The dose-dependent dual effects of alpha-ketoglutarate (AKG) on cumulus oocyte complexes during in vitro maturation.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: BioMed Central Country of Publication: England NLM ID: 101170464 Publication Model: Electronic Cited Medium: Internet ISSN: 1478-811X (Electronic) Linking ISSN: 1478811X NLM ISO Abbreviation: Cell Commun Signal Subsets: MEDLINE
    • Publication Information:
      Original Publication: [London] : BioMed Central, c2003-
    • Subject Terms:
    • Abstract:
      In this study, we reported for the first time the dose-dependent dual effects of Alpha-Ketoglutarate (AKG) on cumulus oocyte complexes (COCs) during in vitro maturation (IVM). AKG at appropriate concentration (30 µM) has beneficial effects on IVM. This includes improved cumulus expansion, oocyte quality, and embryo development. These effects are mediated through multiple underlying mechanisms. AKG reduced the excessive accumulation of reactive oxygen species (ROS) in cumulus cells, reduced the consumption of GSH and NADPH. Cumulus GSH and NADPH were transported to oocytes via gap junctions, thereby reducing the oxidative stress, apoptosis and maintaining the redox balance in oocytes. In addition, AKG improved the mitochondrial function by regulating the mitochondrial complex 1 related gene expression in oocytes to maintain mitochondrial membrane potential and ATP production. On the other hand, oocyte generated GDF9 could also be transported to cumulus cells to promote cumulus expansion. Conversely, a high concentration of AKG (750 µM) exerted adverse effects on IVM and suppressed the cumulus expansion as well as reduced the oocyte quality. The suppression of the cumulus expansion caused by high concentration of AKG could be rescued with GDF9 supplementation in COCs, indicating the critical role of GDF9 in IVM. The results provide valuable information on the variable effects of AKG at different concentrations on reproductive physiology.
      (© 2024. The Author(s).)
    • References:
      J Agric Food Chem. 2018 Oct 31;66(43):11273-11283. (PMID: 30346763)
      Phytomedicine. 2022 Jun;100:154075. (PMID: 35413646)
      Aging Cell. 2014 Aug;13(4):631-40. (PMID: 24655393)
      Theriogenology. 2023 Jul 15;205:87-93. (PMID: 37105091)
      Genome Biol. 2014;15(12):550. (PMID: 25516281)
      Antioxidants (Basel). 2022 Feb 28;11(3):. (PMID: 35326126)
      J Cell Sci. 2010 Sep 15;123(Pt 18):3166-76. (PMID: 20736313)
      Biol Reprod. 1990 Mar;42(3):413-23. (PMID: 1692744)
      Front Cell Dev Biol. 2023 Jan 19;11:1087612. (PMID: 36743407)
      J Neurosci. 2000 Dec 15;20(24):8972-9. (PMID: 11124972)
      Biol Reprod. 2005 Oct;73(4):582-5. (PMID: 15917343)
      Biol Reprod. 2021 Jul 2;105(1):64-75. (PMID: 33824958)
      Development. 2007 Jul;134(14):2593-603. (PMID: 17553902)
      J Biochem Mol Toxicol. 2022 Jan;36(1):e22942. (PMID: 34725879)
      Hum Reprod Update. 2021 Jan 4;27(1):27-47. (PMID: 33020823)
      Nucleic Acids Res. 2007 Jul;35(Web Server issue):W193-200. (PMID: 17478515)
      Aging Cell. 2021 Feb;20(2):e13291. (PMID: 33450127)
      Mol Endocrinol. 1999 Jun;13(6):1035-48. (PMID: 10379900)
      Mol Cell Endocrinol. 2023 Jul 1;571:111935. (PMID: 37098377)
      Nucleic Acids Res. 2013 May 1;41(10):e108. (PMID: 23558742)
      Oxid Med Cell Longev. 2022 Feb 21;2022:7113793. (PMID: 35237383)
      Theriogenology. 2022 May;184:171-184. (PMID: 35325641)
      Metabolites. 2021 Sep 14;11(9):. (PMID: 34564438)
      Biol Reprod. 2014 Oct;91(4):90. (PMID: 25143353)
      Bioinformatics. 2018 Sep 1;34(17):i884-i890. (PMID: 30423086)
      Front Cell Dev Biol. 2021 Nov 19;9:784244. (PMID: 34869387)
      Aging Cell. 2020 Jan;19(1):e13059. (PMID: 31691468)
      Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):10288-93. (PMID: 10944203)
      Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21984-9. (PMID: 19995983)
      Antioxid Redox Signal. 2020 Mar 10;32(8):522-535. (PMID: 31861967)
      J Anim Sci. 2013 Feb;91(2):722-33. (PMID: 23148248)
      Reprod Fertil Dev. 2017 Sep;29(9):1667-1679. (PMID: 27678473)
      Nat Commun. 2021 Feb 17;12(1):1088. (PMID: 33597522)
      Trends Endocrinol Metab. 2022 Feb;33(2):136-146. (PMID: 34952764)
      Hum Reprod. 2020 Dec 1;35(12):2832-2849. (PMID: 33188410)
      Cell Metab. 2020 Sep 1;32(3):447-456.e6. (PMID: 32877690)
      Redox Biol. 2023 Jun;62:102663. (PMID: 36924682)
      J Cell Sci. 2011 Apr 1;124(Pt 7):1043-54. (PMID: 21363890)
      Biol Reprod. 2004 Mar;70(3):548-56. (PMID: 14568915)
      Bioinformatics. 2013 Jan 1;29(1):15-21. (PMID: 23104886)
      J Biol Chem. 2014 Mar 21;289(12):8312-25. (PMID: 24515115)
    • Grant Information:
      2023ZD04049 Agricultural Biological Breeding Major Project
    • Contributed Indexing:
      Keywords: Alpha-ketoglutarate; Cumulus cells-oocyte communication; Cumulus oocyte complexes; In vitro maturation; Reactive oxygen species
    • Accession Number:
      0 (Ketoglutaric Acids)
      0 (Reactive Oxygen Species)
      0 (Growth Differentiation Factor 9)
      GAN16C9B8O (Glutathione)
      53-59-8 (NADP)
    • Publication Date:
      Date Created: 20241004 Date Completed: 20241004 Latest Revision: 20241006
    • Publication Date:
      20241006
    • Accession Number:
      PMC11448289
    • Accession Number:
      10.1186/s12964-024-01827-z
    • Accession Number:
      39363298