Menu
×
West Ashley Library
9 a.m. - 6 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 6 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 6 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 6 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 6 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 1 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 6 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. - 6 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. - 6 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 1 p.m.
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 3 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 6 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 6 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 6 p.m.
Phone: (843) 795-6679
Main Library
9 a.m. - 6 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. - 6 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
West Ashley Library
9 a.m. - 6 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 6 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 6 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 6 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 6 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 1 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 6 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. - 6 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. - 6 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 1 p.m.
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 3 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 6 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 6 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 6 p.m.
Phone: (843) 795-6679
Main Library
9 a.m. - 6 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. - 6 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
High aerospora levels and associated atmospheric circulation patterns: Pretoria, South Africa.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Roffe SJ;Roffe SJ;Roffe SJ;Roffe SJ; Ajikah LB; Ajikah LB; Ajikah LB; Ajikah LB; John J; John J; Garland RM; Garland RM; Lehtipalo K; Lehtipalo K; Bamford MK; Bamford MK
- Source:
International journal of biometeorology [Int J Biometeorol] 2024 Sep 28. Date of Electronic Publication: 2024 Sep 28.- Publication Type:
Journal Article- Language:
English - Source:
- Additional Information
- Publication Information: Ahead of Print
- Source: Publisher: Springer Verlag Country of Publication: United States NLM ID: 0374716 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1254 (Electronic) Linking ISSN: 00207128 NLM ISO Abbreviation: Int J Biometeorol Subsets: MEDLINE
- Publication Information: Publication: New York, NY : Springer Verlag
Original Publication: Leiden. - Abstract: At high exposure levels, airborne pollen grains and fungal spores (termed aerospora hereafter), can trigger severe allergic respiratory diseases. For South Africa's administrative capital Pretoria, which boasts dense vegetation within a large urban forest, it is valuable from a health perspective to understand daily atmospheric circulation patterns associated with high aerospora levels. Therefore, we utilised a daily aerospora grain count dataset collected in Pretoria from 08/2019-02/2023 to investigate atmospheric circulation patterns (derived from ERA5 reanalysis sea level pressure [SLP] and 500 hPa geopotential height [zg500] fields) associated with high-risk aerospora levels (aerospora grain count > 90th percentile). Concentrated during October-May, there were 128 high-risk days, with 69.6% of days occurring in November, February and April. Although generally above-average mid-tropospheric subsidence levels prevailed over Pretoria during high-risk days, no single distinct atmospheric circulation pattern was associated with these high-risk days. Therefore, using Principal Component Analysis, we classified 14 Circulation Weather Types (CWTs) for October-May months between 08/2019-02/2023 to assess which CWTs most frequently occurred during high-risk days. Three CWTs had a statistically significant proportion of high-risk days - collectively they occurred during 37.1% of days studied, yet accounted for 45.3% of high-risk days. Among these CWTs, two CWTs were similarly associated with surface and mid-tropospheric high-pressure conditions, while the third was associated with a surface and mid-tropospheric trough. By comparing our CWT classification to daily synoptic charts (from the South African Weather Service), our classification can be used to identify days with potentially high allergenicity risk over Pretoria.
(© 2024. The Author(s).) - References: Ajikah LB, Neumann FH, Berman D, Peter J (2020) Aerobiology in South Africa: A New Hope! S Afr J Sci 116(7/8):8112. https://doi.org/10.17159/sajs.2020/8112. (PMID: 10.17159/sajs.2020/8112)
Ajikah LB, Neumann FH, Alebiosu SO, Bamford M, Ogundipe OT (2021) Relevance of Aerobiological Studies in Nigeria: A Two-Year Aerospora Record of Lagos. Aerobiologia 37:597–613. https://doi.org/10.1007/s10453-021-09710-x. (PMID: 10.1007/s10453-021-09710-x)
Ajikah LB, Roffe SJ, Neumann FH, Bamford MK, Esterhuizen N, Berman D, Peter J (2023) Meteorological influences on airborne pollen and spores in Johannesburg (Gauteng), South Africa. Aerobiologia 39:363–388. https://doi.org/10.1007/s10453-023-09799-2. (PMID: 10.1007/s10453-023-09799-2)
Alarcón M, Rodríguez-Solà R, Casas-Castillo MC, Molero F, Salvador P, Periago C, Belmonte J (2023) Influence of synoptic meteorology on airborne allergenic pollen and spores in an urban environment in Northeastern Iberian Peninsula. Sci Total Environ 896:165337. https://doi.org/10.1016/j.scitotenv.2023.165337. (PMID: 10.1016/j.scitotenv.2023.165337)
Alduchov OA, Eskridge RE (1996) Improved Magnus form approximation of saturation vapor pressure. J Appl Meteorol 35:601–609. https://doi.org/10.1175/1520-0450(1996)035%3c0601:IMFAOS%3e2.0.CO;2. (PMID: 10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2)
Altieri KE, Keen SL (2019) Public health benefits of reducing exposure to ambient fine particulate matter in South Africa. Sci Total Environ 684:610–620. https://doi.org/10.1016/j.scitotenv.2019.05.355. (PMID: 10.1016/j.scitotenv.2019.05.355)
Asher MI, Weiland SK (1998) International study of Asthma and Allergies in childhood. Clin Exp Allergy 28(5):52–66. https://doi.org/10.1046/j.1365-2222.1998.028s5052.x. (PMID: 10.1046/j.1365-2222.1998.028s5052.x)
Baltaci H, Akkoyunlu BO, Arslan H, Yetemen O, Ozdemir ET (2019) The influence of meteorological conditions and atmospheric circulation types on PM 10 levels in western Turkey. Environ Monit Assess 191:466. https://doi.org/10.1007/s10661-019-7609-7. (PMID: 10.1007/s10661-019-7609-7)
Berman D (2007) Pollen monitoring in South Africa. Curr Allergy Clin Immunol J 20:184–187. https://hdl.handle.net/10520/EJC21901 . Accessed 21 June 2024.
Berman D (2018) Variations in pollen and fungal air spora: An analysis of 30 years of monitoring for the clinical assessment of patients in the Western Cape. Unpublished PhD Thesis, University of Cape Town. https://hdl.handle.net/11427/29696.
Berman D, Green RJ, Peter JG (2020) A new South African pollen network (SAPNET). Curr Allergy Clin Immunol J 33(2):74–82. https://hdl.handle.net/10520/EJC-205ff82456 . Accessed 21 June 2024.
Bishan C, Bing L, Chixin C, Junxia S, Shulin Z, Cailang L, Siqiao Y, Chuanxiu L (2020) Relationship between airborne pollen assemblages and major meteorological parameters in Zhanjiang South China. PLoS ONE 15(10):e0240160. https://doi.org/10.1371/journal.pone.0240160. (PMID: 10.1371/journal.pone.0240160)
Bousquet J, Anto JM, Bachert C, Baiardini I, Bosnic-Anticevich S, Canonica GW, Melén E, Palomares O, Scadding GK, Togias A, Toppila-Salmi S (2020) Allergic Rhinitis Nat Rev Dis Primers 6:95. https://doi.org/10.1038/s41572-020-00227-0. (PMID: 10.1038/s41572-020-00227-0)
Burge HA (1992) Monitoring for airborne allergens. Ann Allergy 69(1):9–18.
Cadman A, Dames JF, Terblanche PS, Nel R (1997) The Airkem study in Gauteng, South Africa. The role of the airspora in an industrial urban environment. Grana 36:175–179. https://doi.org/10.1080/00173139709362605. (PMID: 10.1080/00173139709362605)
Cattell RB (1966) The scree test for the number of factors. Multivar Behav Res 1(2):245–276. https://doi.org/10.1207/s15327906mbr0102_10. (PMID: 10.1207/s15327906mbr0102_10)
Department of Forestry, Fisheries and the Environment (2021) SA national land-cover datasets. https://egis.environment.gov.za/sa_national_land_cover_datasets . Accessed 1 December 2021.
Department of Forestry, Fisheries and the Environment (2023) State of the Environment. https://soer.environment.gov.za/soer/CMSWebSite/Reporting.aspx?menuId=4323 . Accessed 21 June 2024.
Dierick BJH, van der Molen T, Flokstra-de Blok BMJ, Muraro A, Postma MJ, Kocks JWH, van Boven JFM (2020) Burden and socioeconomics of asthma, allergic rhinitis, atopic dermatitis and food allergy. Expert Rev Pharmacoecon Outcomes Res 20(5):437–453. https://doi.org/10.1080/14737167.2020.1819793. (PMID: 10.1080/14737167.2020.1819793)
Engelbrecht CJ, Engelbrecht FA (2016) Shifts in Köppen-Geiger climate zones over southern Africa in relation to key global temperature goals. Theor Appl Climatol 123:247–261. https://doi.org/10.1007/s00704-014-1354-1. (PMID: 10.1007/s00704-014-1354-1)
Esterhuizen N, Berman DM, Neumann FH, Ajikah L, Quick LJ, Hilmer E, Van Aardt A, John J, Garland R, Hill T, Finch J, Hoek W, Bamford M, Seedat RY, Manjra AI, Peter J (2023) The South African Pollen Monitoring Network: Insights from 2 years of national aerospora sampling (2019–2021). Clin Transl Allergy 13(11):e12304. https://doi.org/10.1002/clt2.12304. (PMID: 10.1002/clt2.12304)
García-Mozo H (2017) Poaceae pollen as the leading aeroallergen worldwide: A review. Allergy 72(12):1849–1858. https://doi.org/10.1111/all.13210. (PMID: 10.1111/all.13210)
Gauteng City-Region (GCRO; 2018). The Gauteng City-region. https://gcro.ac.za/about/the-gauteng-city-region/ . Accessed 16 May 2024.
Gharbi D, Neumann FH, Cilliers S, Cornelius S, Viviers J, Drewes E, Puren K, Berman D, Esterhuizen N, Ajikah L, Peter J, Chakwizira J (2023) Allergenic tree pollen in Johannesburg and Cape Town as a public health risk: towards a sustainable implementation framework for South African cities. Discov Sustain 4:32. https://doi.org/10.1007/s43621-023-00151-9. (PMID: 10.1007/s43621-023-00151-9)
Green RJ, Hockman M, Friedman R, Davis M, Els C, McDonald M, Seedat R, Levin M, Potter P, Feldman C (2013) Chronic rhinitis in South Africa: update 2013: guidelines. S Afr Med J 103(6):419–422. https://doi.org/10.7196/samj.6972. (PMID: 10.7196/samj.6972)
Grinn-Gofroń A, Çeter T, Pinar NM, Bosiacka B, Çeter S, Keçeli T, Myśliwy M, Şahin AA, Bogawski P (2020) Airborne fungal spore load and season timing in the Central and Eastern Black Sea region of Turkey explained by climate conditions and land use. Agric For Meteorol 295:108191. https://doi.org/10.1016/j.agrformet.2020.108191. (PMID: 10.1016/j.agrformet.2020.108191)
Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M, De Chiara G, Dahlgren P, Dee D, Diamantakis M, Dragani R, Flemming J, Forbes R, Fuentes M, Geer A, Haimberger L, Healy S, Hogan RJ, Hólm E, Janisková M, Keeley S, Laloyaux P, Lopez P, Lupu C, Radnoti G, de Rosnay P, Rozum I, Vamborg V, Villaume S, Thépaut J-N (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146(730):1999–2049. https://doi.org/10.1002/qj.3803. (PMID: 10.1002/qj.3803)
Hersey SP, Garland RM, Crosbie E, Shingler T, Sorooshian A, Piketh S, Burger R (2015) An overview of regional and local characteristics of aerosols in South Africa using satellite, ground, and modeling data. Atmos Chem Phys 15(8):4259–4278. https://doi.org/10.5194/acp-15-4259-2015. (PMID: 10.5194/acp-15-4259-2015)
Howlett-Downing C, Boman J, Molnár P, Shirinde J, Wichmann J (2023) Health risk assessment of PM2.5 and PM2.5-bound trace elements in Pretoria, South Africa. J Environ Sci Health A, 58(4):342–358. https://doi.org/10.1080/10934529.2023.2186653.
Ibebuchi CC (2021) On the relationship between circulation patterns, the southern annular mode, and rainfall variability in Western Cape. Atmosphere 12(6):753. https://doi.org/10.3390/atmos12060753. (PMID: 10.3390/atmos12060753)
Ireland LG, Robbins J, Neal R, Barciela R, Gilbert R (2024) Generating weather pattern definitions over South Africa suitable for future use in impact-orientated medium-range forecasting. Int J Climatol. https://doi.org/10.1002/joc.8396. (PMID: 10.1002/joc.8396)
Joubert G (2006) Allergen sensitivities of patients with allergic rhinitis presenting to the ENT clinic, universitas academic hospital. Curr Allergy Clin Immunol J 19(3):130–132. https://hdl.handle.net/10520/AJA15284050_35 . Accessed 21 June 2024.
Jury MR (2017) Statistics and Meteorology of Air Pollution Episodes over the South African Highveld Based on Satellite-Model Datasets. J Appl Meteorol Clim 56(6):1583–1594. (PMID: 10.1175/JAMC-D-16-0354.1)
Jury MR, Buthelezi MS (2022) Air Pollution Dispersion over Durban. South Africa Atmosphere 13(5):811. https://doi.org/10.3390/atmos13050811. (PMID: 10.3390/atmos13050811)
Lai HC, Dai YT, Mkasimongwa SW, Hsiao MC, Lai LW (2023) The Impact of Atmospheric Synoptic Weather Condition and Long-Range Transportation of Air Mass on Extreme PM10 Concentration Events. Atmosphere 14(2):406. https://doi.org/10.3390/atmos14020406. (PMID: 10.3390/atmos14020406)
Landman WA, Malherbe J, Engelbrecht F (2017) South Africa’s present-day climate. In: Mambo J, Faccer K (eds) Understanding the social and environmental implications of global change, 3rd edn. Africa Sun Media, Stellenbosh, pp 7–12.
Lemus-Canovas M, Lopez-Bustins JA, Martin-Vide J, Royé D (2019) synoptReg: An R package for computing a synoptic climate classification and a spatial regionalization of environmental data. Environ Model Softw 118:114–119. https://doi.org/10.1016/j.envsoft.2019.04.006. (PMID: 10.1016/j.envsoft.2019.04.006)
Mahlalela PT, Blamey RC, Hart NCG, Reason CJC (2020) Drought in the Eastern Cape region of South Africa and trends in rainfall characteristics. Clim Dyn 55:2743–2759. https://doi.org/10.1007/s00382-020-05413-0. (PMID: 10.1007/s00382-020-05413-0)
Makra L, Sánta T, Matyasovszky I, Damialis A, Karatzas K, Bergmann KC, Vokou D (2010) Airborne pollen in three European cities: Detection of atmospheric circulation pathways by applying three-dimensional clustering of backward trajectories. J Geophys Res Atmos 115(D24):D24220. https://doi.org/10.1029/2010JD014743. (PMID: 10.1029/2010JD014743)
Matandirotya NR, Burger RP (2021) Spatiotemporal variability of tropospheric NO2 over four megacities in Southern Africa: Implications for transboundary regional air pollution. Environ Chall 5:100271. https://doi.org/10.1016/j.envc.2021.100271. (PMID: 10.1016/j.envc.2021.100271)
Matandirotya NR, Burger R (2023) An assessment of NO2 atmospheric air pollution over three cities in South Africa during 2020 COVID-19 pandemic. Air Qual Atmos Health 16(2):263–276. https://doi.org/10.1007/s11869-022-01271-3. (PMID: 10.1007/s11869-022-01271-3)
Mucina L, Hoare DB, Lötter MC, du Preez PJ, Rutherford MC, Scott-Shaw CR, Bredenkamp GJ, Powrie LW, Scott L, Camp KGT, Cilliers SS, Bezuidenthout H, Mostert TH, Siebert SJ, Winter PJD, Burrows JE, Dobson L, Ward RA, Stalmans M, Oliver EGH, Siebert F, Schmidt E, Kobisi K, Kose L (2006) Grassland Biome. In: L. Mucina L, Rutherford MC (eds) The vegetation of South Africa, Lesotho and Swaziland, South African National Biodiversity Institute, Pretoria, pp 348–437.
Ojrzyńska H, Bilińska D, Werner M, Kryza M, Malkiewicz M (2020) The influence of atmospheric circulation conditions on Betula and Alnus pollen concentrations in Wrocław, Poland. Aerobiologia 36:261–276. https://doi.org/10.1007/s10453-020-09629-9. (PMID: 10.1007/s10453-020-09629-9)
Paschalidou AK, Psistaki K, Charalampopoulos A, Vokou D, Kassomenos P, Damialis A (2020) Identifying patterns of airborne pollen distribution using a synoptic climatology approach. Sci Tot Environ 714:136625. https://doi.org/10.1016/j.scitotenv.2020.136625. (PMID: 10.1016/j.scitotenv.2020.136625)
Pillay MT, Minakawa N, Kim Y, Kgalane N, Ratnam JV, Behera SK, Hashizume M, Sweijd N (2023) Utilizing a novel high-resolution malaria dataset for climate-informed predictions with a deep learning transformer model. Sci Rep 13:23091. https://doi.org/10.1038/s41598-023-50176-3. (PMID: 10.1038/s41598-023-50176-3)
Potter PC, Juritz J, Little F, McCaldin M, Dowdle EB (1991) Clustering of fungal allergen-specific IgE antibody responses in allergic subjects. Ann Allergy 66(2):149–153.
Potter PC (2010) Common indoor and outdoor aeroallergens in South Africa. CME 28(9):426–432. https://hdl.handle.net/10520/EJC63876 . Accessed 21 June 2024.
Reason CJC, Smart S (2015) Tropical south east Atlantic warm anomalies over southern Africa. Front Environ Sci 3(24):2015. https://doi.org/10.3389/fenvs.2015.00024. (PMID: 10.3389/fenvs.2015.00024)
Rodríguez O, Lemus-Canovas M (2023) Synoptic patterns triggering tornadic storms on the Iberian Peninsula and the Balearic Islands. Atmos Res 285:106634. https://doi.org/10.1016/j.atmosres.2023.106634. (PMID: 10.1016/j.atmosres.2023.106634)
Scott L (1982) Late Quaternary fossil pollen grains from the Transvaal, South Africa. Rev Palaeobot Pal 36:241–278. https://doi.org/10.1016/0034-6667(82)90022-7. (PMID: 10.1016/0034-6667(82)90022-7)
Serrano-Notivoli R, Lemus-Canovas M, Barrao S, Sarricolea P, Meseguer-Ruiz O, Tejedor E (2022) Heat and cold waves in mainland Spain: Origins, characteristics, and trends. Weather Clim Extrem 37:100471. https://doi.org/10.1016/j.wace.2022.100471. (PMID: 10.1016/j.wace.2022.100471)
Singh AB, Kumar P (2004) Aerial pollen diversity in India and their clinical significance in allergic diseases. Indian J Clin Biochem 19(2):190–201. https://doi.org/10.1007/BF02894284. (PMID: 10.1007/BF02894284)
Singh AB, Mathur C (2012) An aerobiological perspective in allergy and asthma. Asia Pac Allergy 2(3):210–222. https://doi.org/10.5415/apallergy.2012.2.3.210. (PMID: 10.5415/apallergy.2012.2.3.210)
South African National Biodiversity Institute (SANBI; 2018) 2018 Beta Vegetation Map of South Africa, Lesotho and Swaziland. http://bgis.sanbi.org/SpatialDataset/Detail/669 . Accessed 1 December 2021.
South African Pollen Network (SAPNET; 2019). The real pollen count. https://pollencount.co.za/ . Accessed 17 June 2024.
Steckling-Muschack N, Mertes H, Mittermeier I, Schutzmeier P, Becker J, Bergmann KC, Böse-O′ Reilly S, Buters J, Damialis A, Heinrich J, Kabesch M (2021) A systematic review of threshold values of pollen concentrations for symptoms of allergy. Aerobiologia 37(3):395–424. https://doi.org/10.1007/s10453-021-09709-4. (PMID: 10.1007/s10453-021-09709-4)
Tyson PD, Preston-Whyte RA (2000) The Weather and Climate of Southern Africa. Oxford University Press, USA.
Uguz U (2023) The relationship between airborne pollen concentration and wind-related parameters in the atmosphere of İzmir, Turkey. Aerobiologia 39:441–455. https://doi.org/10.1007/s10453-023-09802-w. (PMID: 10.1007/s10453-023-09802-w)
van Rooyen C, van den Berg S, Becker PJ, Green RJ (2020) Allergic sensitisation in South Africa: exploring regional variation in sensitisation. S Afr Med J 110(7):686–690. https://hdl.handle.net/10520/EJC-1eac2a6785 . Accessed 21 June 2024.
van der Walt AJ, Fitchett JM (2021) Exploring extreme warm temperature trends in South Africa: 1960–2016. Theor Appl Climatol 143(3–4):1341–1360. https://doi.org/10.1007/s00704-020-03479-8. (PMID: 10.1007/s00704-020-03479-8)
Wang X, Zhang R (2020) Effects of atmospheric circulations on the interannual variation in PM 2.5 concentrations over the Beijing–Tianjin–Hebei region in 2013–2018. Atmos Chem Phys 20(13):7667-7682. https://doi.org/10.5194/acp-20-7667-2020.
Yin Z, Cao B, Wang H (2019) Dominant patterns of summer ozone pollution in eastern China and associated atmospheric circulations. Atmos Chem Phys 19(22):13933–13943. https://doi.org/10.5194/acp-19-13933-2019. (PMID: 10.5194/acp-19-13933-2019) - Contributed Indexing: Keywords: Airborne pollen and spores (aerospora); Allergenicity; Atmospheric circulation classification; High-risk days; Pretoria
- Publication Date: Date Created: 20240927 Latest Revision: 20240927
- Publication Date: 20240928
- Accession Number: 10.1007/s00484-024-02781-8
- Accession Number: 39333404
- Publication Information:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.