Menu
×
West Ashley Library
Closed (2024 - Christmas)
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed (2024 - Christmas)
Phone: (843) 805-6888
Village Library
Closed (2024 - Christmas)
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed (2024 - Christmas)
Phone: (843) 889-3300
Otranto Road Library
Closed (2024 - Christmas)
Phone: (843) 572-4094
Mt. Pleasant Library
Closed (2024 - Christmas)
Phone: (843) 849-6161
McClellanville Library
Closed (2024 - Christmas)
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed (2024 - Christmas)
Phone: (843) 744-2489
John's Island Library
Closed (2024 - Christmas)
Phone: (843) 559-1945
Hurd/St. Andrews Library
Closed (2024 - Christmas)
Phone: (843) 766-2546
Folly Beach Library
Closed (2024 - Christmas)
Phone: (843) 588-2001
Edisto Island Library
Closed (2024 - Christmas)
Phone: (843) 869-2355
Dorchester Road Library
Closed (2024 - Christmas)
Phone: (843) 552-6466
John L. Dart Library
Closed (2024 - Christmas)
Phone: (843) 722-7550
Baxter-Patrick James Island
Closed (2024 - Christmas)
Phone: (843) 795-6679
Main Library
Closed (2024 - Christmas)
Phone: (843) 805-6930
Bees Ferry West Ashley Library
Closed (2024 - Christmas)
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed (2024 - Christmas)
Phone: (843) 883-3914
Mobile Library
Closed (2024 - Christmas)
Phone: (843) 805-6909
Today's Hours
West Ashley Library
Closed (2024 - Christmas)
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed (2024 - Christmas)
Phone: (843) 805-6888
Village Library
Closed (2024 - Christmas)
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed (2024 - Christmas)
Phone: (843) 889-3300
Otranto Road Library
Closed (2024 - Christmas)
Phone: (843) 572-4094
Mt. Pleasant Library
Closed (2024 - Christmas)
Phone: (843) 849-6161
McClellanville Library
Closed (2024 - Christmas)
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed (2024 - Christmas)
Phone: (843) 744-2489
John's Island Library
Closed (2024 - Christmas)
Phone: (843) 559-1945
Hurd/St. Andrews Library
Closed (2024 - Christmas)
Phone: (843) 766-2546
Folly Beach Library
Closed (2024 - Christmas)
Phone: (843) 588-2001
Edisto Island Library
Closed (2024 - Christmas)
Phone: (843) 869-2355
Dorchester Road Library
Closed (2024 - Christmas)
Phone: (843) 552-6466
John L. Dart Library
Closed (2024 - Christmas)
Phone: (843) 722-7550
Baxter-Patrick James Island
Closed (2024 - Christmas)
Phone: (843) 795-6679
Main Library
Closed (2024 - Christmas)
Phone: (843) 805-6930
Bees Ferry West Ashley Library
Closed (2024 - Christmas)
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed (2024 - Christmas)
Phone: (843) 883-3914
Mobile Library
Closed (2024 - Christmas)
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Partial chemogenetic inhibition of the locus coeruleus due to heterogeneous transduction of noradrenergic neurons preserved auditory salience processing in wild-type rats.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Kabanova A;Kabanova A; Yang M; Yang M; Logothetis NK; Logothetis NK; Logothetis NK; Logothetis NK; Eschenko O; Eschenko O
- Source:
The European journal of neuroscience [Eur J Neurosci] 2024 Nov; Vol. 60 (9), pp. 6237-6253. Date of Electronic Publication: 2024 Sep 30.- Publication Type:
Journal Article- Language:
English - Source:
- Additional Information
- Source: Publisher: Wiley-Blackwell Country of Publication: France NLM ID: 8918110 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1460-9568 (Electronic) Linking ISSN: 0953816X NLM ISO Abbreviation: Eur J Neurosci Subsets: MEDLINE
- Publication Information: Publication:
: Oxford : Wiley-Blackwell
Original Publication: Oxford, UK : Published on behalf of the European Neuroscience Association by Oxford University Press, c1989- - Subject Terms: Locus Coeruleus*/drug effects ; Locus Coeruleus*/physiology ; Locus Coeruleus*/metabolism ; Adrenergic Neurons*/drug effects ; Adrenergic Neurons*/physiology ; Adrenergic Neurons*/metabolism; Animals ; Rats ; Male ; Clozapine/pharmacology ; Clozapine/analogs & derivatives ; Reflex, Startle/drug effects ; Reflex, Startle/physiology ; Clonidine/pharmacology ; Adrenergic alpha-2 Receptor Agonists/pharmacology ; Transduction, Genetic ; Prepulse Inhibition/drug effects ; Prepulse Inhibition/physiology ; Auditory Perception/physiology ; Auditory Perception/drug effects ; Rats, Sprague-Dawley ; Adenoviruses, Canine ; Genetic Vectors
- Abstract: The acoustic startle reflex (ASR) and prepulse inhibition of the ASR (PPI) assess the efficiency of salience processing, a fundamental brain function that is impaired in many psychiatric conditions. Both ASR and PPI depend on noradrenergic transmission, yet the modulatory role of the locus coeruleus (LC) remains controversial. Clonidine (0.05 mg/kg, i.p.), an alpha2-adrenoreceptor agonist, strongly reduced the ASR amplitude. In contrast, chemogenetic LC inhibition only mildly suppressed the ASR and did affect the PPI in virus-transduced rats. The canine adenovirus type 2 (CAV2)-based vector carrying a gene cassette for the expression of inhibitory receptors (hM4Di) and noradrenergic cell-specific promoter (PRSx8) had high cell-type specificity (94.4 ± 3.1%) but resulted in heterogeneous virus transduction of DbH-positive LC neurons (range: 9.2-94.4%). Clozapine-N-oxide (CNO; 1 mg/kg, i.p.), a hM4Di actuator, caused the firing cessation of hM4Di-expressing LC neurons, yet complete inhibition of the entire population of LC neurons was not achieved. Case-based immunohistochemistry revealed that virus injections distal (> 150 μm) to the LC core resulted in partial LC transduction, while proximal (< 50 μm) injections caused neuronal loss due to virus neurotoxicity. Neither the ASR nor PPI differed between the intact and virus-transduced rats. Our results suggest that a residual activity of virus-non-transduced LC neurons might have been sufficient for mediating an unaltered ASR and PPI. Our study highlights the importance of a case-based assessment of the virus efficiency, specificity, and neurotoxicity for targeted cell populations and of considering these factors when interpreting behavioral effects in experiments employing chemogenetic modulation.
(© 2024 The Author(s). European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.) - References: Alsene, K. M., & Bakshi, V. P. (2011). Pharmacological stimulation of locus coeruleus reveals a new antipsychotic‐responsive pathway for deficient sensorimotor gating. Neuropsychopharmacology, 36, 1656–1667. https://doi.org/10.1038/npp.2011.47.
Alsene, K. M., Rajbhandari, A. K., Ramaker, M. J., & Bakshi, V. P. (2011). Discrete forebrain neuronal networks supporting noradrenergic regulation of sensorimotor gating. Neuropsychopharmacology, 36, 1003–1014. https://doi.org/10.1038/npp.2010.238.
Andrade, R., & Aghajanian, G. K. (1982). Single cell activity in the noradrenergic A‐5 region: Responses to drugs and peripheral manipulations of blood pressure. Brain Research, 242, 125–135. https://doi.org/10.1016/0006-8993(82)90502-9.
Ansari, A. M., Ahmed, A. K., Matsangos, A. E., Lay, F., Born, L. J., Marti, G., Harmon, J. W., & Sun, Z. (2016). Cellular GFP toxicity and immunogenicity: Potential confounders in in vivo cell tracking experiments. Stem Cell Reviews and Reports, 12, 553–559. https://doi.org/10.1007/s12015-016-9670-8.
Aston‐Jones, G., & Bloom, F. E. (1981). Norepinephrine‐containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non‐noxious environmental stimuli. The Journal of Neuroscience, 1, 887–900. https://doi.org/10.1523/JNEUROSCI.01-08-00887.1981.
Azzopardi, E., Louttit, A. G., DeOliveira, C., Laviolette, S. R., & Schmid, S. (2018). The role of cholinergic midbrain neurons in startle and prepulse inhibition. The Journal of Neuroscience, 38, 8798–8808. https://doi.org/10.1523/JNEUROSCI.0984-18.2018.
Benloucif, S., Bennett, E. L., & Rosenzweig, M. R. (1995). Norepinephrine and neural plasticity: The effects of xylamine on experience‐induced changes in brain weight, memory, and behavior. Neurobiology of Learning and Memory, 63, 33–42. https://doi.org/10.1006/nlme.1995.1003.
Bouret, S., & Sara, S. J. (2005). Network reset: A simplified overarching theory of locus coeruleus noradrenaline function. Trends in Neurosciences, 28, 574–582. https://doi.org/10.1016/j.tins.2005.09.002.
Brunet, J.‐F., & Pattyn, A. (2002). Phox2 genes ‐ From patterning to connectivity. Current Opinion in Genetics & Development, 12, 435–440. https://doi.org/10.1016/S0959-437X(02)00322-2.
Campbell, E. J., & Marchant, N. J. (2018). The use of chemogenetics in behavioural neuroscience: Receptor variants, targeting approaches and caveats. British Journal of Pharmacology, 175, 994–1003. https://doi.org/10.1111/bph.14146.
Cerpa, J. C., Marchand, A. R., Salafranque, Y., Pape, J. R., Kremer, E. J., & Coutureau, E. (2020). Targeting catecholaminergic systems in transgenic rats with a CAV‐2 vector harboring a Cre‐dependent DREADD cassette. Frontiers in Molecular Neuroscience, 13, 121. https://doi.org/10.3389/fnmol.2020.00121.
Cerpa, J. C., Piccin, A., Dehove, M., Lavigne, M., Kremer, E. J., Wolff, M., Parkes, S. L., & Coutureau, E. (2023). Inhibition of noradrenergic signaling in rodent orbitofrontal cortex impairs the updating of goal‐directed actions. eLife, 12, e81623. https://doi.org/10.7554/eLife.81623.
Cheng, L., Xu, C., Wang, L., An, D., Jiang, L., Zheng, Y., Xu, Y., Wang, Y., Wang, Y., Zhang, K., Wang, X., Zhang, X., Bao, A., Zhou, Y., Yang, J., Duan, S., Swaab, D. F., Hu, W., & Chen, Z. (2021). Histamine H(1) receptor deletion in cholinergic neurons induces sensorimotor gating ability deficit and social impairments in mice. Nature Communications, 12, 1142. https://doi.org/10.1038/s41467-021-21476-x.
Davis, M., & Astrachan, D. I. (1981). Spinal modulation of acoustic startle: Opposite effects of clonidine and d‐amphetamine. Psychopharmacology, 75, 219–225. https://doi.org/10.1007/BF00432427.
Davis, M., Cedarbaum, J. M., Aghajanian, G. K., & Gendelman, D. S. (1977). Effects of clonidine on habituation and sensitization of acoustic startle in normal, decerebrate and locus coeruleus lesioned rats. Psychopharmacology, 51, 243–253. https://doi.org/10.1007/BF00431631.
Fan, Y., Huang, J., Kieran, N., & Zhu, M.‐Y. (2009). Effects of transcription factors Phox2 on expression of norepinephrine transporter and dopamine beta‐hydroxylase in SK‐N‐BE(2)C cells. Journal of Neurochemistry, 110, 1502–1513. https://doi.org/10.1111/j.1471-4159.2009.06260.x.
Foote, S. L., Aston‐Jones, G., & Bloom, F. E. (1980). Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proceedings of the National Academy of Sciences of the United States of America, 77, 3033–3037. https://doi.org/10.1073/pnas.77.5.3033.
Franowicz, J. S., & Arnsten, A. F. (1999). Treatment with the noradrenergic alpha‐2 agonist clonidine, but not diazepam, improves spatial working memory in normal young rhesus monkeys. Neuropsychopharmacology, 21, 611–621. https://doi.org/10.1016/S0893-133X(99)00060-3.
Fritschy, J. M., & Grzanna, R. (1990). Distribution of locus coeruleus axons within the rat brainstem demonstrated by Phaseolus vulgaris leucoagglutinin anterograde tracing in combination with dopamine‐beta‐hydroxylase immunofluorescence. The Journal of Comparative Neurology, 293, 616–631. https://doi.org/10.1002/cne.902930407.
Fulcher, N., Azzopardi, E., De Oliveira, C., Hudson, R., Schormans, A. L., Zaman, T., Allman, B. L., Laviolette, S. R., & Schmid, S. (2020). Deciphering midbrain mechanisms underlying prepulse inhibition of startle. Progress in Neurobiology, 185, 101734. https://doi.org/10.1016/j.pneurobio.2019.101734.
Galvan, A., Raper, J., Hu, X., Paré, J.‐F., Bonaventura, J., Richie, C. T., Michaelides, M., Mueller, S. A. L., Roseboom, P. H., Oler, J. A., Kalin, N. H., Hall, R. A., & Smith, Y. (2019). Ultrastructural localization of DREADDs in monkeys. The European Journal of Neuroscience, 50, 2801–2813. https://doi.org/10.1111/ejn.14429.
Giustino, T. F., Fitzgerald, P. J., Ressler, R. L., & Maren, S. (2019). Locus coeruleus toggles reciprocal prefrontal firing to reinstate fear. Proceedings of the National Academy of Sciences, 116, 8570–8575. https://doi.org/10.1073/pnas.1814278116.
Glennon, E., Carcea, I., Martins, A. R. O., Multani, J., Shehu, I., Svirsky, M. A., & Froemke, R. C. (2019). Locus coeruleus activation accelerates perceptual learning. Brain Research, 1709, 39–49. https://doi.org/10.1016/j.brainres.2018.05.048.
Goridis, C., & Rohrer, H. (2002). Specification of catecholaminergic and serotonergic neurons. Nature Reviews Neuroscience, 3, 531–541. https://doi.org/10.1038/nrn871.
Hamlett, E. D., Ledreux, A., Gilmore, A., Vazey, E. M., Aston‐Jones, G., Boger, H. A., Paredes, D., & Granholm, A.‐C. E. (2020). Inhibitory designer receptors aggravate memory loss in a mouse model of down syndrome. Neurobiology of Disease, 134, 104616. https://doi.org/10.1016/j.nbd.2019.104616.
Hayat, H., Regev, N., Matosevich, N., Sales, A., Paredes‐Rodriguez, E., Krom, A. J., Bergman, L., Li, Y., Lavigne, M., Kremer, E. J., Yizhar, O., Pickering, A. E., & Nir, Y. (2020). Locus coeruleus norepinephrine activity mediates sensory‐evoked awakenings from sleep. Science Advances, 6, eaaz4232. https://doi.org/10.1126/sciadv.aaz4232.
He, H., Hong, L., & Sajda, P. (2023). Pupillary response is associated with the reset and switching of functional brain networks during salience processing. PLoS Computational Biology, 19, e1011081. https://doi.org/10.1371/journal.pcbi.1011081.
Hermans, E. J., van Marle, H. J. F., Ossewaarde, L., Henckens, M. J. A. G., Qin, S., van Kesteren, M. T. R., Schoots, V. C., Cousijn, H., Rijpkema, M., Oostenveld, R., & Fernández, G. (2011). Stress‐related noradrenergic activity prompts large‐scale neural network reconfiguration. Science, 334, 1151–1153. https://doi.org/10.1126/science.1209603.
Hobson, J. A., McCarley, R. W., & Wyzinski, P. W. (1975). Sleep cycle oscillation: Reciprocal discharge by two brainstem neuronal groups. Science, 189, 55–58. https://doi.org/10.1126/science.1094539.
Hwang, D. Y., Hwang, M. M., Kim, H. S., & Kim, K. S. (2005). Genetically engineered dopamine beta‐hydroxylase gene promoters with better PHOX2‐binding sites drive significantly enhanced transgene expression in a noradrenergic cell‐specific manner. Molecular Therapy, 11, 132–141. https://doi.org/10.1016/j.ymthe.2004.08.017.
Janitzky, K., Lippert, M. T., Engelhorn, A., Tegtmeier, J., Goldschmidt, J., Heinze, H. J., & Ohl, F. W. (2015). Optogenetic silencing of locus coeruleus activity in mice impairs cognitive flexibility in an attentional set‐shifting task. Frontiers in Behavioral Neuroscience, 9, 286. https://doi.org/10.3389/fnbeh.2015.00286.
Kabanova, A., Cavani, E., Logothetis, N. K., & Eschenko, O. (2022). Feasibility of canine adenovirus type 2 (CAV2) based vector for the locus coeruleus optogenetic activation in non‐transgenic rats: Implications for functional studies. Brain Sciences, 12, 904. https://doi.org/10.3390/brainsci12070904.
Kabanova, A., Fedorov, L., & Eschenko, O. (2024). The projection‐specific noradrenergic modulation of perseverative spatial behavior in adult male rats. Eneuro, 11, ENEURO.0063‐0024.2024. https://doi.org/10.1523/ENEURO.0063-24.2024.
Kehne, J. H., & Davis, M. (1985). Central noradrenergic involvement in yohimbine excitation of acoustic startle: Effects of DSP4 and 6‐OHDA. Brain Research, 330, 31–41. https://doi.org/10.1016/0006-8993(85)90005-8.
Khakpour‐Taleghani, B., Lashgari, R., Motamedi, F., & Naghdi, N. (2009). Effect of reversible inactivation of locus ceruleus on spatial reference and working memory. Neuroscience, 158, 1284–1291. https://doi.org/10.1016/j.neuroscience.2008.11.001.
Kremer, E. J., Boutin, S., Chillon, M., & Danos, O. (2000). Canine adenovirus vectors: An alternative for adenovirus‐mediated gene transfer. Journal of Virology, 74, 505–512. https://doi.org/10.1128/JVI.74.1.505-512.2000.
Kumari, V., Cotter, P., Corr, P. J., Gray, J. A., & Checkley, S. A. (1996). Effect of clonidine on the human acoustic startle reflex. Psychopharmacology, 123, 353–360. https://doi.org/10.1007/BF02246646.
Langlais, P. J., Connor, D. J., & Thal, L. (1993). Comparison of the effects of single and combined neurotoxic lesions of the nucleus basalis magnocellularis and dorsal noradrenergic bundle on learning and memory in the rat. Behavioural Brain Research, 54, 81–90. https://doi.org/10.1016/0166-4328(93)90050-Z.
Leaton, R. N., & Cassella, J. V. (1984). The effects of clonidine, prazosin, and propranolol on short‐term and long‐term habituation of the acoustic startle response in rats. Pharmacology, Biochemistry, and Behavior, 20, 935–942. https://doi.org/10.1016/0091-3057(84)90019-4.
Li, Y., Hickey, L., Perrins, R., Werlen, E., Patel, A. A., Hirschberg, S., Jones, M. W., Salinas, S., Kremer, E. J., & Pickering, A. E. (2016). Retrograde optogenetic characterization of the pontospinal module of the locus coeruleus with a canine adenoviral vector. Brain Research, 1641, 274–290. https://doi.org/10.1016/j.brainres.2016.02.023.
Luppi, P. H., Gervasoni, D., Verret, L., Goutagny, R., Peyron, C., Salvert, D., Leger, L., & Fort, P. (2006). Paradoxical (REM) sleep genesis: The switch from an aminergic‐cholinergic to a GABAergic‐glutamatergic hypothesis. Journal of Physiology, Paris, 100, 271–283. https://doi.org/10.1016/j.jphysparis.2007.05.006.
Mahler, S. V., Vazey, E. M., Beckley, J. T., Keistler, C. R., McGlinchey, E. M., Kaufling, J., Wilson, S. P., Deisseroth, K., Woodward, J. J., & Aston‐Jones, G. (2014). Designer receptors show role for ventral pallidum input to ventral tegmental area in cocaine seeking. Nature Neuroscience, 17, 577–585. https://doi.org/10.1038/nn.3664.
Mair, R. D., Zhang, Y., Bailey, K. R., Toupin, M. M., & Mair, R. G. (2005). Effects of clonidine in the locus coeruleus on prefrontal‐ and hippocampal‐dependent measures of attention and memory in the rat. Psychopharmacology, 181, 280–288. https://doi.org/10.1007/s00213-005-2263-x.
Maurya, S., & Jayandharan, G. R. (2020). Gene therapy: Contest between adeno‐associated virus and host cells and the impact of UFMylation. Molecular Pharmaceutics, 17, 3649–3653. https://doi.org/10.1021/acs.molpharmaceut.0c00512.
Miller, E. A., Kastner, D. B., Grzybowski, M. N., Dwinell, M. R., Geurts, A. M., & Frank, L. M. (2021). Robust and replicable measurement for prepulse inhibition of the acoustic startle response. Molecular Psychiatry, 26, 1909–1927. https://doi.org/10.1038/s41380-020-0703-y.
Morgan, C. A., Southwick, S. M., Grillon, C., Davis, M., Krystal, J. H., & Charney, D. S. (1993). Yohimbine‐facilitated acoustic startle reflex in humans. Psychopharmacology, 110, 342–346. https://doi.org/10.1007/BF02251291.
Neves, R. M., van Keulen, S., Yang, M., Logothetis, N. K., & Eschenko, O. (2018). Locus coeruleus phasic discharge is essential for stimulus‐induced gamma oscillations in the prefrontal cortex. Journal of Neurophysiology, 119, 904–920. https://doi.org/10.1152/jn.00552.2017.
Nguyen, R., Morrissey, M. D., Mahadevan, V., Cajanding, J. D., Woodin, M. A., Yeomans, J. S., Takehara‐Nishiuchi, K., & Kim, J. C. (2014). Parvalbumin and GAD65 interneuron inhibition in the ventral hippocampus induces distinct behavioral deficits relevant to schizophrenia. The Journal of Neuroscience, 34, 14948–14960. https://doi.org/10.1523/JNEUROSCI.2204-14.2014.
Oyarzabal, E. A., Hsu, L. M., Das, M., Chao, T. H., Zhou, J., Song, S., Zhang, W., Smith, K. G., Sciolino, N. R., Evsyukova, I. Y., Yuan, H., Lee, S. H., Cui, G., Jensen, P., & Shih, Y. I. (2022). Chemogenetic stimulation of tonic locus coeruleus activity strengthens the default mode network. Science Advances, 8, eabm9898. https://doi.org/10.1126/sciadv.abm9898.
Pilz, P. K. D., & Schnitzler, H. U. (1996). Habituation and sensitization of the acoustic startle response in rats: Amplitude, threshold, and latency measures. Neurobiology of Learning and Memory, 66, 67–79. https://doi.org/10.1006/nlme.1996.0044.
Roth, B. L. (2016). DREADDs for neuroscientists. Neuron, 89, 683–694. https://doi.org/10.1016/j.neuron.2016.01.040.
Salinas, S., Bilsland, L. G., Henaff, D., Weston, A. E., Keriel, A., Schiavo, G., & Kremer, E. J. (2009). CAR‐associated vesicular transport of an adenovirus in motor neuron axons. PLoS Pathogens, 5, e1000442. https://doi.org/10.1371/journal.ppat.1000442.
Saloman, J. L., Scheff, N. N., Snyder, L. M., Ross, S. E., Davis, B. M., & Gold, M. S. (2016). Gi‐DREADD expression in peripheral nerves produces ligand‐dependent analgesia, as well as ligand‐independent functional changes in sensory neurons. The Journal of Neuroscience, 36, 10769–10781. https://doi.org/10.1523/JNEUROSCI.3480-15.2016.
Sara, S. J., & Bouret, S. (2012). Orienting and reorienting: The locus coeruleus mediates cognition through arousal. Neuron, 76, 130–141. https://doi.org/10.1016/j.neuron.2012.09.011.
Starke, K., & Altmann, K. P. (1973). Inhibition of adrenergic neurotransmission by clonidine: An action on prejunctional‐receptors. Neuropharmacology, 12, 339–347. https://doi.org/10.1016/0028-3908(73)90093-2.
Stevens, L., Larsen, L. E., Van Lysebettens, W., Carrette, E., Boon, P., Raedt, R., & Vonck, K. (2021). Optimized parameters for transducing the locus coeruleus using canine adenovirus type 2 (CAV2) vector in rats for chemogenetic modulation research. Frontiers in Neuroscience, 15, 663337. https://doi.org/10.3389/fnins.2021.663337.
Swift, K. M., Gross, B. A., Frazer, M. A., Bauer, D. S., Clark, K. J. D., Vazey, E. M., Aston‐Jones, G., Li, Y., Pickering, A. E., Sara, S. J., & Poe, G. R. (2018). Abnormal locus coeruleus sleep activity alters sleep signatures of memory consolidation and impairs place cell stability and spatial memory. Current Biology, 28, 3599–3609.e4. https://doi.org/10.1016/j.cub.2018.09.054.
Vazey, E. M., & Aston‐Jones, G. (2014). Designer receptor manipulations reveal a role of the locus coeruleus noradrenergic system in isoflurane general anesthesia. Proceedings of the National Academy of Sciences of the United States of America, 111, 3859–3864. https://doi.org/10.1073/pnas.1310025111.
Viswanathan, S., Williams, M. E., Bloss, E. B., Stasevich, T. J., Speer, C. M., Nern, A., Pfeiffer, B. D., Hooks, B. M., Li, W.‐P., English, B. P., Tian, T., Henry, G. L., Macklin, J. J., Patel, R., Gerfen, C. R., Zhuang, X., Wang, Y., Rubin, G. M., & Looger, L. L. (2015). High‐performance probes for light and electron microscopy. Nature Methods, 12, 568–576. https://doi.org/10.1038/nmeth.3365.
Wiegert, J. S., Mahn, M., Prigge, M., Printz, Y., & Yizhar, O. (2017). Silencing neurons: Tools, applications, and experimental constraints. Neuron, 95, 504–529. https://doi.org/10.1016/j.neuron.2017.06.050.
Xiang, L., Harel, A., Gao, H., Pickering, A. E., Sara, S. J., & Wiener, S. I. (2019). Behavioral correlates of activity of optogenetically identified locus coeruleus noradrenergic neurons in rats performing T‐maze tasks. Scientific Reports, 9, 1361. https://doi.org/10.1038/s41598-018-37227-w.
Yang, M., Logothetis, N. K., & Eschenko, O. (2021). Phasic activation of the locus coeruleus attenuates the acoustic startle response by increasing cortical arousal. Scientific Reports, 11, 1409. https://doi.org/10.1038/s41598-020-80703-5.
You, Q.‐L., Luo, Z.‐C., Luo, Z.‐Y., Kong, Y., Li, Z.‐L., Yang, J.‐M., Li, X.‐W., & Gao, T.‐M. (2021). Involvement of the thalamic reticular nucleus in prepulse inhibition of acoustic startle. Translational Psychiatry, 11, 241. https://doi.org/10.1038/s41398-021-01363-1.
Zerbi, V., Floriou‐Servou, A., Markicevic, M., Vermeiren, Y., Sturman, O., Privitera, M., von Ziegler, L., Ferrari, K. D., Weber, B., De Deyn, P. P., Wenderoth, N., & Bohacek, J. (2019). Rapid reconfiguration of the functional connectome after chemogenetic locus coeruleus activation. Neuron, 103, 702–718.e705. https://doi.org/10.1016/j.neuron.2019.05.034.
Zussy, C., Loustalot, F., Junyent, F., Gardoni, F., Bories, C., Valero, J., Desarménien, M. G., Bernex, F., Henaff, D., Bayo‐Puxan, N., Chen, J.‐W., Lonjon, N., de Koninck, Y., Malva, J. O., Bergelson, J. M., di Luca, M., Schiavo, G., Salinas, S., & Kremer, E. J. (2016). Coxsackievirus adenovirus receptor loss impairs adult neurogenesis, synapse content, and hippocampus plasticity. The Journal of Neuroscience, 36, 9558–9571. https://doi.org/10.1523/JNEUROSCI.0132-16.2016. - Grant Information: Max-Planck-Gesellschaft
- Contributed Indexing: Keywords: acoustic startle reflex; canine adenovirus; clonidine; prepulse inhibition; sensorimotor gating
- Accession Number: J60AR2IKIC (Clozapine)
MN3L5RMN02 (Clonidine)
0 (Adrenergic alpha-2 Receptor Agonists)
MZA8BK588J (clozapine N-oxide) - Publication Date: Date Created: 20240930 Date Completed: 20241104 Latest Revision: 20241104
- Publication Date: 20241104
- Accession Number: 10.1111/ejn.16550
- Accession Number: 39349382
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.