A probabilistic framework for identifying anomalies in urban air quality data.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
    • Publication Information:
      Publication: <2013->: Berlin : Springer
      Original Publication: Landsberg, Germany : Ecomed
    • Subject Terms:
    • Abstract:
      Just as the value of crude oil is unlocked through refining, the true potential of air quality data is realized through systematic processing, analysis, and application. This refined data is critical for making informed decisions that may protect health and the environment. Perhaps ground-based air quality monitoring data often face quality control issues, notably outliers. The outliers in air quality data are reported as error and event-based. The error-based outliers are due to instrument failure, self-calibration, sensor drift over time, and the event based focused on the sudden change in meteorological conditions. The event-based outliers are meaningful while error-based outliers are noise that needs to be eliminated and replaced post-detection. In this study, we address error-based outlier detection in air quality data, particularly targeting particulate pollutants (PM 2.5 and PM 10 ) across various monitoring sites in Delhi. Our research specifically examines data from sites with less than 5% missing values and identifies four distinct types of error-based outliers: extreme values due to measurement errors, consecutive constant readings and low variance due to instrument malfunction, periodic outliers from self-calibration exceptions, and anomalies in the PM 2.5 /PM 10 ratio indicative of issues with the instruments' dryer unit. We developed a robust methodology for outlier detection by fitting a non-linear filter to the data, calculating residuals between observed and predicted values, and then assessing these residuals using a standardized Z-score to determine their probability. Outliers are flagged based on a probability threshold established through sensitivity testing. This approach helps distinguish normal data points from suspicious ones, ensuring the refined quality of data necessary for accurate air quality modeling. This method is essential for improving the reliability of statistical and machine learning models that depend on high-quality environmental data.
      (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Aggarwal CC et al (2017) Bias reduction in outlier ensembles: the guessing game. Outlier ensembles: An introduction, pp 163–186. https://doi.org/10.1007/978-3-319-54765-7.
      Ahn H et al (2022) Comparison of missing data imputation methods in time series forecasting. Comput, Mater Continua 70(1):767–779. (PMID: 10.32604/cmc.2022.019369)
      AIR QUALITY EXPERT GROUP A (2012) Fine particulate matter (PM 2.5 ) in the United Kingdom. Department for environment, food and rural affairs; Scottish executive; Welsh Government; and Department of the Environment in Northern Ireland.  http://uk-air.defra.gov.uk/assets/documents/reports/cat11/1212141150_AQEG_Fine_Particulate_Matter_in_the_UK.pdf.
      Akinlade GO et al (2015) Spatial and temporal variations of the particulate size distribution and chemical composition over Ibadan, Nigeria. Environ Monit Assess 187:1–14. (PMID: 10.1007/s10661-015-4755-4)
      Alam MA, Ahmed F (2013) Urban transport systems and congestion: a case study of indian cities. Trans Commun Bull Asia Pacific 82:33–43.
      Alduwais AK et al (2023) Transport mechanisms of nocturnal surface ozone over Riyadh, Kingdom of Saudi Arabia. Atmos Environ 313:120069. (PMID: 10.1016/j.atmosenv.2023.120069)
      Appel B et al (1984) Artifact particulate sulfate and nitrate formation on filter media. Atmos Environ (1967) 18(2):409–416. (PMID: 10.1016/0004-6981(84)90116-1)
      Araki S et al (2017) Effect of spatial outliers on the regression modelling of air pollutant concentrations: a case study in Japan. Atmos Environ 153:83–93. (PMID: 10.1016/j.atmosenv.2016.12.057)
      Bansal P et al (2021) Missing value imputation on multidimensional time series. arXiv preprint. https://doi.org/10.48550/arXiv.2103.01600.
      Bergen S et al (2016) Multipollutant measurement error in air pollution epidemiology studies arising from predicting exposures with penalized regression splines. J R Stat Soc: Ser C: Appl Stat 65(5):731–753. (PMID: 10.1111/rssc.12144)
      Bickel PJ, Levina E (2008) Regularized estimation of large covariance matrices. https://doi.org/10.1214/009053607000000758.
      Bobbia M, Misiti M, Misiti Y, Poggi J-M, Portier B (2015) Spatial outlier detection in the PM 10 monitoring network of Normandy (France). Atmos Pollut Res 6(3):476–483.
      Bosman HH et al (2017) Spatial anomaly detection in sensor networks using neighborhood information. Inf Fusion 33:41–56. (PMID: 10.1016/j.inffus.2016.04.007)
      Brauer M et al (2019) Examination of monitoring approaches for ambient air pollution: a case study for India. Atmos Environ 216:116940. (PMID: 10.1016/j.atmosenv.2019.116940)
      Čampulová M et al (2017) Control chart and Six sigma based algorithms for identification of outliers in experimental data, with an application to particulate matter PM10. Atmos Pollut Res 8(4):700–708. (PMID: 10.1016/j.apr.2017.01.004)
      Čampulová M et al (2018) Nonparametric algorithm for identification of outliers in environmental data. J Chemom 32(5):e2997. (PMID: 10.1002/cem.2997)
      Čampulová M et al (2019) Generalised linear model-based algorithm for detection of outliers in environmental data and comparison with semi-parametric outlier detection methods. Atmos Pollut Res 10(4):1015–1023. (PMID: 10.1016/j.apr.2019.01.010)
      Cavieres MF et al (2020) A methodology for data-driven decision-making in the monitoring of particulate matter environmental contamination in Santiago of Chile. Rev Environ Contam Toxicol 250:45–67.
      Census (2011) Office of the Registrar General & Census Commissioner, India, 2011 - Provisional Population Totals India, 2011, Ministry of Home Affairs, Govt of India. India - Census 2011 - Provisional Population Totals ( censusindia.gov.in ).
      Chan CK, Yao X (2008) Air pollution in mega cities in China. Atmos Environ 42(1):1–42. (PMID: 10.1016/j.atmosenv.2007.09.003)
      Cheng Y-H, Li Y-S (2010) Influences of traffic emissions and meteorological conditions on ambient PM10 and PM2. 5 levels at a highway toll station. Aerosol and Air Quality Research 10(5):456–462. (PMID: 10.4209/aaqr.2010.04.0025)
      Cho B et al (2020) Effective missing value imputation methods for building monitoring data. 2020 IEEE International Conference on Big Data (Big Data), IEEE.  https://doi.org/10.1109/BigData50022.2020.9378230.
      Coskuner G et al (2018) Characterizing temporal variability of PM2. 5/PM10 ratio and its relationship with meteorological parameters in Bahrain. Environ Forensic 19(4):315–326. (PMID: 10.1080/15275922.2018.1519738)
      de Jesus AL et al (2020) Two decades of trends in urban particulate matter concentrations across Australia. Environ Res 190:110021. (PMID: 10.1016/j.envres.2020.110021)
      Decrion AZ et al (2005) HIV and inflammation. Curr HIV Res 3(3):243–259. (PMID: 10.2174/1570162054368057)
      Dorigo W et al (2013) Global automated quality control of in situ soil moisture data from the International Soil Moisture Network. Vadose Zone Journal 12(3):vzj2012. 0097.  https://doi.org/10.2136/vzj2012.0097.
      Du C et al (2013) Urban boundary layer height characteristics and relationship with particulate matter mass concentrations in Xi’an, central China. Aerosol Air Qual Res 13(5):1598–1607. (PMID: 10.4209/aaqr.2012.10.0274)
      Durre I et al (2010) Comprehensive automated quality assurance of daily surface observations. J Appl Meteorol Climatol 49(8):1615–1633. (PMID: 10.1175/2010JAMC2375.1)
      Eatough DJ et al (1999) Integrated and real-time diffusion denuder sample for PM2. 5. Atmos Environ 33(17):2835–2844. (PMID: 10.1016/S1352-2310(98)00326-4)
      Eatough DJ et al (2001) Continuous determination of PM2. 5 mass, including semi-volatile species. Aerosol Sci Technol 34(1):1–8. (PMID: 10.1080/02786820121229)
      Eatough DJ et al (2003) Semi-volatile secondary organic aerosol in urban atmospheres: meeting a measurement challenge. Atmos Environ 37(9–10):1277–1292. (PMID: 10.1016/S1352-2310(02)01020-8)
      Eeftens M et al (2012) Spatial variation of PM2. 5, PM10, PM2. 5 absorbance and PMcoarse concentrations between and within 20 European study areas and the relationship with NO2–results of the ESCAPE project. Atmos Environ 62:303–317. (PMID: 10.1016/j.atmosenv.2012.08.038)
      Eischeid JK et al (1995) The quality control of long-term climatological data using objective data analysis. J Appl Meteorol Climatol 34(12):2787–2795. (PMID: 10.1175/1520-0450(1995)034<2787:TQCOLT>2.0.CO;2)
      Espinoza-Guillen JA et al (2024) Temporal variation of the PM2. 5/PM10 ratio and its association with meteorological factors in a South American megacity: Metropolitan Area of Lima-Callao, Peru. Environ Monit Assess 196(5):1–24. (PMID: 10.1007/s10661-024-12611-4)
      Estévez J et al (2011) Guidelines on validation procedures for meteorological data from automatic weather stations. J Hydrol 402(1–2):144–154. (PMID: 10.1016/j.jhydrol.2011.02.031)
      Evagelopoulos V et al (2006) PM10-PM2. 5 time series and fractal analysis. Global NEST J 8(3):234–240.
      Fan H et al (2021) Spatio-temporal variations of the PM2. 5/PM10 ratios and its application to air pollution type classification in China. Front Environ Sci 9:692440. (PMID: 10.3389/fenvs.2021.692440)
      Fauzie AK, Venkataramana G (2017) Characterization of particulate matter collected at Mysore city roadways in association with urban traffic condition. Archives of Current Research International 10(1):1–17. (PMID: 10.9734/ACRI/2017/36803)
      Fiebrich CA et al (2010) Quality assurance procedures for mesoscale meteorological data. J Atmos Oceanic Tech 27(10):1565–1582. (PMID: 10.1175/2010JTECHA1433.1)
      Finkelstein PL (1976) Quality Assurance handbook for air pollution measurement systems, US environmental protection agency. Environ Monit Syst Lab.
      Franzin BT et al (2020) Characterization of atmospheric aerosol (PM10 and PM2. 5) from a medium sized city in São Paulo state, Brazil. J Environ Sci 89:238–251. (PMID: 10.1016/j.jes.2019.09.014)
      Fredianto F, Putri DAP (2023) Comparison of the interquartile range algorithm and local outlier factor on Australian weather data sets. AIP Conf Proc 2727(1):040010. https://doi.org/10.1063/5.0141897.  https://doi.org/10.1063/5.0141897.
      Ganguly T et al (2020) National Clean Air Programme (NCAP) for Indian cities: review and outlook of clean air action plans. Atmos Environ: X 8:100096.
      Garg A et al (2021) Comprehensive study on impact assessment of lockdown on overall ambient air quality amid COVID-19 in Delhi and its NCR, India. J Hazard Mater Lett 2:100010. (PMID: 10.1016/j.hazl.2020.100010)
      Garnett E (2016) Developing a feeling for error: practices of monitoring and modelling air pollution data. Big Data Soc 3(2):2053951716658061. (PMID: 10.1177/2053951716658061)
      Ghanem D, Zhang J (2014) ‘Effortless perfection:’do Chinese cities manipulate air pollution data? J Environ Econ Manag 68(2):203–225. (PMID: 10.1016/j.jeem.2014.05.003)
      Ghosh S et al (2014) Chemical characterization of summertime dust events at Kanpur: insight into the sources and level of mixing with anthropogenic emissions. Aerosol Air Qual Res 14(3):879–891. (PMID: 10.4209/aaqr.2013.07.0240)
      Goyal P et al (2021) Identification of air pollution hotspots in urban areas—an innovative approach using monitored concentrations data. Sci Total Environ 798:149143. (PMID: 10.1016/j.scitotenv.2021.149143)
      Grover BD et al (2006) Measurement of both nonvolatile and semi-volatile fractions of fine particulate matter in Fresno, CA. Aerosol Sci Technol 40(10):811–826. (PMID: 10.1080/02786820600615071)
      Grover BD et al (2008) Semi-continuous mass closure of the major components of fine particulate matter in Riverside, CA. Atmos Environ 42(2):250–260. (PMID: 10.1016/j.atmosenv.2007.09.037)
      Hadeed SJ et al (2020) Imputation methods for addressing missing data in short-term monitoring of air pollutants. Sci Total Environ 730:139140. (PMID: 10.1016/j.scitotenv.2020.139140)
      Hains J et al (2007) A side-by-side comparison of filter-based PM2. 5 measurements at a suburban site: A closure study. Atmos Environ 41(29):6167–6184. (PMID: 10.1016/j.atmosenv.2007.04.008)
      Hama SM et al (2020) Four-year assessment of ambient particulate matter and trace gases in the Delhi-NCR region of India. Sustain Cities Soc 54:102003. (PMID: 10.1016/j.scs.2019.102003)
      Holešovský J et al (2018) Semiparametric outlier detection in nonstationary times series: case study for atmospheric pollution in Brno, Czech Republic. Atmos Pollut Res 9(1):27–36. (PMID: 10.1016/j.apr.2017.06.005)
      Huang G et al (2018) Real-time PM2. 5 mapping and anomaly detection from AirBoxes in Taiwan. Environmetrics 29(8):e2537. (PMID: 10.1002/env.2537)
      Hubert M, Van der Veeken S (2008) Outlier detection for skewed data. J Chemometr: J Chemometr Soc 22(3–4):235–246. (PMID: 10.1002/cem.1123)
      Hughes EE et al (1977) Performance of a nitrogen dioxide permeation device. Anal Chem 49(12):1823–1829. (PMID: 10.1021/ac50020a046)
      Jang C-S (2024) Probabilistic assessment of spatiotemporal fine particulate matter concentrations in Taiwan using multivariate indicator kriging. Stoch Env Res Risk Assess 38(2):761–776. (PMID: 10.1007/s00477-023-02600-3)
      Kaffashzadeh N (2023) A data-driven persistence test for robust (probabilistic) quality control of measured environmental time series: constant value episodes. Atmos Meas Tech 16(12):3085–3100. (PMID: 10.5194/amt-16-3085-2023)
      Kamyotra SD, Saha (2011) Guidelines for the measurement of the ambient air pollutants volume I. New Delhi: CPCB.
      Khatri P et al (2023) Understanding the intertwined nature of rising multiple risks in modern agriculture and food system. Environ Dev Sustain 1–44.  https://doi.org/10.1007/s10668-023-03638-7.
      Kim Y et al (2024) An effective algorithm of outlier correction in space–time radar rainfall data based on the iterative localized analysis. IEEE Trans Geosci Remote Sens 62:1–16.
      Kirchstetter TW et al (2001) Laboratory and field investigation of the adsorption of gaseous organic compounds onto quartz filters. Atmos Environ 35(9):1663–1671. (PMID: 10.1016/S1352-2310(00)00448-9)
      Kong L et al (2016) The empirical correlations between PM2. 5, PM10 and AOD in the Beijing metropolitan region and the PM2. 5, PM10 distributions retrieved by MODIS. Environ Pollut 216:350–360. (PMID: 10.1016/j.envpol.2016.05.085)
      Kracht O et al (2014) First evaluation of a novel screening tool for outlier detection in large scale ambient air quality datasets. Int J Environ Pollut 55(1–4):120–128. (PMID: 10.1504/IJEP.2014.065912)
      Krishnaveni AS et al (2024) Spatial, temporal features and influence of meteorology on PM2. 5 and O3 association across urban and rural environments of India. Atmospheric Environment: X 22: 100265.
      Kumar A (2020) Spatio-temporal variations in satellite based aerosol optical depths & aerosol index over Indian subcontinent: impact of urbanization and climate change. Urban Climate 32:100598. (PMID: 10.1016/j.uclim.2020.100598)
      Kumar P (2022) A critical evaluation of air quality index models (1960–2021). Environ Monit Assess 194(5):1–45.
      Kumar N et al (2007) An empirical relationship between PM2. 5 and aerosol optical depth in Delhi Metropolitan. Atmos Environ 41(21):4492–4503. (PMID: 10.1016/j.atmosenv.2007.01.046)
      Kumar P et al (2017) The influence of odd–even car trial on fine and coarse particles in Delhi. Environ Pollut 225:20–30. (PMID: 10.1016/j.envpol.2017.03.017)
      Le T-C et al (2020) On the concentration differences between PM2.5 FEM monitors and FRM samplers. Atmos Environ 222:117138.
      Legates DR, Davis RE (1997) The continuing search for an anthropogenic climate change signal: limitations of correlation-based approaches. Geophys Res Lett 24(18):2319–2322. (PMID: 10.1029/97GL02207)
      Legates DR, McCabe GJ Jr (1999) Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res 35(1):233–241. (PMID: 10.1029/1998WR900018)
      Li H et al (2020) A spatiotemporal approach for traffic data imputation with complicated missing patterns. Trans Res Part C: Emerg Technol 119:102730. (PMID: 10.1016/j.trc.2020.102730)
      Liang C-S et al (2020) Efficient data preprocessing, episode classification, and source apportionment of particle number concentrations. Sci Total Environ 744:140923. (PMID: 10.1016/j.scitotenv.2020.140923)
      Liu J et al (2016) Quality screening for air quality monitoring data in China. Environ Pollut 216:720–723. (PMID: 10.1016/j.envpol.2016.06.037)
      Liu Y et al (2023) Impacts of anemometer changes, site relocations and processing methods on wind speed trends in China. Atmos Meas Techn Discuss 2023:1–21.
      Mahajan M et al (2020) Incremental outlier detection in air quality data using statistical methods. 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy (ICDABI), IEEE.  https://doi.org/10.1109/ICDABI51230.2020.9325683.
      Markonis Y et al (2019) Assessment of water cycle intensification over land using a multisource global gridded precipitation dataset. J Geophys Res: Atmos 124(21):11175–11187. (PMID: 10.1029/2019JD030855)
      Martínez J et al (2014) Air quality parameters outliers detection using functional data analysis in the Langreo urban area (Northern Spain). Appl Math Comput 241:1–10.
      Martínez J et al (2024) Spatial and temporal variability of urban cyclists’ exposure to PM2. 5 in Medellín, Colombia. Atmos Pollut Res 15(1):101946. (PMID: 10.1016/j.apr.2023.101946)
      Martínez Torres J et al (2020) A functional data analysis approach for the detection of air pollution episodes and outliers: a case study in Dublin, Ireland. Mathematics 8(2):225. (PMID: 10.3390/math8020225)
      Menéndez-García LA et al (2023) Method for the detection of functional outliers applied to quality monitoring samples in the vicinity of el musel seaport in the metropolitan area of gijón (northern spain). Mathematics 11(12):2631. (PMID: 10.3390/math11122631)
      MetOne (2009) BAM-1020 continuous particulate monitor. prepared by Met One Instruments, Grants Pass, OR.
      Moore DS et al (2006) Statistics: Concepts and controversies. Macmillan.
      Mukesh Sharma OD (2016) Comprehensive study on air pollution and green house gases (GHGs) in Delhi Department of Environment Government of National Capital Territory of Delhi and Delhi Pollution Control Committee, Delhi:1–334.
      Munir S et al (2017) Analysing PM2. 5 and its association with PM10 and meteorology in the arid climate of Makkah, Saudi Arabia. Aerosol Air Qual Res 17(2):453–464. (PMID: 10.4209/aaqr.2016.03.0117)
      Murph AC et al (2024) Visualisation and outlier detection for probability density function ensembles. Stat 13(2):e662. (PMID: 10.1002/sta4.662)
      Nazarenko Y et al (2021) Air quality standards for the concentration of particulate matter 2.5, global descriptive analysis. Bull World Health Organ 99(2):125. (PMID: 10.2471/BLT.19.245704)
      NCR (2013) National capital region planning board (ministry of housing and urban affairs, government of India), Regional Plan-2021, National Capital Region Planning Board (ncrpb.nic.in).
      Niu G (2017) Characteristics and causes of abnormal particulate matter in ambient air monitoring. Anhui Chem Ind 43:103–105.
      O’Leary B et al (2016) Identification and influence of spatio-temporal outliers in urban air quality measurements. Sci Total Environ 573:55–65. (PMID: 10.1016/j.scitotenv.2016.08.031)
      Pang Y et al (2002) Effect of semivolatile material on PM 2.5 measurement by the PM 2.5 federal reference method sampler at Bakersfield, California. Aerosol Sci Technol 36(3):289–299. (PMID: 10.1080/027868202753504489)
      Panwar H, Basumatary J, Dhote M (2022) Carrying capacity of air environment and development of a megacity. A case of NCT Delhi, India, CRC Press, 1 (taylorfrancis.com).
      Patashnick H, Rupprecht EG (1991) Continuous PM-10 measurements using the tapered element oscillating microbalance. J Air Waste Manag Assoc 41(8):1079–1083. (PMID: 10.1080/10473289.1991.10466903)
      Patel P, Aggarwal SG (2022) On the techniques and standards of particulate matter sampling. J Air Waste Manag Assoc 72(8):791–814. (PMID: 10.1080/10962247.2022.2048129)
      Pengjan S et al (2019) Assessment of the PM2. 5/PM10 ratio in the Bangkok Metropolitan Region during. J Sustain Energy Environ 10:75–84.
      Plaia A, Bondi A (2006) Single imputation method of missing values in environmental pollution data sets. Atmos Environ 40(38):7316–7330. (PMID: 10.1016/j.atmosenv.2006.06.040)
      Priti K, Kumar P (2021) A review of air quality index models. Proceedings of 1st International conference on pollution prevention and clean technologies (ICPPCT 2021) and "Taiwan-India Workshop on Emerging Environment and Energy Challenges of Technology Exchange, vol 1, issue 1, p 42, Indraprastha Institute of Information Technology Delhi (IIIT-Delhi), India.
      Priti K, Kumar P, Shakya KS (2022) Time series analysis and forecasting of particulate matter using SARIMA, India Clean Air Summit (ICAS 2022), organised by the Centre for Air Pollution Studies (CAPS) at CSTEP, Bengaluru, India. https://cstep.in/.
      Priti K, Kumar P, Shakya KS (2024) Sustainable developmental Goal 17 and agriculture from an Indian perspective. In: Yasheshwar, Mishra AK, Kumar M (eds) Recent Advancements in sustainable agricultural practices. Springer, Singapore. https://doi.org/10.1007/978-981-97-2155-9_1.
      Priti K et al (2024) Unveiling patterns in the air: a comprehensive examination of spatio-temporal outliers in Delhi's air quality monitoring modified LOF approach. Proceedings of International Conference on “Sustainable Energy & Environment (ICSEE-24), MNIT, Bhopal.
      Pu J-J et al (2014) Estimation of regional background concentration of CO2 at Lin’an Station in Yangtze River Delta, China. Atmos Environ 94:402–408. (PMID: 10.1016/j.atmosenv.2014.05.060)
      Querol X et al (2001) Monitoring of PM10 and PM2. 5 around primary particulate anthropogenic emission sources. Atmos Environ 35(5):845–858. (PMID: 10.1016/S1352-2310(00)00387-3)
      Quincey P, Butterfield D (2009) A study on the effects of humidity on the mass of UK PM samples, NPL REPORT AS 40, National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW. https://eprintspublications.npl.co.uk/4418/1/AS40.pdf.
      Ray AE, Vaughn DL (2009) Sonoma technology, Inc, 2021, standard operating procedure for the continuous measurement of particulate matter. https://www.epa.gov/sites/default/files/2021-03/documents/905505_teom_sop_draft_final_sept09.pdf.
      Rigueira X et al (2022) Functional data analysis for the detection of outliers and study of the effects of the COVID-19 pandemic on air quality: a case study in Gijón, Spain. Mathematics 10(14):2374. (PMID: 10.3390/math10142374)
      Rizwan S et al (2013) Air pollution in Delhi: its magnitude and effects on health. Indian J Commun Med 38(1):4–8. (PMID: 10.4103/0970-0218.106617)
      Rohde RA, Muller RA (2015) Air pollution in China: mapping of concentrations and sources. PLoS ONE 10(8):e0135749. (PMID: 10.1371/journal.pone.0135749)
      Sánchez-Lasheras F et al (2020) Detection of outliers in pollutant emissions from the Soto de Ribera coal-fired power plant using functional data analysis: a case study in northern Spain. Environ Sci Pollut Res 27:8–20. (PMID: 10.1007/s11356-019-04435-4)
      Sandbhor S, Chaphalkar N (2019) Impact of outlier detection on neural networks based property value prediction. Information Systems Design and Intelligent Applications: Proceedings of Fifth International Conference INDIA 2018 Volume 1, Springer.  https://doi.org/10.1007/978-981-13-3329-3_45.
      Schultz MG et al (2017) Tropospheric ozone assessment report: database and metrics data of global surface ozone observations. Elem Sci Anth 5:58. (PMID: 10.1525/elementa.244)
      Schwab JJ et al (2006) New York state urban and rural measurements of continuous PM2. 5 mass by FDMS, TEOM, and BAM. J Air Waste Manag Assoc 56(4):372–383. (PMID: 10.1080/10473289.2006.10464523)
      Sethi L et al (2023) Three-year-long PM2. 5/PM10 ratio at nine sites in the most polluted region in India. Aerosol Sci Eng 7(3):396–414. (PMID: 10.1007/s41810-023-00189-2)
      Shaadan N et al (2015) Anomaly detection and assessment of PM10 functional data at several locations in the Klang Valley, Malaysia. Atmos Pollut Res 6(2):365–375. (PMID: 10.5094/APR.2015.040)
      Shah DP, Patel P (2021) A comparison between national air quality index, india and composite air quality index for Ahmedabad, India. Environ Challenges 5:100356. (PMID: 10.1016/j.envc.2021.100356)
      Shakya KS, Kumar P (2023) Selection of statistical technique for imputation of single site-univariate and multisite–multivariate methods for particulate pollutants time series data with long gaps and high missing percentage. Environ Sci Pollut Res 30(30):75469–75488. (PMID: 10.1007/s11356-023-27659-x)
      Shandilya KK et al (2012) Estimation of ambient air quality in Delhi. Air quality–monitoring and modeling, Edited by Kumar, S. and Kumar, R. Published by InTech, Rijeka, Croatia: 37–58.  https://doi.org/10.5772/39041.
      Sharma D, Mauzerall D (2022) Analysis of air pollution data in India between 2015 and 2019. Aerosol and Air Quality Research 22(2):210204. (PMID: 10.4209/aaqr.210204)
      Shukla K, Aggarwal SG (2022) A technical overview on beta-attenuation method for the monitoring of particulate matter in ambient air. Aerosol Air Qual Res 22(12):220195. (PMID: 10.4209/aaqr.220195)
      Shukla K et al (2021) Regression-based flexible models for photochemical air pollutants in the national capital territory of megacity Delhi. Chemosphere 272:129611. (PMID: 10.1016/j.chemosphere.2021.129611)
      Sikarwar A, Rani R (2020) Assessing the immediate effect of COVID-19 lockdown on air quality: A case study of Delhi, India. https://doi.org/10.2478/jengeo-2020-0009.
      Singh V et al (2021) Exceedances and trends of particulate matter (PM2. 5) in five Indian megacities. Sci Total Environ 750:141461. (PMID: 10.1016/j.scitotenv.2020.141461)
      Smiti A (2020) A critical overview of outlier detection methods. Comput Sci Rev 38:100306. (PMID: 10.1016/j.cosrev.2020.100306)
      Srivastava RP et al (2024) Continuous emission monitoring systems (CEMS) in India: performance evaluation, policy gaps and financial implications for effective air pollution control. J Environ Manage 359:120584. (PMID: 10.1016/j.jenvman.2024.120584)
      Sugimoto N et al (2016) A method for estimating the fraction of mineral dust in particulate matter using PM2. 5-to-PM10 ratios. Particuology 28:114–120. (PMID: 10.1016/j.partic.2015.09.005)
      Tawakuli A et al (2024) Survey: time-series data preprocessing: a survey and an empirical analysis. J Eng Res. https://doi.org/10.1016/j.jer.2024.02.018.
      Tiwari S et al (2015) Intra-urban variability of particulate matter (PM2. 5 and PM10) and its relationship with optical properties of aerosols over Delhi, India. Atmos Res 166:223–232. (PMID: 10.1016/j.atmosres.2015.07.007)
      Torres JM et al (2011) Detection of outliers in gas emissions from urban areas using functional data analysis. J Hazard Mater 186(1):144–149. (PMID: 10.1016/j.jhazmat.2010.10.091)
      Torres JM et al (2020) A functional data analysis approach for the detection of air pollution episodes and outliers: a case study in Dublin, Ireland. Functional Statistics: Outliers Detection and Quality Control: 91.  https://doi.org/10.3390/math8020225.
      Tumbiolo S et al (2005) Thermogravimetric calibration of permeation tubes used for the preparation of gas standards for air pollution analysis. Analyst 130(10):1369–1374. (PMID: 10.1039/b508536e)
      Turpin BJ et al (1994) Investigation of organic aerosol sampling artifacts in the Los Angeles Basin. Atmos Environ 28(19):3061–3071. (PMID: 10.1016/1352-2310(94)00133-6)
      United States Environment Protection Agency E (2017) Quality Assurance Handbook for Air Pollution Measurement Systems II: 0–346.
      Van Zoest V et al (2018) Outlier detection in urban air quality sensor networks. Water Air Soil Pollut 229:1–13.
      Veselík P et al (2020) Outlier identification of concentrations of pollutants in environmental data using modern statistical methods. Polish J Environ Stud 29(1).  https://doi.org/10.15244/pjoes/112620.
      Wang Y et al (2015) Spatial and temporal variations of the concentrations of PM 10, PM 2.5 and PM 1 in China. Atmos Chem Phys 15(23):13585–13598. (PMID: 10.5194/acp-15-13585-2015)
      Wijesekara W, Liyanage L (2020) Comparison of imputation methods for missing values in air pollution data: Case study on Sydney air quality index. Advances in Information and Communication: Proceedings of the 2020 Future of Information and Communication Conference (FICC), Volume 2, Springer.  https://doi.org/10.1007/978-3-030-39442-4_20.
      Williams R et al (2000) Comparison of PM2. 5 and PM10 monitors. J Eposure Sci Environ Epidemiol 10(5):497–505. (PMID: 10.1038/sj.jea.7500138)
      Willmott CJ (1981) On the validation of models. Phys Geogr 2(2):184–194. (PMID: 10.1080/02723646.1981.10642213)
      Wolter K (1997) Trimming problems and remedies in COADS. J Clim 10(8):1980–1997. (PMID: 10.1175/1520-0442(1997)010<1980:TPARIC>2.0.CO;2)
      Wu H et al (2005) Some concerns when using data from the cooperative weather station networks: a Nebraska case study. J Atmos Oceanic Tech 22(5):592–602. (PMID: 10.1175/JTECH1733.1)
      Wu L et al (2010) Optimal reduction of the ozone monitoring network over France. Atmos Environ 44(25):3071–3083. (PMID: 10.1016/j.atmosenv.2010.04.012)
      Wu H et al (2018) Probabilistic automatic outlier detection for surface air quality measurements from the China national environmental monitoring network. Adv Atmos Sci 35:1522–1532. (PMID: 10.1007/s00376-018-8067-9)
      Yang L et al (2021) Collocated speciation of PM2. 5 using tandem quartz filters in northern nanjing, China: Sampling artifacts and measurement uncertainty. Atmos Environ 246:118066. (PMID: 10.1016/j.atmosenv.2020.118066)
      Zafeirelli S, Kavroudakis D (2024) Comparison of outlier detection approaches in a Smart Cities sensor data context. Int J Smart Sensing Intell Syst 17(1). https://doi.org/10.2478/ijssis-2024-0004.
      Zahumenský I (2004) Guidelines on quality control procedures for data from automatic weather stations. World Meteorol Org, Switzerland 955:2–6.
      Zhang Z et al (2021) Long-term exposure to air pollution and mortality in a prospective cohort: the Ontario Health Study. Environ Int 154:106570. (PMID: 10.1016/j.envint.2021.106570)
      Zhao Y et al (2007) Using robust kriging and sequential Gaussian simulation to delineate the copper-and lead-contaminated areas of a rapidly industrialized city in Yangtze River Delta, China. Environ Geol 52:1423–1433. (PMID: 10.1007/s00254-007-0667-0)
      Zhao X et al (2009) Seasonal and diurnal variations of ambient PM2. 5 concentration in urban and rural environments in Beijing. Atmos Environ 43(18):2893–2900. (PMID: 10.1016/j.atmosenv.2009.03.009)
      Zhao D et al (2019) PM2. 5/PM10 ratios in eight economic regions and their relationship with meteorology in China. Adv Meteorol 2019(1):5295726.
      Zheng S et al (2017) A comparison of trace gases and particulate matter over Beijing (China) and Delhi (India). Water Air Soil Pollut 228:1–15. (PMID: 10.1007/s11270-017-3360-2)
      Zheng H et al (2023) Achievements and challenges in improving air quality in China: analysis of the long-term trends from 2014 to 2022. Environ Int 108361.  https://doi.org/10.1016/j.envint.2023.108361.
      Zhu K et al (2007) Evaluation and comparison of continuous fine particulate matter monitors for measurement of ambient aerosols. J Air Waste Manag Assoc 57(12):1499–1506. (PMID: 10.3155/1047-3289.57.12.1499)
    • Contributed Indexing:
      Keywords: Air pollutant; Ground-based observations; Outliers detection; Particulate matter; Residual analysis; Time-series data
    • Accession Number:
      0 (Air Pollutants)
      0 (Particulate Matter)
    • Publication Date:
      Date Created: 20241002 Date Completed: 20241028 Latest Revision: 20241113
    • Publication Date:
      20241114
    • Accession Number:
      10.1007/s11356-024-35006-x
    • Accession Number:
      39358655