Whole-genome sequencing of Klebsiella pneumoniae MDR circulating in a pediatric hospital setting: a comprehensive genome analysis of isolates from Guayaquil, Ecuador.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: BioMed Central Country of Publication: England NLM ID: 100965258 Publication Model: Electronic Cited Medium: Internet ISSN: 1471-2164 (Electronic) Linking ISSN: 14712164 NLM ISO Abbreviation: BMC Genomics Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : BioMed Central, [2000-
    • Subject Terms:
    • Abstract:
      Background: Klebsiella pneumoniae is the major cause of nosocomial infections worldwide and is related to a worsening increase in Multidrug-Resistant Bacteria (MDR) and virulence genes that seriously affect immunosuppressed patients, long-stay intensive care patients, elderly individuals, and children. Whole-Genome Sequencing (WGS) has resulted in a useful strategy for characterizing the genomic components of clinically important bacteria, such as K. pneumoniae, enabling them to monitor genetic changes and understand transmission, highlighting the risk of dissemination of resistance and virulence associated genes in hospitals. In this study, we report on WGS 14 clinical isolates of K. pneumoniae from a pediatric hospital biobank of Guayaquil, Ecuador.
      Results: The main findings revealed pronounced genetic heterogeneity among the isolates. Multilocus sequencing type ST45 was the predominant lineage among non-KPC isolates, whereas ST629 was found more frequently among KPC isolates. Phylogenetic analysis suggested local transmission dynamics. Comparative genomic analysis revealed a core set of 3511 conserved genes and an open pangenome in neonatal isolates. The diversity of MLSTs and capsular types, and the high genetic diversity among these isolates indicate high intraspecific variability. In terms of virulence factors, we identified genes associated with adherence, biofilm formation, immune evasion, secretion systems, multidrug efflux pump transporters, and a notably high number of genes related to iron uptake. A large number of these genes were detected in the ST45 isolate, whereas iron uptake yersiniabactin genes were found exclusively in the non-KPC isolates. We observed high resistance to commonly used antibiotics and determined that these isolates exhibited multidrug resistance including β-lactams, aminoglycosides, fluoroquinolones, quinolones, trimetropins, fosfomycin and macrolides; additionally, resistance-associated point mutations and cross-resistance genes were identified in all the isolates. We also report the first K. pneumoniae KPC-3 gene producers in Ecuador.
      Conclusions: Our WGS results for clinical isolates highlight the importance of MDR in neonatal K. pneumoniae infections and their genetic diversity. WGS will be an imperative strategy for the surveillance of K. pneumoniae in Ecuador, and will contribute to identifying effective treatment strategies for K. pneumoniae infections in critical units in patients at stratified risk.
      (© 2024. The Author(s).)
    • References:
      BMC Bioinformatics. 2010 Dec 10;11:595. (PMID: 21143983)
      Nucleic Acids Res. 2017 Jul 3;45(W1):W30-W35. (PMID: 28472413)
      Bioinformatics. 2014 Aug 1;30(15):2114-20. (PMID: 24695404)
      PLoS Pathog. 2023 Jul 18;19(7):e1011233. (PMID: 37463183)
      Microorganisms. 2020 Mar 19;8(3):. (PMID: 32204571)
      Antibiotics (Basel). 2022 Dec 28;12(1):. (PMID: 36671251)
      Microbiol Spectr. 2022 Oct 26;10(5):e0095722. (PMID: 36066252)
      J Glob Antimicrob Resist. 2019 Dec;19:328-332. (PMID: 31116967)
      Lancet Infect Dis. 2013 Sep;13(9):785-96. (PMID: 23969216)
      Heliyon. 2019 Jun 19;5(6):e01829. (PMID: 31286076)
      Sci Rep. 2022 Jun 21;12(1):10441. (PMID: 35729190)
      Nucleic Acids Res. 2023 Jan 6;51(D1):D690-D699. (PMID: 36263822)
      Open Med (Wars). 2023 May 12;18(1):20230707. (PMID: 37197355)
      Nat Commun. 2021 Jul 7;12(1):4188. (PMID: 34234121)
      Front Microbiol. 2021 Aug 13;12:711577. (PMID: 34489901)
      Vet World. 2022 Sep;15(9):2172-2179. (PMID: 36341059)
      Euro Surveill. 2022 Dec;27(50):. (PMID: 36695468)
      Nat Commun. 2022 May 31;13(1):3017. (PMID: 35641522)
      Lancet. 2022 Feb 12;399(10325):629-655. (PMID: 35065702)
      Bioinformatics. 2015 Nov 15;31(22):3691-3. (PMID: 26198102)
      Genomics. 2020 Jan;112(1):998-1010. (PMID: 31220585)
      J Glob Antimicrob Resist. 2022 Dec;31:309-315. (PMID: 36265800)
      Antimicrob Agents Chemother. 2020 Sep 21;64(10):. (PMID: 32747358)
      Nat Biotechnol. 2013 Apr;31(4):294-6. (PMID: 23563421)
      Nucleic Acids Res. 2020 Jan 8;48(D1):D606-D612. (PMID: 31667520)
      Pathogens. 2021 Oct 12;10(10):. (PMID: 34684258)
      PLoS One. 2021 Mar 24;16(3):e0247875. (PMID: 33760834)
      Front Cell Infect Microbiol. 2021 Sep 01;11:738223. (PMID: 34540722)
      Genome Med. 2023 Feb 13;15(1):9. (PMID: 36782220)
      Genome Biol. 2022 Dec 15;23(1):258. (PMID: 36522651)
      J Glob Antimicrob Resist. 2013 Dec;1(4):229-230. (PMID: 27873619)
      Clin Microbiol Rev. 2019 May 15;32(3):. (PMID: 31092506)
      J Clin Microbiol. 2013 Oct;51(10):3176-82. (PMID: 23850951)
      Microb Pathog. 2023 Feb;175:105969. (PMID: 36610697)
      J Antimicrob Chemother. 2020 Dec 1;75(12):3491-3500. (PMID: 32780112)
      Infect Immun. 2022 Oct 20;90(10):e0020622. (PMID: 36129299)
      Nucleic Acids Res. 2016 Jul 8;44(W1):W16-21. (PMID: 27141966)
      J Infect Dis. 2017 Feb 15;215(suppl_1):S18-S27. (PMID: 28375514)
      Microb Genom. 2022 Mar;8(3):. (PMID: 35311639)
      BMC Genomics. 2011 Aug 08;12:402. (PMID: 21824423)
      Genome Med. 2020 Dec 9;12(1):113. (PMID: 33298160)
      J Innate Immun. 2022;14(3):167-181. (PMID: 34628410)
      BMC Pulm Med. 2023 Mar 28;23(1):102. (PMID: 36978069)
      PLoS Med. 2023 Jun 20;20(6):e1004233. (PMID: 37339120)
      Rev Esp Quimioter. 2022 Oct;35(5):455-467. (PMID: 35859521)
      J Comput Biol. 2012 May;19(5):455-77. (PMID: 22506599)
      Microb Genom. 2023 Jun;9(6):. (PMID: 37272914)
      PLoS One. 2023 Jul 10;18(7):e0283583. (PMID: 37428714)
      Bioinformatics. 2013 Apr 15;29(8):1072-5. (PMID: 23422339)
      Microbiol Spectr. 2023 Feb 22;:e0269122. (PMID: 36840587)
      Antibiotics (Basel). 2022 Oct 12;11(10):. (PMID: 36290058)
      BMC Infect Dis. 2022 May 23;22(1):487. (PMID: 35606726)
      Clin Infect Dis. 2015 Sep 15;61(6):892-9. (PMID: 26206847)
      PLoS One. 2010 Mar 10;5(3):e9490. (PMID: 20224823)
      Antimicrob Agents Chemother. 2019 Oct 22;63(11):. (PMID: 31427293)
      Microb Genom. 2023 Jul;9(7):. (PMID: 37405394)
      Int J Infect Dis. 2017 Dec;65:119-121. (PMID: 29081367)
      Microbiol Spectr. 2022 Apr 27;10(2):e0229021. (PMID: 35230130)
      Antimicrob Agents Chemother. 2022 Sep 20;66(9):e0044722. (PMID: 35980232)
      Microbiol Mol Biol Rev. 2016 Jun 15;80(3):629-61. (PMID: 27307579)
      Front Microbiol. 2021 Oct 06;12:740348. (PMID: 34690985)
      J Infect Dev Ctries. 2021 Apr 30;15(4):584-589. (PMID: 33956661)
      Bioinformatics. 2014 May 1;30(9):1297-9. (PMID: 24420766)
      Bioinformatics. 2014 Jul 15;30(14):2068-9. (PMID: 24642063)
      Invest Clin. 2017 Mar;58(1):3-21. (PMID: 29938999)
      J Infect Public Health. 2020 Jan;13(1):80-88. (PMID: 31262670)
      Nucleic Acids Res. 2015 Feb 18;43(3):e15. (PMID: 25414349)
    • Contributed Indexing:
      Keywords: K. pneumoniae; Ecuador; Resistance; Virulence; Whole-genome sequencing
    • Accession Number:
      0 (Virulence Factors)
    • Publication Date:
      Date Created: 20241004 Date Completed: 20241004 Latest Revision: 20241007
    • Publication Date:
      20241007
    • Accession Number:
      PMC11451243
    • Accession Number:
      10.1186/s12864-024-10835-9
    • Accession Number:
      39367302