Phylogenomic and synteny analysis of BAHD and SCP/SCPL gene families reveal their evolutionary histories in plant specialized metabolism.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Royal Society Country of Publication: England NLM ID: 7503623 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1471-2970 (Electronic) Linking ISSN: 09628436 NLM ISO Abbreviation: Philos Trans R Soc Lond B Biol Sci Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : Royal Society, 1934-
    • Subject Terms:
    • Abstract:
      Plant chemical diversity is largely owing to a number of enzymes which catalyse reactions involved in the assembly, and in the subsequent chemical modifications, of the core structures of major classes of plant specialized metabolites. One such reaction is acylation. With this in mind, to study the deep evolutionary history of BAHD and the serine-carboxypeptidase-like (SCPL) acyltransferase genes, we assembled phylogenomic synteny networks based on a large-scale inference analysis of orthologues across whole-genome sequences of 126 species spanning Stramenopiles and Archaeplastida, including Arabidopsis thaliana , tomato ( Solanum lycopersicum ) and maize ( Zea mays ). As such, this study combined the study of genomic location with changes in gene sequences. Our analyses revealed that serine-carboxypeptidase (SCP)/serine-carboxypeptidase-like (SCPL) genes had a deeper evolutionary origin than BAHD genes, which expanded massively on the transition to land and with the development of the vascular system. The two gene families additionally display quite distinct patterns of copy number variation across phylogenies as well as differences in cross-phylogenetic syntenic network components. In unlocking the above observations, our analyses demonstrate the possibilities afforded by modern phylogenomic (syntenic) networks, but also highlight their current limitations, as demonstrated by the inability of phylogenetic methods to separate authentic SCPL acyltransferases from standard SCP peptide hydrolases.This article is part of the theme issue 'The evolution of plant metabolism'.
    • References:
      J Biol Chem. 2010 Dec 3;285(49):38337-47. (PMID: 20921218)
      Plant J. 2001 Oct;28(1):83-94. (PMID: 11696189)
      Plant J. 2004 Apr;38(1):80-92. (PMID: 15053762)
      Plant J. 2009 Mar;57(6):1040-53. (PMID: 19036031)
      Plant Physiol. 1997 Jan;113(1):293-304. (PMID: 12223607)
      Annu Rev Plant Biol. 2023 May 22;74:165-194. (PMID: 36450296)
      Curr Opin Plant Biol. 2017 Apr;36:129-134. (PMID: 28327435)
      Nat Genet. 2011 Oct 23;43(12):1266-9. (PMID: 22019783)
      Plant Physiol. 2022 May 3;189(1):37-48. (PMID: 35134228)
      Nat Commun. 2016 Aug 22;7:12399. (PMID: 27545969)
      Curr Opin Plant Biol. 2006 Jun;9(3):331-40. (PMID: 16616872)
      J Exp Bot. 2021 Mar 29;72(7):2334-2355. (PMID: 33315095)
      Proc Natl Acad Sci U S A. 2019 Feb 5;116(6):2165-2174. (PMID: 30674676)
      Am Nat. 1999 Aug;154(2):111-128. (PMID: 29578781)
      New Phytol. 2015 Nov;208(3):695-707. (PMID: 26053460)
      Nat Commun. 2024 Apr 17;15(1):3305. (PMID: 38632270)
      Plant Physiol. 2009 Feb;149(2):1028-41. (PMID: 19098092)
      Brief Bioinform. 2011 Sep;12(5):401-12. (PMID: 21705766)
      BMC Genomics. 2011 May 12;12:236. (PMID: 21569431)
      Philos Trans R Soc Lond B Biol Sci. 2024 Nov 18;379(1914):20230347. (PMID: 39343029)
      Nat Commun. 2021 Jun 9;12(1):3498. (PMID: 34108452)
      Plant J. 2007 May;50(4):678-95. (PMID: 17425720)
      Nucleic Acids Res. 2012 Apr;40(7):e49. (PMID: 22217600)
      Plant J. 2005 May;42(4):481-91. (PMID: 15860007)
      Plant Cell. 2000 Aug;12(8):1295-306. (PMID: 10948250)
      Nat Rev Genet. 2004 Apr;5(4):299-310. (PMID: 15131653)
      Plant Cell. 2009 Aug;21(8):2473-84. (PMID: 19684243)
      Phytochemistry. 1995 Aug;39(6):1443-6. (PMID: 7669282)
      Plant Physiol. 2018 Jun;177(2):513-521. (PMID: 29724771)
      Plant Physiol. 2023 Feb 12;191(2):854-861. (PMID: 36269202)
      Plant Physiol Biochem. 2018 Apr;125:126-135. (PMID: 29448154)
      Plant Physiol. 1999 Oct;121(2):453-60. (PMID: 10517836)
      Plant J. 2022 Sep;111(5):1453-1468. (PMID: 35816116)
      Plant Physiol. 2007 Aug;144(4):1986-99. (PMID: 17600138)
      New Phytol. 2018 Mar;217(4):1428-1434. (PMID: 29318635)
      Proc Natl Acad Sci U S A. 2001 May 8;98(10):5916-21. (PMID: 11320207)
      Proc Biol Sci. 2012 Dec 22;279(1749):5048-57. (PMID: 22977152)
      Plant Physiol. 2021 Apr 2;185(3):857-875. (PMID: 33793871)
      FEBS Lett. 2006 Nov 27;580(27):6366-74. (PMID: 17094968)
      BMC Plant Biol. 2019 Jun 17;19(1):261. (PMID: 31208339)
      Plant Physiol. 2007 May;144(1):43-53. (PMID: 17351055)
      Philos Trans R Soc Lond B Biol Sci. 2024 Nov 18;379(1914):20230349. (PMID: 39343028)
      Ann Bot. 2005 Jan;95(1):219-27. (PMID: 15596469)
      New Phytol. 2023 Dec;240(6):2204-2209. (PMID: 37658677)
      Nat Commun. 2016 Oct 04;7:12767. (PMID: 27698483)
      Genome Res. 2004 Oct;14(10A):1916-23. (PMID: 15466289)
      Mol Plant. 2019 Dec 2;12(12):1577-1586. (PMID: 31760159)
      Plant Physiol Biochem. 2018 Sep;130:356-366. (PMID: 30055344)
      Plant J. 2023 Jun;114(5):1178-1201. (PMID: 36891828)
      Plant Physiol. 2019 Sep;181(1):195-207. (PMID: 31213511)
      Plant J. 2012 Nov;72(3):411-22. (PMID: 22762247)
      Plant J. 2022 Dec;112(5):1281-1297. (PMID: 36307971)
      Mol Biol Evol. 2005 Apr;22(4):803-6. (PMID: 15616139)
      Genome Res. 2012 Dec;22(12):2356-67. (PMID: 22722344)
      Phytochemistry. 2011 Apr;72(4-5):423-9. (PMID: 21292287)
      Curr Opin Plant Biol. 2012 Apr;15(2):147-53. (PMID: 22480429)
      J Biol Chem. 2003 May 30;278(22):19870-7. (PMID: 12657648)
      Methods Mol Biol. 2019;1962:227-245. (PMID: 31020564)
      Plant J. 2019 Mar;97(6):1132-1153. (PMID: 30480348)
      Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16377-82. (PMID: 22988115)
      Plant Cell. 2015 Apr;27(4):1002-17. (PMID: 25862303)
      Plant Cell. 2016 Jul;28(7):1533-50. (PMID: 27354554)
      Phytochemistry. 2009 Oct-Nov;70(15-16):1652-62. (PMID: 19695650)
      Front Plant Sci. 2023 Feb 10;14:1067613. (PMID: 36844084)
      Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6902-7. (PMID: 10829071)
      PLoS One. 2019 Jul 26;14(7):e0220061. (PMID: 31348798)
      Plant Physiol. 2005 Jun;138(2):1136-48. (PMID: 15908604)
      Proc Natl Acad Sci U S A. 2016 Jan 12;113(2):E239-48. (PMID: 26715757)
      Nucleic Acids Res. 2012 Jan;40(2):e11. (PMID: 22102584)
      Front Plant Sci. 2020 Jan 31;10:1770. (PMID: 32082341)
      Plant Physiol Biochem. 2013 Nov;72:21-34. (PMID: 23473981)
      New Phytol. 2014 Mar;201(4):1141-9. (PMID: 23889087)
      Plant Physiol. 2016 Aug;171(4):2294-316. (PMID: 27288366)
      Planta. 2008 Jan;227(2):375-85. (PMID: 17882453)
      Plant Cell. 2017 Jun;29(6):1278-1292. (PMID: 28584165)
      Annu Rev Genet. 1971;5:81-120. (PMID: 16097652)
      Plant Cell. 2009 Jan;21(1):318-33. (PMID: 19168716)
      Plant Physiol. 2012 Nov;160(3):1164-74. (PMID: 22930748)
      Curr Opin Plant Biol. 2014 Jun;19:91-8. (PMID: 24907529)
      Plant J. 2022 Jul;111(1):117-133. (PMID: 35437852)
      Plant J. 2023 Nov;116(4):1152-1171. (PMID: 37285370)
      J Agric Food Chem. 2023 Jan 11;71(1):488-498. (PMID: 36562642)
      Trends Plant Sci. 2018 Oct;23(10):933-945. (PMID: 30122372)
      Curr Opin Plant Biol. 2018 Apr;42:49-54. (PMID: 29525128)
      Nat Plants. 2024 Jan;10(1):118-130. (PMID: 38168610)
      Sci Bull (Beijing). 2021 Dec 15;66(23):2381-2393. (PMID: 36654124)
      Nucleic Acids Res. 2002 Apr 1;30(7):1575-84. (PMID: 11917018)
      Nat Genet. 2014 Jul;46(7):714-21. (PMID: 24908251)
      Plant Physiol. 2023 Dec 30;194(1):274-295. (PMID: 37141316)
      Plant Physiol Biochem. 2022 Sep 1;186:310-321. (PMID: 35932655)
      Nat Commun. 2023 Feb 1;14(1):539. (PMID: 36725858)
      Plant Signal Behav. 2010 Feb;5(2):193-5. (PMID: 20173416)
      J Agric Food Chem. 2005 Jun 29;53(13):5461-6. (PMID: 15969534)
      Methods Enzymol. 2012;516:279-97. (PMID: 23034234)
      Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9903-8. (PMID: 15161969)
      Nat Rev Genet. 2009 Oct;10(10):725-32. (PMID: 19652647)
      Mol Plant. 2015 Jan;8(1):111-21. (PMID: 25578276)
      Mol Genet Genomics. 2016 Apr;291(2):739-52. (PMID: 26563433)
      Genome Biol. 2015 Aug 06;16:157. (PMID: 26243257)
      Plant J. 2021 Aug;107(4):975-1002. (PMID: 34165823)
      Nat Prod Rep. 2024 May 22;41(5):834-859. (PMID: 38323463)
      Science. 2008 Apr 25;320(5875):486-8. (PMID: 18436778)
      New Phytol. 2020 Aug;227(4):1109-1123. (PMID: 31769874)
      Genomics. 2008 Mar;91(3):243-8. (PMID: 18082363)
      J Exp Bot. 2015 May;66(9):2611-23. (PMID: 25711711)
      Methods Mol Biol. 2020;2093:161-171. (PMID: 32088896)
    • Contributed Indexing:
      Keywords: BAHD; SCPL; acyltransferase; phylogenomics; secondary metabolism; synteny
    • Accession Number:
      EC 3.4.- (Carboxypeptidases)
      EC 3.4.16.5 (serine carboxypeptidase)
      0 (Plant Proteins)
      EC 2.3.- (Acyltransferases)
    • Publication Date:
      Date Created: 20240929 Date Completed: 20240929 Latest Revision: 20241005
    • Publication Date:
      20241005
    • Accession Number:
      PMC11449225
    • Accession Number:
      10.1098/rstb.2023.0349
    • Accession Number:
      39343028