The Combined Effects of Temperature and pH to the Toxicity of the Water-Soluble Fraction of Gasoline (WSFG) to the Neotropical Yellow-Tail Tetra, Astyanax altiparanae.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer-Verlag Country of Publication: United States NLM ID: 0357245 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0703 (Electronic) Linking ISSN: 00904341 NLM ISO Abbreviation: Arch Environ Contam Toxicol Subsets: MEDLINE
    • Publication Information:
      Original Publication: New York, Springer-Verlag.
    • Subject Terms:
    • Abstract:
      Continental aquatic environments have undergone chemical pollution due to increased anthropogenic activities. Among those substances, petroleum hydrocarbons are a potential hazard for the aquatic animals. Additionally, alterations in the abiotic characteristics of the water, such as temperature and pH, can impose additional stress when those substances are present. We evaluate how alterations in water temperature and pH modified the acute (96 h) toxicity of the water-soluble fraction of gasoline (WSF G ) to Astyanax altiparanae through physiological analysis. We also investigated the physiological responses after the fish recovery from exposure (96 h) in clean water. Both isolated and combined exposures to WSF G resulted in significant physiological changes. Alone, WSF G altered energetic metabolism and haematopoietic functions, potentially due to metabolic hypoxia. When combined with changes in water temperature (30 °C) and pH (4.0), A. altiparanae activated additional physiological mechanisms to counterbalance osmoregulatory and acid-base imbalances, likely exacerbated by severe metabolic hypoxia. In both isolated and combined exposure scenarios, A. altiparanae maintained cellular hydration, suggesting a robust capacity to uphold homeostasis under environmental stress conditions. Following a recovery in clean water, energetic metabolism returned to control levels. Nevertheless, plasmatic Na + and Cl - levels and haematological parameters remained affected by WSF G exposure. Our findings underscore the impact of interactions between WSF G contaminants, temperature and pH, leading to additional biological damage in A. altiparanae.
      (© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
    • References:
      Akaishi FM, Silva de Assis HC, Jakobi SCG, Eiras-Stofella DR, St-Jean SD, Courtenay SC, Lima EF, Wagener ALR, Scofield AL, Oliveira Ribeiro CA (2004) Morphological and neurotoxicological findings in tropical freshwater fish (Astyanax sp.) after waterborne and acute exposure to water soluble fraction (WSF) of crude oil. Arch Environ Contam Toxicol 46(2):244–253. https://doi.org/10.1007/s00244-003-2260-1. (PMID: 10.1007/s00244-003-2260-1)
      Albers PH (2003) Petroleum and individual polycyclic aromatic hydrocarbons. In: Hoffman DJ, Rattner BA, Burton GA, Cairns J (eds) Handbook of ecotoxicology, 2nd edn. CRC Press, Boca Raton, pp 341–371.
      Alkindi AYA, Brown JA, Waring CP, Collins JE (1996) Endocrine, osmoregulatory, respiratory and haematological parameters in flounder exposed to the water soluble fraction of crude oil. J Fish Biol 49:1291–1305. https://doi.org/10.1111/j.1095-8649.1996.tb01796.x. (PMID: 10.1111/j.1095-8649.1996.tb01796.x)
      Almeida-Val VMF, Gomes ARC, Lopes NP (2005) Metabolic and physiological adjustments to low oxygen and high temperature in fishes of the Amazon. In: Val AL, Almeida-Val VMF, Randall DJ (eds) The physiology of tropical fishes, 1st edn. Academic Press, New York, pp 443–500. (PMID: 10.1016/S1546-5098(05)21010-5)
      Anderson JW (1979) An assessment of knowledge concerning the fate and effects of petroleum hydrocarbons in the marine environment. In: Vernberg WB, Calabresse A, Thurberg FP, Vernberg FJ (eds) Marine pollution: functional responces, 1st edn. Academic Press, New York, pp 3–21. (PMID: 10.1016/B978-0-12-718260-5.50005-0)
      Anderson JW, Neff JM, Cox BA, Tatem HE, Hightower GM (1974) Characteristics of dispersions and water-soluble extracts of crude and refined oils and their toxicity to estuarine crustaceans and fish. Mar Biol 27(1):75–88. https://doi.org/10.1007/bf00394763. (PMID: 10.1007/bf00394763)
      Barron MG (2003) Bioaccumulation and bioconcentration in aquatic organisms. In: Hoffman DJ, Rattner BA, Burton GA, Cairns J (eds) Handbook of ecotoxicology, 2nd edn. Taylor Francis, New York, pp 1–16.
      Barron MG, Podrabsky T, Ogle S, Ricker RW (1999) Are aromatic hydrocarbons the primary determinant of petroleum toxicity to aquatic organisms? Aquat Toxicol 46(3–4):253–268. https://doi.org/10.1016/s0166-445x(98)00127-1. (PMID: 10.1016/s0166-445x(98)00127-1)
      Barros IT, Ceccon JP, Glinski A, Liebel S, Grötzner SR, Randi MAF, Benedito E, Ortolani-Machado CF, Filipak Neto F, de Oliveira Ribeiro CA (2017) Environmental risk assessment in five rivers of Parana River basin, Southern Brazil, through biomarkers in Astyanax spp. Environ Sci Pollut Res 24(19):16228–16240. https://doi.org/10.1007/s11356-017-9186-z. (PMID: 10.1007/s11356-017-9186-z)
      Bennemann ST, Shibatta OA (2002) Dinâmica de uma assembléia de peixes do rio Tibagi. In: Medri ME, Bianchini E, Shibatta OA, Pimenta JA (eds) A Bacia do Rio Tibagi. Edição dos Editores, Londrina/PR, p 601.
      Bertotto D, Poltronieri C, Negrato E, Majolini D, Radaelli G, Simontacchi C (2010) Alternative matrices for cortisol measurement in fish. Aquac Res 41(8):1261–1267. https://doi.org/10.1111/j.1365-2109.2009.02417.x. (PMID: 10.1111/j.1365-2109.2009.02417.x)
      Bettim FL, Galvan GL, Cestari MM, Yamamoto CI, Silva de Assis HC (2016) Biochemical responses in freshwater fish after exposure to water-soluble fraction of gasoline. Chemosphere 144:1467–1474. https://doi.org/10.1016/j.chemosphere.2015.09.109. (PMID: 10.1016/j.chemosphere.2015.09.109)
      Bidinotto PM, Moraes G, Souza RHS (1997) Hepatic glycogen in eight tropical fresh water teleost fish: a procedure for field determinations of micro samples. Boletin Técnico Do CEPTA 10:53–60.
      Boese BL, Johnson VG, Chapman DE, Ridlington JW, Randall R (1982) Effects of petroleum refinery wastewater exposure on gill ATPase and selected blood parameters in the pacific staghorn sculpin (Leptocottus armatus). Comp Biochem Physiol C Comp Pharmacol 71(1):63–67. https://doi.org/10.1016/0306-4492(82)90011-9. (PMID: 10.1016/0306-4492(82)90011-9)
      Brauner CJ, Ballantyne CL, Vijayan MM, Val AL (1999) Crude oil exposure affects air-breathing frequency, blood phosphate levels and ion regulation in an air-breathing teleost fish, Hoplosternum littorale. Comp Biochem Physiol c: Pharmacol Toxicol 123(2):127–134. https://doi.org/10.1016/S0742-8413(99)00018-3. (PMID: 10.1016/S0742-8413(99)00018-3)
      Burggren W, Roberts J (1991) Respiration and metabolism. In: Prosser CL (ed) Environmental and metabolic animal physiology, 4th edn. Wiley-Liss, New York, pp 353–435.
      Clarke A, Johnston NM (1999) Scaling of metabolic rate with body mass and temperature in teleost fish. J Anim Ecol 68(5):893–905. https://doi.org/10.1046/j.1365-2656.1999.00337.x. (PMID: 10.1046/j.1365-2656.1999.00337.x)
      Connell DW, Miller GJ (1981) Petroleum hydrocarbons in aquatic ecosystems-behaviour and effects of sublethal concentrations-Part 1. Crit Rev Environ Control 11:37–104. https://doi.org/10.1080/10643388009381685. (PMID: 10.1080/10643388009381685)
      Dal Pont G, Souza-Bastos LR, Giacomin M, Dolatto RG, Baika LM, Grassi MT, Ostrensky A, Wood CM (2019) Acute exposure to the water-soluble fraction of gasoline (WSFG) affects oxygen consumption, nitrogenous-waste and Mg excretion, and activates anaerobic metabolism in the goldfish Carassius auratus. Comp Biochem Physiol, c: Toxicol Pharmacol 226:108590. https://doi.org/10.1016/j.cbpc.2019.108590. (PMID: 10.1016/j.cbpc.2019.108590)
      De Carvalho PA, Paschoalini AL, Santos GB, Rizzo E, Bazzoli N (2009) Reproductive biology of Astyanax fasciatus (Pisces: Characiformes) in a reservoir in southeastern Brazil. J Appl Ichthyol 25(3):306–313. https://doi.org/10.1111/j.1439-0426.2009.01238.x. (PMID: 10.1111/j.1439-0426.2009.01238.x)
      Dolatto RG, Dal Pont G, Vela HS, Camargo MdS, Neto AO, Grassi MT (2023) Aromatic hydrocarbons extracted by headspace and microextraction methods in water-soluble fractions from crude oil, fuels and lubricants. Anal Sci 39(4):573–587. https://doi.org/10.1007/s44211-023-00274-z. (PMID: 10.1007/s44211-023-00274-z)
      Duarte RM, Honda RT, Val AL (2010) Acute effects of chemically dispersed crude oil on gill ion regulation, plasma ion levels and haematological parameters in tambaqui (Colossoma macropomum). Aquat Toxicol 97(2):134–141. https://doi.org/10.1016/j.aquatox.2009.12.020. (PMID: 10.1016/j.aquatox.2009.12.020)
      Dupuis A, Ucan-Marin F (2015) A literature review on the aquatic toxicology of petroleum oil: an overview of oil properties and effects to aquatic biota. Fisheries and Oceans Canada. Canadian Science Advisory Secretariat, Ottawa ON.
      Engelhardt FR, Wong MP, Duey ME (1981) Hydromineral balance and gill morphology in rainbow trout Salmo gairdneri, acclimated to fresh and sea water, as affected by petroleum exposure. Aquat Toxicol 1:175–186. https://doi.org/10.1016/0166-445X(81)90013-8. (PMID: 10.1016/0166-445X(81)90013-8)
      Esteves FA (2011) Fundamentos de Limnologia, 3rd edn. Interciência, Rio de Janeiro, p 790.
      Evans DH (1987) The fish gill: site of action and model for toxic effects of environmental pollutants. Environ Health Perspect 71:47–58. https://doi.org/10.1289/ehp.877147. (PMID: 10.1289/ehp.877147)
      Fenwick JC, Wendelaar Bonga SE, Flik G (1999) In vivo bafilomycin-sensitive Na(+) uptake in young freshwater fish. J Exp Biol 202(24):3659. https://doi.org/10.1242/jeb.202.24.3659. (PMID: 10.1242/jeb.202.24.3659)
      Fernandes Junior AC, Pezzato LE, Guimarães IG, Teixeira CP, Koch JFA, Barros MM (2010) Resposta hemática de tilápias-do-nilo alimentadas com dietas suplementadas com colina e submetidas a estímulo por baixa temperatura. Rev Bras Zootec 39:1619–1625. https://doi.org/10.1590/S1516-35982010000800001. (PMID: 10.1590/S1516-35982010000800001)
      Galvan GL, Lirola JR, Felisbino K, Vicari T, Yamamoto CI, Cestari MM (2016) Genetic and hematologic endpoints in Astyanax altiparanae (Characidae) after exposure and recovery to water-soluble fraction of gasoline (WSFG). Bull Environ Contam Toxicol 97(1):63–70. https://doi.org/10.1007/s00128-016-1816-5. (PMID: 10.1007/s00128-016-1816-5)
      Garutti V, Britski HA (2000) Descrição de uma espécie nova de Astyanax (Teleostei: Characidae) da bacia do alto rio Paraná e considerações sobre as demais espécies do gênero na bacia. Comun Mus Ciênc Tecnol 13:65–88.
      Heath AG (1995) Water pollution and fish physiology, 2nd edn. CRC Press, Boca Raton, p 359.
      Heisler N (1993) Acid-base regulation in response to changes of the environment characteristics and capacity. In: Rankin JC, Jensen FB (eds) Fish Ecophysiology, vol 9. Chapman & Hall Fish and Fisheries Series. Springer, Dordrecht, pp 207–226. (PMID: 10.1007/978-94-011-2304-4_8)
      Henshel DS, Bengtson DA (1996) Environmental toxicology and risk assessment: biomarkers and risk assessment: fifth volume. ASTM International100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. https://doi.org/10.1520/STP1306-EB. (PMID: 10.1520/STP1306-EB)
      Hollebone B (2017) Oil physical properties: measurement and correlation. In: Fingas M (ed) Oil spill science and technology, 2nd edn. Gulf Professional, Boston, pp 185–207. (PMID: 10.1016/B978-0-12-809413-6.00003-5)
      Hrubec TC, Smith SA (2010) Hematology of fishes. In: Weiss DJ, Wardrop KJ (eds) Schalm’s veterinary hematology, 6th edn. Wiley-Blackwell, Oxford, UK, pp 994–1003.
      Huijer K (2005) Trends in oil spills from tanker ships 1995–2005. In: 28th Technical Seminar of Arctic and Marine Oil Spill Program (AMOP), Calgary, Alberta, Canadá, 2005. pp 7–9.
      Incardona JP, Collier TK, Scholz NL (2004) Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons. Toxicol Appl Pharmacol 196(2):191–205. https://doi.org/10.1016/j.taap.2003.11.026. (PMID: 10.1016/j.taap.2003.11.026)
      Jensen FB, Nikinmaa M, Weber RE (1993) Environmental perturbations of oxygen transport in teleost fishes: causes, consequences and compensations. In: Rankin JC, Jensen FB (eds) Fish ecophysiology, 1st edn. Chapman and Hall, London/UK, pp 161–175. (PMID: 10.1007/978-94-011-2304-4_6)
      Kirby MF, Law RJ (2010) Accidental spills at sea – risk, impact, mitigation and the need for co-ordinated post-incident monitoring. Mar Pollut Bull 60:797–803. https://doi.org/10.1016/j.marpolbul.2010.03.015. (PMID: 10.1016/j.marpolbul.2010.03.015)
      Kponee KZ, Chiger A, Kakulu II, Vorhees D, Heiger-Bernays W (2015) Petroleum contaminated water and health symptoms: a cross-sectional pilot study in a rural Nigerian community. Environ Health 14:86. https://doi.org/10.1186/s12940-015-0073-0. (PMID: 10.1186/s12940-015-0073-0)
      Kültz D, Somero GN (1995) Osmotic and thermal effects on in situ ATPase activity in permeabilized gill epithelial cells of the fish Gillichthys mirabilis. J Exp Biol 198(9):1883–1894. https://doi.org/10.1242/jeb.198.9.1883. (PMID: 10.1242/jeb.198.9.1883)
      Kuypers MMM, Sliekers AO, Lavik G, Schmid M, Jørgensen BB, Kuenen JG, Sinninghe Damsté JS, Strous M, Jetten MSM (2003) Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422:608. https://doi.org/10.1038/nature01472. (PMID: 10.1038/nature01472)
      Lin CY, Tjeerdema RS (2008) Crude oil, oil, gasoline and petrol. In: Fath BD (ed) Encyclopedia of ecology. Academic Press, Oxford, pp 797–805. (PMID: 10.1016/B978-008045405-4.00382-7)
      Mager EM, Pasparakis C, Stieglitz JD, Hoenig R, Morris JM, Benetti DD, Grosell M (2018) Combined effects of hypoxia or elevated temperature and deepwater horizon crude oil exposure on juvenile mahi-mahi swimming performance. Mar Environ Res 139:129–135. https://doi.org/10.1016/j.marenvres.2018.05.009. (PMID: 10.1016/j.marenvres.2018.05.009)
      Martinez CBR, Souza MM (2002) Acute effects of nitrite on ion regulation in two neotropical fish species. Comp Biochem Physiol, a: Mol Integr Physiol 133(1):151–160. https://doi.org/10.1016/S1095-6433(02)00144-7. (PMID: 10.1016/S1095-6433(02)00144-7)
      Martins ML, Xu DH, Shoemaker CA, Klesius PH (2011) Temperature effects on immune response and hematological parameters of channel catfish Ictalurus punctatus vaccinated with live theronts of Ichthyophthirius multifiliis. Fish Shellfish Immunol 31(6):774–780. https://doi.org/10.1016/j.fsi.2011.07.015. (PMID: 10.1016/j.fsi.2011.07.015)
      Matsuo AYO, Duarte RM, Val AL (2005) Unidirectional sodium fluxes and gill CYP1A induction in an amazonian fish (Hyphessobrycon erythrostigma) exposed to a surfactant and to crude oil. Bull Environ Contam Toxicol 75(5):851–858. https://doi.org/10.1007/s00128-005-0828-3. (PMID: 10.1007/s00128-005-0828-3)
      McKeown BA, March GL (1978) The acute effect of bunker C oil and an oil dispersant on: 1 serum glucose, serum sodium and gill morphology in both freshwater and seawater acclimated rainbow trout (Salmo gairdneri). Water Res 12(3):157–163. https://doi.org/10.1016/0043-1354(78)90003-9. (PMID: 10.1016/0043-1354(78)90003-9)
      Neff JM (1979) Polycyclic aromatic hydrocarbon in the aquatic environment: sources, fates and biological effects. Applied Science Publishers, London, p 262.
      Neff JM (1985) Polycyclic aromatic hydrocarbons. In: Rand GM, Petrocelli SR (eds) Fundamentals aquatic toxicology. Taylor & Francis, Bristol, PA, pp 416–454.
      Neff J (1988) Composition and fate of petroleum and spill-treating agents in the marine environment. In: Geraci JR, Aubin DJS (eds) Synthesis of effects of oil on marine mammals. Ventura, CA, pp 2–40.
      Nero V, Farwell A, Lister A, Van Der Kraak G, Lee LEJ, Van Meer T, MacKinnon MD, Dixon DG (2006) Gill and liver histopathological changes in yellow perch (Perca flavescens) and goldfish (Carassius auratus) exposed to oil sands process-affected water. Ecotoxicol Environ Saf 63(3):365–377. https://doi.org/10.1016/j.ecoenv.2005.04.014. (PMID: 10.1016/j.ecoenv.2005.04.014)
      Nikinmaa M (2014) Bioindicators and biomarkers. In: Nikinmaa M (ed) An introduction to aquatic toxicology, 1st edn. Academic Press, Oxford, pp 147–155. (PMID: 10.1016/B978-0-12-411574-3.00012-8)
      Ostrensky A, Pedrazzani AS, Vicente AL (2015) Use of MS-222 (tricaine methanesulfonate) and propofol (2,6-diisopropylphenol) as anaesthetics for the tetra Astyanax altiparanae (Teleostei, Characidae). Aquac Res 47:3477–3488. https://doi.org/10.1111/are.12797. (PMID: 10.1111/are.12797)
      Oyakawa OT, Akama A, Mautari KC, Nolasco JC (2006) Peixes de riacho da Mata Altlântica. Editora Neotrópica, São Paulo/Brazilp.
      Pacheco M, Santos MA (2001) Tissue distribution and temperature-dependence of Anguilla anguilla L. EROD activity following exposure to model inducers and relationship with plasma cortisol, lactate and glucose levels. Environ Int 26(3):149–155. https://doi.org/10.1016/s0160-4120(00)00101-x. (PMID: 10.1016/s0160-4120(00)00101-x)
      Parks SK, Tresguerres M, Goss GG (2008) Theoretical considerations underlying Na+ uptake mechanisms in freshwater fishes. Comp Biochem Physiol, c: Toxicol Pharmacol 148(4):411–418. https://doi.org/10.1016/j.cbpc.2008.03.002. (PMID: 10.1016/j.cbpc.2008.03.002)
      Pasparakis C, Mager EM, Stieglitz JD, Benetti D, Grosell M (2016) Effects of deepwater horizon crude oil exposure, temperature and developmental stage on oxygen consumption of embryonic and larval mahi-mahi (Coryphaena hippurus). Aquat Toxicol 181:113–123. https://doi.org/10.1016/j.aquatox.2016.10.022. (PMID: 10.1016/j.aquatox.2016.10.022)
      Pasparakis C, Sweet LE, Stieglitz JD, Benetti D, Casente CT, Roberts AP, Grosell M (2017) Combined effects of oil exposure, temperature and ultraviolet radiation on buoyancy and oxygen consumption of embryonic mahi-mahi, Coryphaena hippurus. Aquat Toxicol 191:113–121. https://doi.org/10.1016/j.aquatox.2017.07.021. (PMID: 10.1016/j.aquatox.2017.07.021)
      Peakall DW (1994) Biomarkers: the way forward in environmental assessment. Toxicol Ecotoxicol News 1:55–60.
      Perrichon P, Mager EM, Pasparakis C, Stieglitz JD, Benetti DD, Grosell M, Burggren WW (2018) Combined effects of elevated temperature and deepwater horizon oil exposure on the cardiac performance of larval mahi-mahi. Coryphaena Hippurus PLOS ONE 13(10):e0203949. https://doi.org/10.1371/journal.pone.0203949. (PMID: 10.1371/journal.pone.0203949)
      Dal Pont G (2012) Toxicidade do óleo diesel para o peixe Astyanax altiparanae. Masters dissertation, Universidade Federal do Paraná, Curitiba, Paraná State, Brazil.
      Dal Pont G (2018) Effects of petroleum hydrocarbons to tropical and temperate fish species: a toxicity and multibiomarker approach for the assessment of environmental contamination. Doctoral dissertation, Universidade Federal do Paraná, Curitiba, Paraná State, Brazil.
      Randall DJ (2011) Nitrogenous-waste balance-excretion of ammonia. In: Farrell AP, Cech JJ, Richards JG, Stevens ED (eds) Encyclopedia of fish physiology: from genome to environment. Academic Press, London, pp 1437–1443. (PMID: 10.1016/B978-0-12-374553-8.00032-0)
      Randall DJ, Tsui TKN (2002) Ammonia toxicity in fish. Mar Pollut Bull 45:17–23. https://doi.org/10.1016/S0025-326X(02)00227-8. (PMID: 10.1016/S0025-326X(02)00227-8)
      Randall DJ, Wright PA (1987) Ammonia distribution and excretion in fish. Fish Physiol Biochem 3(3):107–120. https://doi.org/10.1007/bf02180412. (PMID: 10.1007/bf02180412)
      Riche M (2007) Analysis of refractometry for determining total plasma protein in hybrid striped bass (Morone chrysops×M. saxatilis) at various salinities. Aquaculture 264(1):279–284. https://doi.org/10.1016/j.aquaculture.2006.12.018. (PMID: 10.1016/j.aquaculture.2006.12.018)
      Robertson LM, Val AL, Almeida-Val VF, Wood CM (2015) Ionoregulatory aspects of the osmorespiratory compromise during acute environmental hypoxia in 12 Tropical and temperate teleosts. Physiol Biochem Zool 88(4):357–370. https://doi.org/10.1086/681265. (PMID: 10.1086/681265)
      Rodrigues RV, Miranda-Filho KC, Gusmão EP, Moreira CB, Romano LA, Sampaio LA (2010) Deleterious effects of water-soluble fraction of petroleum, diesel and gasoline on marine pejerrey Odontesthes argentinensis larvae. Sci Total Environ 408:2054–2059. https://doi.org/10.1016/j.scitotenv.2010.01.063. (PMID: 10.1016/j.scitotenv.2010.01.063)
      Schulz UH, Martins-Júnior H (2001) Astyanax fasciatus as bioindicator of water pollution of Rio dos Sinos, RS. Brazil Brasilian Journal of Biology 61(4):615–622. https://doi.org/10.1590/S1519-69842001000400010. (PMID: 10.1590/S1519-69842001000400010)
      Silkin YA, Silkina EN (2005) Effect of hypoxia on physiological-biochemical blood parameters in some marine fish. J Evol Biochem Physiol 41(5):527–532. https://doi.org/10.1007/s10893-005-0092-5. (PMID: 10.1007/s10893-005-0092-5)
      Silva CA, Oliveira Ribeiro CA, Katsumiti A, Araújo MLP, Zandoná EM, Costa Silva GP, Maschio J, Roche H, Silva de Assis HC (2009) Evaluation of waterborne exposure to oil spill 5 years after an accident in Southern Brazil. Ecotoxicol Environ Saf 72(2):400–409. https://doi.org/10.1016/j.ecoenv.2008.03.009. (PMID: 10.1016/j.ecoenv.2008.03.009)
      Simonato JD, Guedes CLB, Martinez CBR (2008) Biochemical, physiological, and histological changes in the neotropical fish Prochilodus lineatus exposed to diesel oil. Ecotoxicol Environ Saf 69(1):112–120. https://doi.org/10.1016/j.ecoenv.2007.01.012. (PMID: 10.1016/j.ecoenv.2007.01.012)
      Souza-Bastos LR, Vidal EAG, Leite TS, Freire CA (2015) Different abilities to regulate tissue hydration upon osmotic challenge in vitro, in the cephalopods Octopus vulgaris and O insularis. Mar Freshw Behav Physiol 48(3):205–211. https://doi.org/10.1080/10236244.2015.1024078. (PMID: 10.1080/10236244.2015.1024078)
      Speight J (2015) Gasoline. In: Speight JG (ed) Handbook of petroleum product analysis. John Wiley & Sons Inc, pp 104–125.
      Srogi K (2007) Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environ Chem Lett 5(4):169–195. https://doi.org/10.1007/s10311-007-0095-0. (PMID: 10.1007/s10311-007-0095-0)
      Telosa EMC, Rodrigues CJ, Behmer OA, Neto AGF (2003) Manual de Técnicas para Histologia Normal e Patológica. 2nd edn. Manole, Barueri municipality, São Paulo State, Brazil. 331 p.
      U.S.EPA (2001) United States Environmental Protection Agency. Guidance for reporting toxic chemicals: Polycyclic aromatic compounds category. vol EPA 260-B-01–03 United States Environmental Protection Agency, Washington, DC.
      Ultsch GR, Gros G (1979) Mucus as a diffusion barrier to oxygen: possible role in O2 uptake at low pH in carp (Cyprinus carpio) gills. Comp Biochem Physiol A Physiol 62(3):685–689. https://doi.org/10.1016/0300-9629(79)90125-7. (PMID: 10.1016/0300-9629(79)90125-7)
      van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13(2):57–149. https://doi.org/10.1016/s1382-6689(02)00126-6. (PMID: 10.1016/s1382-6689(02)00126-6)
      Venugopal V, Shahidi F (1996) Structure and composition of fish muscle. Food Rev Int 12(2):175–197. https://doi.org/10.1080/87559129609541074. (PMID: 10.1080/87559129609541074)
      Verdouw H, Van Echteld CJA, Dekkers EMJ (1978) Ammonia determination based on indophenol formation with sodium salicylate. Water Res 12(6):399–402. https://doi.org/10.1016/0043-1354(78)90107-0. (PMID: 10.1016/0043-1354(78)90107-0)
      Vitale AM, Monserrat JM, Castilho P, Rodriguez EM (1999) Inhibitory effects of cadmium on carbonic anhydrase activity and ionic regulation of the estuarine crab Chasmagnathus granulata (Decapoda, Grapsidae). Comp Biochem Physiol c: Pharmacol Toxicol 122(1):121–129. https://doi.org/10.1016/S0742-8413(98)10094-4. (PMID: 10.1016/S0742-8413(98)10094-4)
      Vivas WLP (2014) Manual Prático de Hematologia, 1st edn. FIOCRUZ, Rio de Janeiro, p 33.
      Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77(3):591–625. https://doi.org/10.1152/physrev.1997.77.3.591. (PMID: 10.1152/physrev.1997.77.3.591)
      Wendelaar Bonga SE, Lock RAC (1991) Toxicants and osmoregulation in fish. Neth J Zool 42(2):478–493. https://doi.org/10.1163/156854291X00469. (PMID: 10.1163/156854291X00469)
      Wendelaar-Bonga SE, Lock RAC (2008) The osmoregulatory system. In: Giulio RTD, Hinton DE (eds) The toxicology of fishes. CRC Press, Boca Raton, pp 401–411. (PMID: 10.1201/9780203647295.ch8)
      Whyte JJ, Jung RE, Schmitt CJ, Tillitt DE (2000) Ethoxyresorufin-O-deethylase (EROD) activity in fish as a biomarker of chemical exposure. Crit Rev Toxicol 30(4):347–570. https://doi.org/10.1080/10408440091159239. (PMID: 10.1080/10408440091159239)
      Wilkie MP, Wood CM (1991) Nitrogenous waste excretion, acid-base regulation, and ionoregulation in Rainbow Trout (Oncorhynchus mykiss) exposed to extremely alkaline water. Physiol Zool 64(4):1069–1086. (PMID: 10.1086/physzool.64.4.30157957)
      Wilson RW (2011) Aluminum. In: Wood CM, Farrell AP, Brauner CJ (eds) Fish Physiology, vol 31. Academic Press, pp 67–123.
      Wood CM (1988) Acid-base and ionic exchanges at gills and kidney after exhaustive exercise in the Rainbow Trout. J Exp Biol 136(1):461. https://doi.org/10.1242/jeb.136.1.461. (PMID: 10.1242/jeb.136.1.461)
      Wood CM (1989) The physiological problems of fish in acid waters. In: Brown DJA, Taylor EW, Brown JA, Morris R (eds) Acid Toxicity and Aquatic Animals. Cambridge University Press, Cambridge, pp 125–152. (PMID: 10.1017/CBO9780511983344.010)
      Wood CM (1991) Acid-base and ion balance, metabolism, and their Interactions, after exhaustive exercise in fish. J Exp Biol 160(1):285. https://doi.org/10.1242/jeb.160.1.285. (PMID: 10.1242/jeb.160.1.285)
      Wood CM (2001) Toxic responses of the gill. In: Benson WH, Schlenk D (eds) Target organ toxicity in marine and freshwater teleosts. Taylor and Francis, New York, pp 1–101.
      Wood CM, Iftikar FI, Scott GR, De Boeck G, Sloman KA, Matey V, Valdez Domingos FX, Duarte RM, Almeida-Val VMF, Val AL (2009) Regulation of gill transcellular permeability and renal function during acute hypoxia in the Amazonian oscar (Astronotus ocellatus): new angles to the osmorespiratory compromise. J Exp Biol 212(12):1949. https://doi.org/10.1242/jeb.028464. (PMID: 10.1242/jeb.028464)
      Xu G, Sheng X, Xing J, Zhan W (2011) Effect of temperature on immune response of Japanese flounder (Paralichthys olivaceus) to inactivated lymphocystis disease virus (LCDV). Fish Shellfish Immunol 30(2):525–531. https://doi.org/10.1016/j.fsi.2010.11.026. (PMID: 10.1016/j.fsi.2010.11.026)
      Yang C, Brown CE, Hollebone B, Yang Z, Lambert P, Fieldhouse B, Landriault M, Wang Z (2017) Chemical fingerprints of crude oils and petroleum products. In: Fingas M (ed) Oil spill science and technology, 2nd edn. Gulf Professional Publishing, Boston, pp 209–304. (PMID: 10.1016/B978-0-12-809413-6.00004-7)
      Zall DM, Fisher D, Garner MQ (1956) Photometric determination of chlorides in water. Anal Chem 28(11):1665–1668. https://doi.org/10.1021/ac60119a009. (PMID: 10.1021/ac60119a009)
      Zar JH (2009) Biostatistical analysis, 5th edn. Pearson, New Jersey, p 931.
      Zeni TO, Horodesky A, Castilho-Westphal GG, Ostrensky A (2015) Analysis of tissue alterations and quantitative histopathological indices in Rhamdia quelen and Metynnis maculatusduring treatment of ichthyophthiriasis. Annl Reser & Rev Biol 8(5):1–10. https://doi.org/10.9734/ARRB/2015/21944. (PMID: 10.9734/ARRB/2015/21944)
    • Grant Information:
      2012/00201-3 Petrobras; 1391555 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; 88881.134304/ 2016-01 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; 304451/2021-5 Conselho Nacional de Desenvolvimento Científico e Tecnológico
    • Accession Number:
      0 (Gasoline)
      0 (Water Pollutants, Chemical)
    • Publication Date:
      Date Created: 20241007 Date Completed: 20241030 Latest Revision: 20241030
    • Publication Date:
      20241031
    • Accession Number:
      10.1007/s00244-024-01093-7
    • Accession Number:
      39373743