cell Biol. 22, 1011–1023 (2020). (PMID: 3271955310.1038/s41556-020-0548-2)
      Prokop, A., Martı́n-Bermudo, M. D., Bate, M. & Brown, N. H. Absence of PS Integrins or Laminin A Affects Extracellular Adhesion, but Not Intracellular Assembly, of Hemiadherens and Neuromuscular Junctions in Drosophila Embryos. Dev. Biol. 196, 58–76 (1998). (PMID: 952788110.1006/dbio.1997.8830)
      Paszek, M. J. et al. The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nature 511, 319–325 (2014). (PMID: 2503016810.1038/nature135354487551)
      Reynwar, B. J. et al. Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. Nature 447, 461–464 (2007). (PMID: 1752268010.1038/nature05840)
      Saltukoglu, D. et al. Plasma membrane topography governs the 3D dynamic localization of IgM B cell antigen receptor clusters. EMBO J. 42, e112030 (2023). (PMID: 3659426210.15252/embj.20221120309929642)
      Zhang, W. et al. Curved adhesions mediate cell attachment to soft matrix fibres in three dimensions. Nat. Cell Biol. 25, 1453–1464 (2023). (PMID: 3777056610.1038/s41556-023-01238-110567576)
      Yuan, L., Fairchild, M. J., Perkins, A. D. & Tanentzapf, G. Analysis of integrin turnover in fly myotendinous junctions. J. Cell Sci. 123, 939–946 (2010). (PMID: 2017910210.1242/jcs.063040)
      Pines, M. et al. Mechanical force regulates integrin turnover in Drosophila in vivo. Nat. Cell Biol. 14, 935–943 (2012). (PMID: 2288577110.1038/ncb2555)
      Bulgakova, N. A., Wellmann, J. & Brown, N. H. Diverse integrin adhesion stoichiometries caused by varied actomyosin activity. R. Soc. Open Biol. 7, 160250 (2017). (PMID: 10.1098/rsob.160250)
      Broadie, K., Skaer, H. & Bate, M. Whole-embryo culture of Drosophila: development of embryonic tissues in vitro. Rouxs Arch. Dev. Biol. 201, 364–375 (1992). (PMID: 2830585510.1007/BF00365124)
      Sens, K. L. et al. An invasive podosome-like structure promotes fusion pore formation during myoblast fusion. J. Cell Biol. 191, 1013–1027 (2010). (PMID: 2109811510.1083/jcb.2010060062995175)
      Jouchet, P. et al. Nanometric axial localization of single fluorescent molecules with modulated excitation. Nat. Photonics 15, 297–304 (2021). (PMID: 10.1038/s41566-020-00749-9)
      Choi, C. K. et al. Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nat. Cell Biol. 10, 1039–1050 (2008). (PMID: 1916048410.1038/ncb17632827253)
      Giannone, G. et al. Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell 128, 561–575 (2007). (PMID: 1728957410.1016/j.cell.2006.12.0395219974)
      Plotnikov, S. V., Pasapera, A. M., Sabass, B. & Waterman, C. M. Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell 151, 1513–1527 (2012). (PMID: 2326013910.1016/j.cell.2012.11.034)
      Rui, Y., Bai, J. & Perrimon, N. Sarcomere formation occurs by the assembly of multiple latent protein complexes. PLoS Genet. 6, e1001208 (2010). (PMID: 2112499510.1371/journal.pgen.10012082987826)
      Bloor, J. W. & Kiehart, D. P. zipper Nonmuscle myosin-II functions downstream of PS2 integrin in Drosophila myogenesis and is necessary for myofibril formation. Dev. Biol. 239, 215–228 (2001). (PMID: 1178403010.1006/dbio.2001.0452)
      Giannone, G. et al. Periodic lamellipodial contractions correlate with rearward actin waves. Cell 116, 431–443 (2004). (PMID: 1501637710.1016/S0092-8674(04)00058-3)
      Mullins, R. D., Heuser, J. A. & Pollard, T. D. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl Acad. Sci. USA 95, 6181–6186 (1998). (PMID: 960093810.1073/pnas.95.11.618127619)
      Svitkina, T. & Borisy, G. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 145, 1009–1026 (1999). (PMID: 1035201810.1083/jcb.145.5.10092133125)
      Valencia, F. R. et al. Force-dependent activation of actin elongation factor mDia1 protects the cytoskeleton from mechanical damage and promotes stress fiber repair. Dev. Cell 56, 3288–3302.e5 (2021). (PMID: 3482278710.1016/j.devcel.2021.11.004)
      Machesky, L. M. et al. Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proc. Natl Acad. Sci. USA 96, 3739–3744 (1999). (PMID: 1009710710.1073/pnas.96.7.373922364)
      Fricke, R. et al. Drosophila Cip4/Toca-1 integrates membrane trafficking and actin dynamics through WASP and SCAR/WAVE. Curr. Biol. 19, 1429–1437 (2009). (PMID: 1971670310.1016/j.cub.2009.07.058)
      Case, L. B. et al. Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions. Nat. Cell Biol. 17, 880–892 (2015). (PMID: 2605322110.1038/ncb31804490039)
      Ketchum, C. M. et al. Subcellular topography modulates actin dynamics and signaling in B-cells. Mol. Biol. Cell 29, 1732–1742 (2018). (PMID: 2977163610.1091/mbc.E17-06-04226080708)
      Shibata, A. C. et al. Archipelago architecture of the focal adhesion: Membrane molecules freely enter and exit from the focal adhesion zone. Cytoskeleton 69, 380–392 (2012). (PMID: 2248896010.1002/cm.21032)
      Hansen, A. S., Amitai, A., Cattoglio, C., Tjian, R. & Darzacq, X. Guided nuclear exploration increases CTCF target search efficiency. Nat. Chem. Biol. 16, 257–266 (2020). (PMID: 3179244510.1038/s41589-019-0422-3)
      Lee, Y. et al. High-throughput, single-particle tracking reveals nested membrane domains that dictate KRasG12D diffusion and trafficking. eLife 8, e46393 (2019). (PMID: 3167490510.7554/eLife.463937060040)
      Huang, W. Y. et al. A molecular assembly phase transition and kinetic proofreading modulate Ras activation by SOS. Science 363, 1098–1103 (2019). (PMID: 3084660010.1126/science.aau57216563836)
      Heck, J. et al. Transient confinement of CaV2.1 Ca2+-channel splice variants shapes synaptic short-term plasticity. Neuron 103, 66–79.e12 (2019). (PMID: 3110495110.1016/j.neuron.2019.04.030)
      Nordenfelt, P., Elliott, H. L. & Springer, T. A. Coordinated integrin activation by actin-dependent force during T-cell migration. Nat. Commun. 7, 13119 (2016). (PMID: 2772149010.1038/ncomms131195062559)
      Mehidi, A. et al. Forces generated by lamellipodial actin filament elongation regulate the WAVE complex during cell migration. Nat. Cell Biol. 23, 1148–1162 (2021). (PMID: 3473744310.1038/s41556-021-00786-8)
      Ponti, A., Machacek, M., Gupton, S., Waterman-Storer, C. & Danuser, G. Two distinct actin networks drive the protrusion of migrating cells. Science 305, 1782–1786 (2004). (PMID: 1537527010.1126/science.1100533)
      Hotulainen, P. & Lappalainen, P. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol. 173, 383–394 (2006). (PMID: 1665138110.1083/jcb.2005110932063839)
      Luo, B.-H., Springer, T. A. & Takagi, J. Stabilizing the open conformation of the integrin headpiece with a glycan wedge increases affinity for ligand. Proc. Natl Acad. Sci. USA 100, 2403–2408 (2003). (PMID: 1260478310.1073/pnas.0438060100151353)
      Cluzel, C. et al. The mechanisms and dynamics of αvβ3 integrin clustering in living cells. J. Cell Biol. 171, 383–392 (2005). (PMID: 1624703410.1083/jcb.2005030172171205)
      Bunch, T. A. et al. Amino acid changes in Drosophila αPS2β PS integrins that affect ligand affinity*. J. Biol. Chem. 281, 5050–5057 (2006). (PMID: 1637136510.1074/jbc.M508550200)
      López-Ceballos, P., Herrera-Reyes, A. D., Coombs, D. & Tanentzapf, G. In vivo regulation of integrin turnover by outside-in activation. J. Cell Sci. 129, 2912–2924 (2016). (PMID: 2731148310.1242/jcs.190256)
      Li, X. et al. Nanoscale surface topography reduces focal adhesions and cell stiffness by enhancing integrin endocytosis. Nano Lett. 21, 8518–8526 (2021). (PMID: 3434622010.1021/acs.nanolett.1c019348516714)
      Gaertner, F. et al. WASp triggers mechanosensitive actin patches to facilitate immune cell migration in dense tissues. Dev. Cell 57, 47–62.e9 (2022). (PMID: 3491980210.1016/j.devcel.2021.11.0248751638)
      Elosegui-Artola, A. et al. Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat. Cell Biol. 18, 540–548 (2016). (PMID: 2706509810.1038/ncb3336)
      Pelham, R. J. & Wang, Y. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94, 13661–13665 (1997). (PMID: 939108210.1073/pnas.94.25.1366128362)
      Ghibaudo, M. et al. Traction forces and rigidity sensing regulate cell functions. Soft Matter 4, 1836–1843 (2008). (PMID: 10.1039/b804103b)
      Ghassemi, S. et al. Cells test substrate rigidity by local contractions on submicrometer pillars. Proc. Natl Acad. Sci. USA 109, 5328–5333 (2012). (PMID: 2243160310.1073/pnas.11198861093325713)
      Nawrocki, G., Wang, P., Yu, I., Sugita, Y. & Feig, M. Slow-down in diffusion in crowded protein solutions correlates with transient cluster formation. J. Phys. Chem. B 121, 11072–11084 (2017). (PMID: 2915134510.1021/acs.jpcb.7b087855951686)
      Oria, R. et al. Force loading explains spatial sensing of ligands by cells. Nature 552, 219–224 (2017). (PMID: 2921171710.1038/nature24662)
      Linder, S. et al. The polarization defect of Wiskott-Aldrich syndrome macrophages is linked to dislocalization of the Arp2/3 complex. J. Immunol. 165, 221–225 (2000). (PMID: 1086105510.4049/jimmunol.165.1.221)
      Linder, S., Nelson, D., Weiss, M. & Aepfelbacher, M. Wiskott-Aldrich syndrome protein regulates podosomes in primary human macrophages. Proc. Natl Acad. Sci. USA 96, 9648–9653 (1999). (PMID: 1044974810.1073/pnas.96.17.964822264)
      Gligorijevic, B. et al. N-WASP-mediated invadopodium formation is involved in intravasation and lung metastasis of mammary tumors. J. Cell Sci. 125, 724–734 (2012). (PMID: 2238940610.1242/jcs.0927263367832)
      Linder, S. The matrix corroded: podosomes and invadopodia in extracellular matrix degradation. Trends Cell Biol. 17, 107–117 (2007). (PMID: 1727530310.1016/j.tcb.2007.01.002)
      Yim, E. K. F., Darling, E. M., Kulangara, K., Guilak, F. & Leong, K. W. Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials 31, 1299–1306 (2010). (PMID: 1987964310.1016/j.biomaterials.2009.10.037)
      Reversat, A. et al. Cellular locomotion using environmental topography. Nature 582, 582–585 (2020). (PMID: 3258137210.1038/s41586-020-2283-z)
      Yim, E. K. F., Pang, S. W. & Leong, K. W. Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp. Cell Res. 313, 1820–1829 (2007). (PMID: 1742846510.1016/j.yexcr.2007.02.0312038987)
      Lou, H.-Y. et al. Membrane curvature underlies actin reorganization in response to nanoscale surface topography. Proc. Natl Acad. Sci. USA 116, 23143–23151 (2019). (PMID: 3159125010.1073/pnas.19101661166859365)
      Fujiwara, T. K. et al. Confined diffusion of transmembrane proteins and lipids induced by the same actin meshwork lining the plasma membrane. Mol. Biol. Cell 27, 1101–1119 (2016). (PMID: 2686462510.1091/mbc.E15-04-01864814218)
      Li, J., Yan, J. & Springer, T. A. Low-affinity integrin states have faster ligand-binding kinetics than the high-affinity state. eLife 10, e73359 (2021). (PMID: 3485438010.7554/eLife.733598730728)
      Lemke, S. B., Weidemann, T., Cost, A.-L., Grashoff, C. & Schnorrer, F. A small proportion of Talin molecules transmit forces at developing muscle attachments in vivo. PloS Biol. 17, e3000057 (2019). (PMID: 3091710910.1371/journal.pbio.30000576453563)
      Aretz, J., Aziz, M., Strohmeyer, N., Sattler, M. & Fässler, R. Talin and kindlin use integrin tail allostery and direct binding to activate integrins. Nat. Struct. Mol. Biol. 30, 1913–1924 (2023). (PMID: 3808708510.1038/s41594-023-01139-910716038)
      Liu, J. et al. Talin determines the nanoscale architecture of focal adhesions. Proc. Natl Acad. Sci. USA 112, E4864–E4873 (2015). (PMID: 2628336910.1073/pnas.15120251124568271)
      Klapholz, B. et al. Alternative mechanisms for talin to mediate integrin function. Curr. Biol. 25, 847–857 (2015). (PMID: 2575464610.1016/j.cub.2015.01.0434386027)
      Swaminathan, V. et al. Actin retrograde flow actively aligns and orients ligand-engaged integrins in focal adhesions. Proc. Natl Acad. Sci. USA 114, 10648–10653 (2017). (PMID: 2907303810.1073/pnas.17011361145635867)
      Bataillé, L., Delon, I., Ponte, J., Brown, N. H. & Jagla, K. Downstream of identity genes: muscle-type-specific regulation of the fusion process. Dev. Cell 19, 317–328 (2010). (PMID: 2070859310.1016/j.devcel.2010.07.008)
      Green, H. J., Griffiths, A. G., Ylänne, J. & Brown, N. H. Novel functions for integrin-associated proteins revealed by analysis of myofibril attachment in Drosophila. eLife 7, e35783 (2018). (PMID: 3002829410.7554/eLife.357836092120)
      Röper, K., Mao, Y. & Brown, N. H. Contribution of sequence variation in Drosophila actins to their incorporation into actin-based structures in vivo. J. Cell Sci. 118, 3937–3948 (2005). (PMID: 1610587710.1242/jcs.02517)
      Friedl, K. et al. Assessing crosstalk in simultaneous multicolor single-molecule localization microscopy. Cell Rep. Methods 3, 100571 (2023). (PMID: 3775169110.1016/j.crmeth.2023.10057110545913)
      Butler, C. et al. Multi-dimensional spectral single molecule localization microscopy. Front. Bioinform. 2, 813494 (2022). (PMID: 3630432110.3389/fbinf.2022.8134949580959)
      Garcia, M. et al. Two-tiered coupling between flowing actin and immobilized N-cadherin/catenin complexes in neuronal growth cones. Proc. Natl Acad. Sci. USA 112, 6997–7002 (2015). (PMID: 2603855410.1073/pnas.14234551124460488)
      Teo, J. L., Lim, C., Yap, A. S. & Saw, T. A biologist’s guide to traction force microscopy using polydimethylsiloxane substrate for two-dimensional cell cultures. STAR Protoc. 1, 100098 (2020).
    • Accession Number:
      0 (Actins)
      0 (Integrins)
      0 (Drosophila Proteins)
      0 (Actin-Related Protein 2-3 Complex)
    • Publication Date:
      Date Created: 20241007 Date Completed: 20241007 Latest Revision: 20241010
    • Publication Date:
      20241011
    • Accession Number:
      PMC11458790
    • Accession Number:
      10.1038/s41467-024-52899-x
    • Accession Number:
      39375335