Characterization of a membrane toxin-antitoxin system, tsaAT, from Staphylococcus aureus.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies Country of Publication: England NLM ID: 101229646 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1742-4658 (Electronic) Linking ISSN: 1742464X NLM ISO Abbreviation: FEBS J Subsets: MEDLINE
    • Publication Information:
      Original Publication: Oxford, UK : Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies, c2005-
    • Subject Terms:
    • Abstract:
      Bacterial toxin-antitoxin (TA) systems consist of a toxin that inhibits essential cellular processes, such as DNA replication, transcription, translation, or ATP synthesis, and an antitoxin neutralizing their cognate toxin. These systems have roles in programmed cell death, defense against phage, and the formation of persister cells. Here, we characterized the previously identified Staphylococcus aureus TA system, tsaAT, which consists of two putative membrane proteins: TsaT and TsaA. Expression of the TsaT toxin caused cell death and disrupted membrane integrity, whereas TsaA did not show any toxicity and neutralized the toxicity of TsaT. Furthermore, subcellular fractionation analysis demonstrated that both TsaA and TsaT localized to the cytoplasmic membrane of S. aureus expressing either or both 3xFLAG-tagged TsaA and 3xFLAG-tagged TsaT. Taken together, these results demonstrate that the TsaAT TA system consists of two membrane proteins, TsaA and TsaT, where TsaT disrupts membrane integrity, ultimately leading to cell death. Although sequence analyses showed that the tsaA and tsaT genes were conserved among Staphylococcus species, amino acid substitutions between TsaT orthologs highlighted the critical role of the 6th residue for its toxicity. Further amino acid substitutions indicated that the glutamic acid residue at position 63 in the TsaA antitoxin and the cluster of five lysine residues in the TsaT toxin are involved in TsaA's neutralization reaction. This study is the first to describe a bacterial TA system wherein both toxin and antitoxin are membrane proteins. These findings contribute to our understanding of S. aureus TA systems and, more generally, give new insight into highly diverse bacterial TA systems.
      (© 2024 The Author(s). The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.)
    • References:
      Yamaguchi Y & Inouye M (2011) Regulation of growth and death in Escherichia coli by toxin‐antitoxin systems. Nat Rev Microbiol 9, 779–790.
      Harms A, Brodersen DE, Mitarai N & Gerdes K (2018) Toxins, targets, and triggers: an overview of toxin‐antitoxin biology. Mol Cell 70, 768–784.
      Mruk I & Kobayashi I (2014) To be or not to be: regulation of restriction‐modification systems and other toxin‐antitoxin systems. Nucleic Acids Res 42, 70–86.
      Ogura T & Hiraga S (1983) Mini‐F plasmid genes that couple host cell division to plasmid proliferation. Proc Natl Acad Sci USA 80, 4784–4788.
      Wen Y, Behiels E & Devreese B (2014) Toxin‐antitoxin systems: their role in persistence, biofilm formation, and pathogenicity. Pathog Dis 70, 240–249.
      Jurenas D, Fraikin N, Goormaghtigh F & Van Melderen L (2022) Biology and evolution of bacterial toxin‐antitoxin systems. Nat Rev Microbiol 20, 335–350.
      Singh G, Yadav M, Ghosh C & Rathore JS (2021) Bacterial toxin‐antitoxin modules: classification, functions, and association with persistence. Curr Res Microb Sci 2, 100047.
      Maki S, Takiguchi S, Miki T & Horiuchi T (1992) Modulation of DNA supercoiling activity of Escherichia coli DNA gyrase by F plasmid proteins. Antagonistic actions of LetA (CcdA) and LetD (CcdB) proteins. J Biol Chem 267, 12244–12251.
      Yamaguchi Y & Inouye M (2015) An endogenous protein inhibitor, YjhX (TopAI), for topoisomerase I from Escherichia coli. Nucleic Acids Res 43, 10387–10396.
      Zhang Y, Zhang J, Hoeflich KP, Ikura M, Qing G & Inouye M (2003) MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. Mol Cell 12, 913–923.
      Pedersen K, Zavialov AV, Pavlov MY, Elf J, Gerdes K & Ehrenberg M (2003) The bacterial toxin RelE displays codon‐specific cleavage of mRNAs in the ribosomal A site. Cell 112, 131–140.
      Liu M, Zhang Y, Inouye M & Woychik NA (2008) Bacterial addiction module toxin Doc inhibits translation elongation through its association with the 30S ribosomal subunit. Proc Natl Acad Sci USA 105, 5885–5890.
      Masuda H, Tan Q, Awano N, Wu KP & Inouye M (2012) YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA (YeeV) toxicity in Escherichia coli. Mol Microbiol 84, 979–989.
      Gurnev PA, Ortenberg R, Dorr T, Lewis K & Bezrukov SM (2012) Persister‐promoting bacterial toxin TisB produces anion‐selective pores in planar lipid bilayers. FEBS Lett 586, 2529–2534.
      Wang X, Lord DM, Cheng HY, Osbourne DO, Hong SH, Sanchez‐Torres V, Quiroga C, Zheng K, Herrmann T, Peti W et al. (2012) A new type V toxin‐antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS. Nat Chem Biol 8, 855–861.
      Zhu L, Inoue K, Yoshizumi S, Kobayashi H, Zhang Y, Ouyang M, Kato F, Sugai M & Inouye M (2009) Staphylococcus aureus MazF specifically cleaves a pentad sequence, UACAU, which is unusually abundant in the mRNA for pathogenic adhesive factor SraP. J Bacteriol 191, 3248–3255.
      Yoshizumi S, Zhang Y, Yamaguchi Y, Chen L, Kreiswirth BN & Inouye M (2009) Staphylococcus aureus YoeB homologues inhibit translation initiation. J Bacteriol 191, 5868–5872.
      Kato F, Yamaguchi Y, Inouye K, Matsuo K, Ishida Y & Inouye M (2023) A novel gyrase inhibitor from toxin‐antitoxin system expressed by Staphylococcus aureus. FEBS J 290, 1502–1518.
      Schuster CF & Bertram R (2016) Toxin‐antitoxin systems of Staphylococcus aureus. Toxins (Basel) 8, E140.
      Sierra R, Viollier P & Renzoni A (2019) Linking toxin‐antitoxin systems with phenotypes: a Staphylococcus aureus viewpoint. Biochim Biophys Acta Gene Regul Mech 1862, 742–751.
      Nonin‐Lecomte S, Fermon L, Felden B & Pinel‐Marie ML (2021) Bacterial type I toxins: folding and membrane interactions. Toxins (Basel) 13, 490.
      Kato F, Yabuno Y, Yamaguchi Y, Sugai M & Inouye M (2017) Deletion of mazF increases Staphylococcus aureus biofilm formation in an ica‐dependent manner. Pathog Dis 75, ftx026.
      Wen W, Liu B, Xue L, Zhu Z, Niu L & Sun B (2018) Autoregulation and virulence control by the toxin‐antitoxin system SavRS in Staphylococcus aureus. Infect Immun 86, e00032‐18.
      Kato F, Yoshizumi S, Yamaguchi Y & Inouye M (2019) Genome‐wide screening for identification of novel toxin‐antitoxin systems in Staphylococcus aureus. Appl Environ Microbiol 85, e00915‐19.
      Saha CK, Sanches Pires R, Brolin H, Delannoy M & Atkinson GC (2021) FlaGs and webFlaGs: discovering novel biology through the analysis of gene neighbourhood conservation. Bioinformatics 37, 1312–1314.
      Brielle R, Pinel‐Marie ML & Felden B (2016) Linking bacterial type I toxins with their actions. Curr Opin Microbiol 30, 114–121.
      Unterholzner SJ, Poppenberger B & Rozhon W (2013) Toxin‐antitoxin systems: biology, identification, and application. Mob Genet Elem 3, e26219.
      Donegan NP & Cheung AL (2009) Regulation of the mazEF toxin‐antitoxin module in Staphylococcus aureus and its impact on sigB expression. J Bacteriol 191, 2795–2805.
      Wilmaerts D, Bayoumi M, Dewachter L, Knapen W, Mika JT, Hofkens J, Dedecker P, Maglia G, Verstraeten N & Michiels J (2018) The persistence‐inducing toxin HokB forms dynamic pores that cause ATP leakage. mBio 9, e00744‐18.
      Gerdes K, Bech FW, Jorgensen ST, Lobnerolesen A, Rasmussen PB, Atlung T, Boe L, Karlstrom O, Molin S & Vonmeyenburg K (1986) Mechanism of postsegregational killing by the Hok gene‐product of the Parb system of plasmid R1 and its homology with the Relf gene‐product of the Escherichia coli Relb operon. EMBO J 5, 2023–2029.
      Kawano M, Oshima T, Kasai H & Mori H (2002) Molecular characterization of long direct repeat (LDR) sequences expressing a stable mRNA encoding for a 35‐amino‐acid cell‐killing peptide and a cis‐encoded small antisense RNA in Escherichia coli. Mol Microbiol 45, 333–349.
      Weel‐Sneve R, Kristiansen KI, Odsbu I, Dalhus B, Booth J, Rognes T, Skarstad K & Bjoras M (2013) Single transmembrane peptide DinQ modulates membrane‐dependent activities. PLoS Genet 9, e1003260.
      Vogel J, Argaman L, Wagner EG & Altuvia S (2004) The small RNA IstR inhibits synthesis of an SOS‐induced toxic peptide. Curr Biol 14, 2271–2276.
      Thisted T, Sorensen NS, Wagner EG & Gerdes K (1994) Mechanism of post‐segregational killing: Sok antisense RNA interacts with Hok mRNA via its 5′‐end single‐stranded leader and competes with the 3′‐end of Hok mRNA for binding to the mok translational initiation region. EMBO J 13, 1960–1968.
      Sayed N, Nonin‐Lecomte S, Rety S & Felden B (2012) Functional and structural insights of a Staphylococcus aureus apoptotic‐like membrane peptide from a toxin‐antitoxin module. J Biol Chem 287, 43454–43463.
      Pinel‐Marie ML, Brielle R & Felden B (2014) Dual toxic‐peptide‐coding Staphylococcus aureus RNA under antisense regulation targets host cells and bacterial rivals unequally. Cell Rep 7, 424–435.
      Riffaud C, Pinel‐Marie ML, Pascreau G & Felden B (2019) Functionality and cross‐regulation of the four SprG/SprF type I toxin‐antitoxin systems in Staphylococcus aureus. Nucleic Acids Res 47, 1740–1758.
      Schuster CF, Mechler L, Nolle N, Krismer B, Zelder ME, Gotz F & Bertram R (2015) The MazEF toxin‐antitoxin system alters the beta‐lactam susceptibility of Staphylococcus aureus. PLoS One 10, e0126118.
      Fermon L, Burel A, Ostyn E, Dreano S, Bondon A, Chevance S & Pinel‐Marie ML (2023) Mechanism of action of sprG1‐encoded type I toxins in Staphylococcus aureus: from membrane alterations to mesosome‐like structures formation and bacterial lysis. Front Microbiol 14, 1275849.
      Harms A, Maisonneuve E & Gerdes K (2016) Mechanisms of bacterial persistence during stress and antibiotic exposure. Science 354, aaf4268.
      Maiques E, Ubeda C, Campoy S, Salvador N, Lasa I, Novick RP, Barbe J & Penades JR (2006) Beta‐lactam antibiotics induce the SOS response and horizontal transfer of virulence factors in Staphylococcus aureus. J Bacteriol 188, 2726–2729.
      Mwangi MM, Kim C, Chung M, Tsai J, Vijayadamodar G, Benitez M, Jarvie TP, Du L & Tomasz A (2013) Whole‐genome sequencing reveals a link between beta‐lactam resistance and synthetases of the alarmone (p)ppGpp in Staphylococcus aureus. Microb Drug Resist 19, 153–159.
      Anderson KL, Roberts C, Disz T, Vonstein V, Hwang K, Overbeek R, Olson PD, Projan SJ & Dunman PM (2006) Characterization of the Staphylococcus aureus heat shock, cold shock, stringent, and SOS responses and their effects on log‐phase mRNA turnover. J Bacteriol 188, 6739–6756.
      Conlon BP, Rowe SE, Gandt AB, Nuxoll AS, Donegan NP, Zalis EA, Clair G, Adkins JN, Cheung AL & Lewis K (2016) Persister formation in Staphylococcus aureus is associated with ATP depletion. Nat Microbiol 1, 16051.
      Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, Kobayashi I, Cui L, Oguchi A, Aoki K, Nagai Y et al. (2001) Whole genome sequencing of meticillin‐resistant Staphylococcus aureus. Lancet 357, 1225–1240.
      Guzman LM, Belin D, Carson MJ & Beckwith J (1995) Tight regulation, modulation, and high‐level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177, 4121–4130.
      Kanehisa M, Furumichi M, Tanabe M, Sato Y & Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45, D353–D361.
      Zimmermann L, Stephens A, Nam SZ, Rau D, Kubler J, Lozajic M, Gabler F, Soding J, Lupas AN & Alva V (2018) A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol 430, 2237–2243.
      Omasits U, Ahrens CH, Muller S & Wollscheid B (2014) Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 30, 884–886.
      Helle L, Kull M, Mayer S, Marincola G, Zelder ME, Goerke C, Wolz C & Bertram R (2011) Vectors for improved Tet repressor‐dependent gradual gene induction or silencing in Staphylococcus aureus. Microbiology 157, 3314–3323.
      Kato F, Nakamura M & Sugai M (2017) The development of fluorescent protein tracing vectors for multicolor imaging of clinically isolated Staphylococcus aureus. Sci Rep 7, 2865.
      Kato F & Sugai M (2011) A simple method of markerless gene deletion in Staphylococcus aureus. J Microbiol Methods 87, 76–81.
      Yamazaki K, Kato F, Kamio Y & Kaneko J (2006) Expression of gamma‐hemolysin regulated by sae in Staphylococcus aureus strain Smith 5R. FEMS Microbiol Lett 259, 174–180.
    • Grant Information:
      JP19KK0409 Japan Society for the Promotion of Science; JP20K07480 Japan Society for the Promotion of Science
    • Contributed Indexing:
      Keywords: Staphylococcus aureus; membrane protein; toxin‐antitoxin system
    • Accession Number:
      0 (Bacterial Toxins)
      0 (Bacterial Proteins)
      0 (Membrane Proteins)
    • Publication Date:
      Date Created: 20241002 Date Completed: 20241113 Latest Revision: 20241113
    • Publication Date:
      20241114
    • Accession Number:
      10.1111/febs.17289
    • Accession Number:
      39356479