An architectural role of specific RNA-RNA interactions in oskar granules.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Macmillan Magazines Ltd Country of Publication: England NLM ID: 100890575 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4679 (Electronic) Linking ISSN: 14657392 NLM ISO Abbreviation: Nat Cell Biol Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : Macmillan Magazines Ltd., [1999-
    • Subject Terms:
    • Abstract:
      Ribonucleoprotein (RNP) granules are membraneless condensates that organize the intracellular space by compartmentalization of specific RNAs and proteins. Studies have shown that RNA tunes the phase behaviour of RNA-binding proteins, but the role of intermolecular RNA-RNA interactions in RNP granules in vivo remains less explored. Here we determine the role of a sequence-specific RNA-RNA kissing-loop interaction in assembly of mesoscale oskar RNP granules in the female Drosophila germline. We show that a two-nucleotide mutation that disrupts kissing-loop-mediated oskar messenger RNA dimerization impairs condensate formation in vitro and oskar granule assembly in the developing oocyte, leading to defective posterior localization of the RNA and abrogation of oskar-associated processing bodies upon nutritional stress. This specific trans RNA-RNA interaction acts synergistically with the scaffold RNA-binding protein, Bruno, in driving condensate assembly. Our study highlights the architectural contribution of an mRNA and its specific secondary structure and tertiary interactions to the formation of an RNP granule that is essential for embryonic development.
      Competing Interests: Competing interests The authors declare no competing interests.
      (© 2024. The Author(s).)
    • References:
      Van Treeck, B. & Parker, R. Emerging roles for intermolecular RNA–RNA interactions in RNP assemblies. Cell 174, 791–802 (2018). (PMID: 30096311620014610.1016/j.cell.2018.07.023)
      Mann, J. R. & Donnelly, C. J. RNA modulates physiological and neuropathological protein phase transitions. Neuron 109, 2663–2681 (2021). (PMID: 34297914843476310.1016/j.neuron.2021.06.023)
      Maharana, S. et al. RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science 360, 918–921 (2018). (PMID: 29650702609185410.1126/science.aar7366)
      Lin, Y., Protter, D. S., Rosen, M. K. & Parker, R. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell 60, 208–219 (2015). (PMID: 26412307460929910.1016/j.molcel.2015.08.018)
      Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017). (PMID: 28225081743422110.1038/nrm.2017.7)
      Ditlev, J. A., Case, L. B. & Rosen, M. K. Who’s in and who’s out—compositional control of biomolecular condensates. J. Mol. Biol. 430, 4666–4684 (2018). (PMID: 30099028620429510.1016/j.jmb.2018.08.003)
      Poudyal, R. R., Sieg, J. P., Portz, B., Keating, C. D. & Bevilacqua, P. C. RNA sequence and structure control assembly and function of RNA condensates. RNA 27, 1589–1601 (2021). (PMID: 34551999859446610.1261/rna.078875.121)
      Tauber, D. et al. Modulation of RNA condensation by the DEAD-box protein eIF4A. Cell 180, 411–426 e16 (2020). (PMID: 31928844719424710.1016/j.cell.2019.12.031)
      Van Treeck, B. et al. RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome. Proc. Natl Acad. Sci. USA 115, 2734–2739 (2018). (PMID: 29483269585656110.1073/pnas.1800038115)
      Jain, A. & Vale, R. D. RNA phase transitions in repeat expansion disorders. Nature 546, 243–247 (2017). (PMID: 28562589555564210.1038/nature22386)
      Roden, C. & Gladfelter, A. S. RNA contributions to the form and function of biomolecular condensates. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-020-0264-6 (2020). (PMID: 10.1038/s41580-020-0264-6326323177785677)
      Ephrussi, A., Dickinson, L. K. & Lehmann, R. Oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell 66, 37–50 (1991). (PMID: 207041710.1016/0092-8674(91)90137-N)
      Lehmann, R. & Nusslein-Volhard, C. Abdominal segmentation, pole cell formation, and embryonic polarity require the localized activity of oskar, a maternal gene in Drosophila. Cell 47, 141–152 (1986). (PMID: 309308410.1016/0092-8674(86)90375-2)
      Bose, M., Lampe, M., Mahamid, J. & Ephrussi, A. Liquid-to-solid phase transition of oskarribonucleoprotein granules is essential for their function in Drosophilaembryonic development. Cell 185, 1308–1324 e23 (2022). (PMID: 35325593904279510.1016/j.cell.2022.02.022)
      Kim-Ha, J., Kerr, K. & Macdonald, P. M. Translational regulation of oskarmRNA by bruno, an ovarian RNA-binding protein, is essential. Cell 81, 403–412 (1995). (PMID: 773659210.1016/0092-8674(95)90393-3)
      Jambor, H., Mueller, S., Bullock, S. L. & Ephrussi, A. A stem-loop structure directs oskarmRNA to microtubule minus ends. RNA 20, 429–439 (2014). (PMID: 24572808396490510.1261/rna.041566.113)
      Jambor, H., Brunel, C. & Ephrussi, A. Dimerization of oskar3′ UTRs promotes hitchhiking for RNA localization in the Drosophila oocyte. RNA 17, 2049–2057 (2011). (PMID: 22028360322211810.1261/rna.2686411)
      Hachet, O. & Ephrussi, A. Splicing of oskarRNA in the nucleus is coupled to its cytoplasmic localization. Nature 428, 959–963 (2004). (PMID: 1511872910.1038/nature02521)
      Jenny, A. et al. A translation-independent role of oskarRNA in early Drosophila oogenesis. Development 133, 2827–2833 (2006). (PMID: 1683543610.1242/dev.02456)
      Kanke, M. et al. oskarRNA plays multiple noncoding roles to support oogenesis and maintain integrity of the germline/soma distinction. RNA 21, 1096–1109 (2015). (PMID: 25862242443666310.1261/rna.048298.114)
      Guillen-Boixet, J. et al. RNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensation. Cell 181, 346–361 e17 (2020). (PMID: 32302572718119710.1016/j.cell.2020.03.049)
      Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699 e16 (2018). (PMID: 29961577606376010.1016/j.cell.2018.06.006)
      Wippich, F. & Ephrussi, A. Transcript specific mRNP capture from Drosophilaegg-chambers for proteomic analysis. Methods 178, 83–88 (2020). (PMID: 3149351510.1016/j.ymeth.2019.09.001)
      Micklem, D. R., Adams, J., Grünert, S. & St Johnston, D. Distinct roles of two conserved Staufen domains in oskarmRNA localization and translation. EMBO J. 19, 1366–1377 (2000). (PMID: 1071693630567710.1093/emboj/19.6.1366)
      Besse, F., Lopez de Quinto, S., Marchand, V., Trucco, A. & Ephrussi, A. DrosophilaPTB promotes formation of high-order RNP particles and represses oskartranslation. Genes Dev. 23, 195–207 (2009). (PMID: 19131435264853910.1101/gad.505709)
      Kina, H., Yoshitani, T., Hanyu‐Nakamura, K. & Nakamura, A. Rapid and efficient generation of GFP‐knocked‐in Drosophilaby the CRISPR–Cas9‐mediated genome editing. Dev. Growth Differ. 61, 265–275 (2019). (PMID: 3103773010.1111/dgd.12607)
      Hussein, I. T. M. et al. Delineation of the preferences and requirements of the human immunodeficiency virus type 1 dimerization initiation signal by using an in vivo cell-based selection approach. J. Virol. 84, 6866–6875 (2010). (PMID: 20410279290328310.1128/JVI.01930-09)
      Lever, A., Gottlinger, H., Haseltine, W. & Sodroski, J. Identification of a sequence required for efficient packaging of human immunodeficiency virus type 1 RNA into virions. J. Virol. 63, 4085–4087 (1989). (PMID: 276098925101210.1128/jvi.63.9.4085-4087.1989)
      Dubois, N., Marquet, R., Paillart, J.-C. & Bernacchi, S. Retroviral RNA dimerization: from structure to functions. Front. Microbiol. 9, 527 (2018). (PMID: 29623074587429810.3389/fmicb.2018.00527)
      Burn, K. M. et al. Somatic insulin signaling regulates a germline starvation response in Drosophilaegg chambers. Dev. Biol. 398, 206–217 (2015). (PMID: 2548175810.1016/j.ydbio.2014.11.021)
      Shimada, Y., Burn, K. M., Niwa, R. & Cooley, L. Reversible response of protein localization and microtubule organization to nutrient stress during Drosophilaearly oogenesis. Dev. Biol. 355, 250–262 (2011). (PMID: 21570389311893110.1016/j.ydbio.2011.04.022)
      Sheth, U. & Parker, R. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300, 805–808 (2003). (PMID: 12730603187671410.1126/science.1082320)
      Paillart, J. C., Skripkin, E., Ehresmann, B., Ehresmann, C. & Marquet, R. A loop–loop ‘kissing’ complex is the essential part of the dimer linkage of genomic HIV-1 RNA. Proc. Natl Acad. Sci. USA 93, 5572–5577 (1996). (PMID: 86436173928810.1073/pnas.93.11.5572)
      Ulyanov, N. B. et al. NMR structure of the full-length linear dimer of stem-loop-1 RNA in the HIV-1 dimer initiation site. J. Biol. Chem. 281, 16168–16177 (2006). (PMID: 1660354410.1074/jbc.M601711200)
      Zubradt, M. et al. DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat. Methods 14, 75–82 (2017). (PMID: 2781966110.1038/nmeth.4057)
      Trcek, T. et al. Sequence-independent self-assembly of germ granule mRNAs into homotypic clusters. Mol. Cell 78, 941–950 e12 (2020). (PMID: 32464092732574210.1016/j.molcel.2020.05.008)
      Li, P. T. X., Bustamante, C. & Tinoco, I. Jr Unusual mechanical stability of a minimal RNA kissing complex. Proc. Natl Acad. Sci. 103, 15847–15852 (2006). (PMID: 17043221163509110.1073/pnas.0607202103)
      Pujari, N. et al. Engineering crystal packing in RNA structures I: past and future strategies for engineering RNA packing in crystals. Cryst. (Basel) 11, 952 (2021).
      Pomeranz Krummel, D. A., Oubridge, C., Leung, A. K. W., Li, J. & Nagai, K. Crystal structure of human spliceosomal U1 snRNP at 5.5 Å resolution. Nature 458, 475–480 (2009). (PMID: 19325628267351310.1038/nature07851)
      Yamazaki, T., Nakagawa, S. & Hirose, T. Architectural RNAs for membraneless nuclear body formation. Cold Spring Harb. Symp. Quant. Biol. 84, 227–237 (2019). (PMID: 3201986210.1101/sqb.2019.84.039404)
      Souquere, S., Beauclair, G., Harper, F., Fox, A. & Pierron, G. Highly ordered spatial organization of the structural long noncoding NEAT1 RNAs within paraspeckle nuclear bodies. Mol. Biol. Cell 21, 4020–4027 (2010). (PMID: 20881053298213610.1091/mbc.e10-08-0690)
      Chujo, T. et al. Unusual semi‐extractability as a hallmark of nuclear body‐associated architectural noncoding RNAs. EMBO J. 36, 1447–1462 (2017). (PMID: 28404604543021810.15252/embj.201695848)
      Eichler, C. E., Hakes, A. C., Hull, B. & Gavis, E. R. Compartmentalized oskardegradation in the germ plasm safeguards germline development. eLife 9, e49988 (2020). (PMID: 31909715698687010.7554/eLife.49988)
      Little, S. C., Sinsimer, K. S., Lee, J. J., Wieschaus, E. F. & Gavis, E. R. Independent and coordinate trafficking of single Drosophilagerm plasm mRNAs. Nat. Cell Biol. 17, 558–568 (2015). (PMID: 25848747441703610.1038/ncb3143)
      Langdon, E. M. et al. mRNA structure determines specificity of a polyQ-driven phase separation. Science 360, 922–927 (2018). (PMID: 29650703619203010.1126/science.aar7432)
      Ferrandon, D., Koch, I., Westhof, E. & Nusslein-Volhard, C. RNA–RNA interaction is required for the formation of specific bicoid mRNA 3′ UTR-STAUFEN ribonucleoprotein particles. EMBO J. 16, 1751–1758 (1997). (PMID: 9130719116977810.1093/emboj/16.7.1751)
      Gaspar, I., Sysoev, V., Komissarov, A. & Ephrussi, A. An RNA-binding atypical tropomyosin recruits kinesin-1 dynamically to oskar mRNPs. EMBO J. 36, 319–333 (2017). (PMID: 2802805210.15252/embj.201696038)
      Nakamura, A., Amikura, R., Hanyu, K. & Kobayashi, S. Me31B silences translation of oocyte-localizing RNAs through the formation of cytoplasmic RNP complex during Drosophila oogenesis. Development. 28, 3233–3242 (2001). (PMID: 10.1242/dev.128.17.3233)
      Gaspar, I., Wippich, F. & Ephrussi, A. Enzymatic production of single-molecule FISH and RNA capture probes. RNA 23, 1582–1591 (2017). (PMID: 28698239560211510.1261/rna.061184.117)
      Mach, J. M. & Lehmann, R. An Egalitarian–BicaudalD complex is essential for oocyte specification and axis determination in Drosophila. Genes Dev. 11, 423–435 (1997). (PMID: 904285710.1101/gad.11.4.423)
      Gaspar, I. et al. Klar ensures thermal robustness of oskarlocalization by restraining RNP motility. J. Cell Biol. 206, 199–215 (2014). (PMID: 25049271410777910.1083/jcb.201310010)
    • Grant Information:
      EP 37/4-1 Deutsche Forschungsgemeinschaft (German Research Foundation)
    • Accession Number:
      0 (Drosophila Proteins)
      0 (osk protein, Drosophila)
      0 (RNA-Binding Proteins)
      0 (Ribonucleoproteins)
      0 (RNA, Messenger)
      0 (bru1 protein, Drosophila)
    • Publication Date:
      Date Created: 20241001 Date Completed: 20241116 Latest Revision: 20241120
    • Publication Date:
      20241120
    • Accession Number:
      PMC11567897
    • Accession Number:
      10.1038/s41556-024-01519-3
    • Accession Number:
      39354131