Effect of an acute session of intermittent exercise on trimethylamine N-oxide (TMAO) production following choline ingestion.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: United States NLM ID: 101274889 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-3890 (Electronic) Linking ISSN: 15733882 NLM ISO Abbreviation: Metabolomics Subsets: MEDLINE
    • Publication Information:
      Original Publication: New York : Springer, c2006-
    • Subject Terms:
    • Abstract:
      Introduction: Trimethylamine N-oxide (TMAO) is a gut bacteria-dependent metabolite associated with poor cardiovascular health. Exercise is a known cardioprotective activity but the impact of an acute bout of exercise on TMAO production is unknown.
      Objectives/methods: This study assessed choline-derived production of TMAO following a single bout of intermittent exercise in a young, healthy cohort.
      Results: Choline supplemented after either exercise or a time-matched resting period demonstrated a similar increase in circulating TMAO across an 8-hour period.
      Conclusion: This suggests that a single bout of intermittent exercise does not alter gut microbial metabolic behaviour and thus does not provide additional cardioprotective benefits related to blood levels of TMAO.
      (© 2024. The Author(s).)
    • References:
      Brouns, F., & Beckers, E. (1993). Is the gut an athletic organ? Sports Medicine, 15(4), 242–257. https://doi.org/10.2165/00007256-199315040-00003. (PMID: 10.2165/00007256-199315040-000038460288)
      Cassambai, S., Salzano, A., Yazaki, Y., Bernieh, D., Wong, M., Israr, M. Z., et al. (2019). Impact of acute choline loading on circulating trimethylamine N-oxide levels. European Journal of Preventive Cardiology, 26(17), 1899–1902. https://doi.org/10.1177/2047487319831372. (PMID: 10.1177/204748731983137230776913)
      Coutinho-Wolino, K. S., de Cardozo, F., de Oliveira Leal, L. F. M., Mafra, V., D., & Stockler-Pinto, M. B. (2021). Can diet modulate trimethylamine N-oxide (TMAO) production? What do we know so far? European Journal of Nutrition, 60(7), 3567–3584. https://doi.org/10.1007/s00394-021-02491-6. (PMID: 10.1007/s00394-021-02491-633533968)
      Erickson, M., Malin, S., Wang, Z., Brown, J., Hazen, S., & Kirwan, J. (2019). Effects of Lifestyle intervention on plasma trimethylamine N-Oxide in obese adults. Nutrients, 11(1), 179. https://doi.org/10.3390/nu11010179. (PMID: 10.3390/nu11010179306544536356515)
      Heaney, L. M. (2020). Applying mass spectrometry-based assays to explore gut microbial metabolism and associations with disease. Clinical Chemistry and Laboratory Medicine, 58(5), 719–732. https://doi.org/10.1515/cclm-2019-0974. (PMID: 10.1515/cclm-2019-097431639103)
      Heaney, L. M., Jones, D. J. L., Mbasu, R. J., Ng, L. L., & Suzuki, T. (2016). High mass accuracy assay for trimethylamine N-oxide using stable-isotope dilution with liquid chromatography coupled to orthogonal acceleration time of flight mass spectrometry with multiple reaction monitoring. Analytical and Bioanalytical Chemistry, 408(3), 797–804. https://doi.org/10.1007/s00216-015-9164-6. (PMID: 10.1007/s00216-015-9164-626573169)
      Thijssen, D. H. J., Uthman, L., Somani, Y., & van Royen, N. (2022). Short-term exercise‐induced protection of cardiovascular function and health: Why and how fast does the heart benefit from exercise? The Journal of Physiology, 600(6), 1339–1355. https://doi.org/10.1113/JP282000. (PMID: 10.1113/JP28200035239189)
      Thomas, M. S., & Fernandez, M. L. (2021). Trimethylamine N-Oxide (TMAO), Diet and Cardiovascular Disease. Current Atherosclerosis Reports, 23(4), 12. https://doi.org/10.1007/s11883-021-00910-x. (PMID: 10.1007/s11883-021-00910-x33594574)
      Torquati, L., Gajanand, T., Cox, E. R., Willis, C. R. G., Zaugg, J., Keating, S. E., & Coombes, J. S. (2023). Effects of exercise intensity on gut microbiome composition and function in people with type 2 diabetes. European Journal of Sport Science, 23(4), 530–541. https://doi.org/10.1080/17461391.2022.2035436. (PMID: 10.1080/17461391.2022.203543635107058)
      Tucker, W. J., Fegers-Wustrow, I., Halle, M., Haykowsky, M. J., Chung, E. H., & Kovacic, J. C. (2022). Exercise for primary and secondary Prevention of Cardiovascular Disease. Journal of the American College of Cardiology, 80(11), 1091–1106. https://doi.org/10.1016/j.jacc.2022.07.004. (PMID: 10.1016/j.jacc.2022.07.00436075680)
      Zhu, C., Sawrey-Kubicek, L., Bardagjy, A. S., Houts, H., Tang, X., Sacchi, R., et al. (2020). Whole egg consumption increases plasma choline and betaine without affecting TMAO levels or gut microbiome in overweight postmenopausal women. Nutrition Research, 78, 36–41. https://doi.org/10.1016/j.nutres.2020.04.002. (PMID: 10.1016/j.nutres.2020.04.00232464420)
    • Contributed Indexing:
      Keywords: Biomarker; Cardioprotection; Cardiovascular Risk; Exercise; Gut Microbiome; Nutrition
    • Accession Number:
      0 (Methylamines)
      FLD0K1SJ1A (trimethyloxamine)
      N91BDP6H0X (Choline)
    • Publication Date:
      Date Created: 20241005 Date Completed: 20241005 Latest Revision: 20241021
    • Publication Date:
      20241021
    • Accession Number:
      PMC11455687
    • Accession Number:
      10.1007/s11306-024-02177-0
    • Accession Number:
      39369155