Menu
×
John's Island Library
9 a.m. - 5 p.m.
Phone: (843) 559-1945
Main Library
9 a.m. - 5 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 5 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 5 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 1 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 5 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 5 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. – 5 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. – 1 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 5 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. - 5 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 2 p.m.
*open the 2nd and 4th Saturday
*open the 2nd and 4th Saturday
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 1 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 5 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 5 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 5 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 5 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
Closed
Phone: (843) 805-6909
Today's Hours
John's Island Library
9 a.m. - 5 p.m.
Phone: (843) 559-1945
Main Library
9 a.m. - 5 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 5 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 5 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 1 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 5 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 5 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. – 5 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. – 1 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 5 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. - 5 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 2 p.m.
*open the 2nd and 4th Saturday
*open the 2nd and 4th Saturday
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 1 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 5 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 5 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 5 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 5 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
Closed
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
The antimicrobial protein RNase 7 directly restricts herpes simplex virus infection of human keratinocytes.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Zeitvogel J;Zeitvogel J;Zeitvogel J; Döhner K; Döhner K; Döhner K; Klug I; Klug I; Rademacher F; Rademacher F; Gläser R; Gläser R; Sodeik B; Sodeik B; Sodeik B; Sodeik B; Harder J; Harder J; Werfel T; Werfel T; Werfel T
- Source:
Journal of medical virology [J Med Virol] 2024 Oct; Vol. 96 (10), pp. e29942.- Publication Type:
Journal Article- Language:
English - Source:
- Additional Information
- Source: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 7705876 Publication Model: Print Cited Medium: Internet ISSN: 1096-9071 (Electronic) Linking ISSN: 01466615 NLM ISO Abbreviation: J Med Virol Subsets: MEDLINE
- Publication Information: Publication: New York Ny : Wiley-Liss
Original Publication: New York, Liss. - Subject Terms:
- Abstract: Approximately 22% of moderately to severely affected atopic dermatitis (AD) patients have a history of eczema herpeticum, a disseminated rash primarily caused by herpes simplex virus type 1 (HSV-1). Reduced activity of antimicrobial peptides may contribute to the increased susceptibility of AD patients to HSV-1. We previously demonstrated that the antimicrobial protein RNase 7 limits HSV-1 infection of human keratinocytes by promoting self-DNA sensing. Here, we addressed whether RNase 7 has any effect on HSV-1 infection when infecting keratinocytes without exogenously added costimulatory DNA, and which step(s) of the infection cycle RNase 7 interferes with. We quantified viral gene expression by RT-qPCR and flow cytometry, viral genome replication by qPCR, virucidal effects by plaque titration, and plaque formation and the subcellular localization of incoming HSV-1 particles by microscopy. Recombinant RNase 7 restricted HSV-1 gene expression, genome replication, and plaque formation in human keratinocytes. It decreased HSV-1 immediate-early transcripts independently of the induction of interferon-stimulated genes. Its main effect was on intracellular infection processes and not on extracellular virions or virus binding to cells. RNase 7 reduced the amount of cell-associated capsids and the HSV-1 envelope glycoprotein D at 3 but not at 0.5 h postinfection. Our data show that RNase 7 directly restricts HSV-1 infection of human keratinocytes, possibly by promoting the degradation of incoming HSV-1 particles. This suggests that RNase 7 may limit HSV-1 spread in the skin and that mechanisms that reduce its activity in the lesional skin of AD patients may increase their susceptibility to eczema herpeticum.
(© 2024 The Author(s). Journal of Medical Virology published by Wiley Periodicals LLC.) - References: Weidinger S, Beck LA, Bieber T, Kabashima K, Irvine AD. Atopic dermatitis. Nat Rev Dis Primers. 2018;4(1):1.
Suwanchote S, Waitayangkoon P, Chancheewa B, et al. Role of antimicrobial peptides in atopic dermatitis. Int J Dermatol. 2022;61(5):532‐540.
Chessa C, Bodet C, Jousselin C, Wehbe M, Lévêque N, Garcia M. Antiviral and immunomodulatory properties of antimicrobial peptides produced by human keratinocytes. Front Microbiol. 2020;11:1155.
Rademacher F, Dreyer S, Kopfnagel V, Gläser R, Werfel T, Harder J. The antimicrobial and immunomodulatory function of RNase 7 in skin. Front Immunol. 2019;10:2553.
Sun D, Han C, Sheng J. The role of human ribonuclease A family in health and diseases: a systematic review. iScience. 2022;25(11):105284.
Huang YC, Lin YM, Chang TW, et al. The flexible and clustered lysine residues of human ribonuclease 7 are critical for membrane permeability and antimicrobial activity. J Biol Chem. 2007;282(7):4626‐4633.
Köten B, Simanski M, Gläser R, Podschun R, Schröder JM, Harder J. RNase 7 contributes to the cutaneous defense against Enterococcus faecium. PLoS One. 2009;4(7):e6424.
Salazar VA, Arranz‐Trullén J, Navarro S, et al. Exploring the mechanisms of action of human secretory RNase 3 and RNase 7 against Candida albicans. MicrobiologyOpen. 2016;5(5):830‐845.
Kopfnagel V, Wagenknecht S, Brand L, et al. RNase 7 downregulates TH2 cytokine production by activated human T cells. Allergy. 2017;72(11):1694‐1703.
Kopfnagel V, Dreyer S, Baumert K, et al. RNase 7 promotes sensing of self‐DNA by human keratinocytes and activates an antiviral immune response. J Invest Dermatol. 2020;140(8):1589‐1598.e3. e1583.
Kopfnagel V, Wagenknecht S, Harder J, et al. RNase 7 strongly promotes TLR9‐mediated DNA sensing by human plasmacytoid dendritic cells. J Invest Dermatol. 2018;138(4):872‐881.
Döhner K, Serrero MC, Viejo‐Borbolla A, Sodeik B. A hitchhiker's guide through the cell: the world according to the capsids of alphaherpesviruses. Ann Rev Virol. 2024;11(1):215‐238.
Smith GA. Navigating the cytoplasm: delivery of the alphaherpesvirus genome to the nucleus. Curr Issues Mol Biol. 2021;41:171‐220.
Zhu S, Viejo‐Borbolla A. Pathogenesis and virulence of herpes simplex virus. Virulence. 2021;12(1):2670‐2702.
Traidl S, Roesner L, Zeitvogel J, Werfel T. Eczema herpeticum in atopic dermatitis. Allergy. 2021;76(10):3017‐3027.
Traidl S, Heinrich L, Siegels D, et al. High recurrence rate of eczema herpeticum in moderate/severe atopic dermatitis ‐TREATgermany registry analysis. JDDG: Journal der Deutschen Dermatologischen Gesellschaft. 2023;21(12):1490‐1498.
Clausen ML, Slotved HC, Krogfelt KA, Agner T. Measurements of AMPs in stratum corneum of atopic dermatitis and healthy skin‐tape stripping technique. Sci Rep. 2018;8(1):1666.
Gambichler T, Skrygan M, Tomi NS, et al. Differential mRNA expression of antimicrobial peptides and proteins in atopic dermatitis as compared to psoriasis vulgaris and healthy skin. Int Arch Allergy Immunol. 2008;147(1):17‐24.
Harder J, Dressel S, Wittersheim M, et al. Enhanced expression and secretion of antimicrobial peptides in atopic dermatitis and after superficial skin injury. J Invest Dermatol. 2010;130(5):1355‐1364.
Szabó L, Kapitány A, Somogyi O, et al. Antimicrobial peptide loss, except for LL‐37, is not characteristic of atopic dermatitis. Acta Derm‐Venereol. 2023;103:adv9413.
Kopfnagel V, Dreyer S, Zeitvogel J, et al. Free human DNA attenuates the activity of antimicrobial peptides in atopic dermatitis. Allergy. 2021;76(10):3145‐3154.
Rademacher F, Scheel A, Gläser R, et al. Inhibition of RNase 7 by RNase inhibitor promotes inflammation and Staphylococcus aureus growth: implications for atopic dermatitis. Allergy. 2024;79:1573‐1583.
Wittmann M, Purwar R, Hartmann C, Gutzmer R, Werfel T. Human keratinocytes respond to interleukin‐18: implication for the course of chronic inflammatory skin diseases. J Invest Dermatol. 2005;124(6):1225‐1233.
Sandbaumhüter M, Döhner K, Schipke J, et al. Cytosolic herpes simplex virus capsids not only require binding inner tegument protein pUL36 but also pUL37 for active transport prior to secondary envelopment. Cell Microbiol. 2013;15(2):248‐269.
Snijder B, Sacher R, Rämö P, et al. Single‐cell analysis of population context advances RNAi screening at multiple levels. Mol Syst Biol. 2012;8:579.
Grosche L, Döhner K, Düthorn A, Hickford‐Martinez A, Steinkasserer A, Sodeik B. Herpes simplex virus type 1 propagation, titration and single‐step growth curves. BIO‐PROTOCOL. 2019;9(23):e3441.
Zeitvogel J, Döhner K, Klug I, Richardo T, Sodeik B, Werfel T. Short‐form thymic stromal lymphopoietin (sfTSLP) restricts herpes simplex virus infection of human primary keratinocytes. J Med Virol. 2024;96(9):e29865.
Carpenter AE, Jones TR, Lamprecht MR, et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006;7(10):R100.
Roy M, Lebeau L, Chessa C, et al. Comparison of anti‐viral activity of frog skin anti‐microbial peptides temporin‐Sha and [K(3)]SHa to LL‐37 and temporin‐Tb against herpes simplex virus type 1. Viruses. 2019;11(1):77.
Döhner K, Ramos‐Nascimento A, Bialy D, et al. Importin α1 is required for nuclear import of herpes simplex virus proteins and capsid assembly in fibroblasts and neurons. PLoS Pathog. 2018;14(1):e1006823.
Serrero MC, Girault V, Weigang S, et al. The interferon‐inducible GTPase MxB promotes capsid disassembly and genome release of herpesviruses. eLife. 2022;11:e76804.
Eisenberg RJ, Long D, Ponce de Leon M, et al. Localization of epitopes of herpes simplex virus type 1 glycoprotein D. J Virol. 1985;53(2):634‐644.
Dytham C. Choosing and using statistics. Wiley Blackwell; 2011:298.
Albanesi C, Fairchild HR, Madonna S, et al. IL‐4 and IL‐13 negatively regulate TNF‐α‐ and IFN‐γ‐induced β‐defensin expression through STAT‐6, suppressor of cytokine signaling (SOCS)‐1, and SOCS‐3. J Immunol. 2007;179(2):984‐992.
Hazrati E, Galen B, Lu W, et al. Human α‐ and β‐defensins block multiple steps in herpes simplex virus infection. J Immunol. 2006;177(12):8658‐8666.
Hensel N, Raker V, Förthmann B, et al. HSV‐1 triggers paracrine fibroblast growth factor response from cortical brain cells via immediate‐early protein ICP0. J Neuroinflammation. 2019;16(1):248.
Sodeik B, Ebersold MW, Helenius A. Microtubule‐mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J Cell Biol. 1997;136(5):1007‐1021.
Boo SH, Kim YK. The emerging role of RNA modifications in the regulation of mRNA stability. Exp Mol Med. 2020;52(3):400‐408.
Hennig T, Djakovic L, Dölken L, Whisnant AW. A review of the multipronged attack of herpes simplex virus 1 on the host transcriptional machinery. Viruses. 2021;13(9):1836.
Khairkhah N, Namvar A, Bolhassani A. Application of cell penetrating peptides as a promising drug carrier to combat viral infections. Mol Biotechnol. 2023;65(9):1387‐1402.
Nguyen EK, Nemerow GR, Smith JG. Direct evidence from single‐cell analysis that human α‐defensins block adenovirus uncoating to neutralize infection. J Virol. 2010;84(8):4041‐4049.
Wiens ME, Smith JG. Alpha‐defensin HD5 inhibits furin cleavage of human papillomavirus 16 L2 to block infection. J Virol. 2015;89(5):2866‐2874.
Smith JG, Nemerow GR. Mechanism of adenovirus neutralization by human α‐defensins. Cell Host Microbe. 2008;3(1):11‐19.
Wiens ME, Smith JG. α‐Defensin HD5 inhibits human papillomavirus 16 infection via capsid stabilization and redirection to the lysosome. mBio. 2017;8:e02304‐16.
Ripa I, Andreu S, López‐Guerrero JA, Bello‐Morales R. Interplay between autophagy and herpes simplex virus type 1: ICP34.5, one of the main actors. Int J Mol Sci. 2022;23:13643.
Lu L, Arranz‐Trullén J, Prats‐Ejarque G, Pulido D, Bhakta S, Boix E. Human antimicrobial RNases inhibit intracellular bacterial growth and induce autophagy in mycobacteria‐infected macrophages. Front Immunol. 2019;10:1500.
De La Cruz NC, Möckel M, Niehues H, et al. Ex vivo infection of human skin models with herpes simplex virus 1: accessibility of the receptor Nectin‐1 during formation or impairment of epidermal barriers is restricted by tight junctions. J Virol. 2023;97(6):e0026223.
Möckel M, De La Cruz NC, Rübsam M, et al. Herpes simplex virus 1 can bypass impaired epidermal barriers upon ex vivo infection of skin from atopic dermatitis patients. J Virol. 2022;96(17):e0086422.
Abtin A, Eckhart L, Mildner M, et al. Degradation by stratum corneum proteases prevents endogenous RNase inhibitor from blocking antimicrobial activities of RNase 5 and RNase 7. J Invest Dermatol. 2009;129(9):2193‐2201.
Spencer JD, Schwaderer AL, Eichler T, et al. An endogenous ribonuclease inhibitor regulates the antimicrobial activity of ribonuclease 7 in the human urinary tract. Kidney Int. 2014;85(5):1179‐1191. - Grant Information: Deutsche Forschungsgemeinschaft
- Contributed Indexing: Keywords: RNase 7; antimicrobial peptides and proteins; atopic dermatitis; eczema herpeticum; herpes simplex virus; keratinocytes; restriction of viral infection; skin infection
- Accession Number: EC 3.1.27.- (Ribonuclease 7)
EC 3.1.- (Ribonucleases) - Publication Date: Date Created: 20241003 Date Completed: 20241003 Latest Revision: 20241003
- Publication Date: 20241004
- Accession Number: 10.1002/jmv.29942
- Accession Number: 39360648
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.