References: Kansy M, Avdeef A, Fischer H. Advances in screening for membrane permeability: high‐resolution PAMPA for medicinal chemists. Drug Discov Today Technol. 2004;1:349–355.
Avdeef A, Bendels S, Di L, Faller B, Kansy M, Sugano K, et al. PAMPA—critical factors for better predictions of absorption. J Pharm Sci. 2007;96:2893–2909.
Teksin ZS, Seo PR, Polli JE. Comparison of drug permeabilities and BCS classification: Three lipid‐component PAMPA system method versus Caco‐2 monolayers. AAPS J. 2010;12:238–241.
Blokhina SV, Volkova TV, Golubev VA, Perlovich GL. Understanding of relationship between phospholipid membrane permeability and self‐diffusion coefficients of some drugs and biologically active compounds in model solvents. Mol Pharm. 2017;14:3381–3390.
Artursson P, Karlsson J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (caco‐2) cells. Biochem Biophys Res Commun. 1991;175:880–885.
Artursson P, Palm K, Luthman K. Caco‐2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev. 2001;46:27–43.
Galkin A, Fallarero A, Vuorela PM. Coumarins permeability in caco‐2 cell model. J Pharm Pharmacol. 2009;61:177–184.
Cama J, Chimerel C, Pagliara S, Javer A, Keyser UF. A label‐free microfluidic assay to quantitatively study antibiotic diffusion through lipid membranes. Lab Chip. 2014;14:2303–2308.
Cama J, Schaich M, Nahas K, Hernández‐Ainsa S, Pagliara S, Keyser UF. Direct optofluidic measurement of the lipid permeability of fluoroquinolones. Sci Rep. 2016;6:32824.
Purushothaman S, Cama J, Keyser UF. Dependence of norfloxacin diffusion across bilayers on lipid composition. Soft Matter. 2016;12:2135–2144.
Schaich M, Cama J, Al Nahas K, Sobota D, Sleath H, Jahnke K, et al. An integrated microfluidic platform for quantifying drug permeation across biomimetic vesicle membranes. Mol Pharmaceutics. 2019;16:2494–2501.
Funakoshi K, Suzuki H, Takeuchi S. Lipid bilayer formation by contacting monolayers in a microfluidic device for membrane protein analysis. Anal Chem. 2006;78:8169–8174.
Nisisako T, Portonovo SA, Schmidt JJ. Microfluidic passive permeability assay using nanoliter droplet interface lipid bilayers. Analyst. 2013;138:6793–6800.
Schlicht B, Zagnoni M. Droplet‐interface‐bilayer assays in microfluidic passive networks. Sci Rep. 2015;5:09951.
Bachler S, Ort M, Krämer SD, Dittrich PS. Permeation studies across symmetric and asymmetric membranes in microdroplet arrays. Anal Chem. 2021;93:5137–5144.
Miyabe K, Inaba S, Umeda M. A study on attempt for determination of permeation kinetics of coumarin at lipid bilayer of liposomes by using capillary electrophoresis with moment analysis theory. J Chromatogr A. 2023;1687:463691.
Miyabe K, Umeda M, Inaba S, Senoo S. Analysis of mass transfer kinetics at lipid bilayer membranes of liposome by means of electrokinetic chromatography and moment theory. Ind Eng Chem Res. 2024;63:2822–2830.
Miyabe K. Moment analysis for mass transfer kinetics at the interface of spherical molecular aggregates. J Chromatogr A. 2018;1572:172–178.
Kucera EJ. Contribution to the theory of chromatography: Linear non‐equilibrium elution chromatography. J Chromatogr. 1965;19:237–248.
Kubin M. Beitrag zur Theorie der Chromatographie II. Einfluss der Diffusion ausserhalb und der Adsorption innerhalb des Sorbens‐korns. Collect Czech Chem Commun. 1965;30:2900–2907.
Grushka EJ. Chromatographic peak shapes. Their origin and dependence on the experimental parameters. Phys Chem. 1972;76:2586–2593.
Suzuki M, Smith JM.Transport and kinetic parameters by gas chromatographic techniques. Adv Chromatogr. 1975;13:213–263.
Ruthven DM. Principles of adsorption & adsorption processes. New York: John Wiley and Sons; 1984.
Suzuki M. Adsorption engineering. Tokyo/Amsterdam: Kodansha/Elsevier; 1990.
Fanali S, Haddad PR, Poole CF, Schoenmakers P, Lloyd D. Liquid chromatography: Fundamentals and instrumentation. Amsterdam: Elsevier; 2013.
Miyabe K. Moment theory for kinetic study of chromatography. Trends Anal Chem. 2016;81:79–86.
Landers JP. Handbook of capillary and microchip electrophoresis and associated microtechniques. Boca Raton: CRC Press, Taylor & Francis Group; 2008.
Fuguet E, Ràfols C, Bosch E, Rosés M. Solute‐solvent interactions in micellar electrokinetic chromatography: IV. Characterization of electroosmotic flow and micellar markers. Electrophoresis. 2002;23:56–66.
Müllerová L, Dubský P, Svobodová J, Gaš B. Determination of effective mobilities of EOF markers in BGE containing sulfated β‐cyclodextrin by a two‐detector method. Electrophoresis. 2013;34:768–776.
Hellqvist A, Hedeland Y, Pettersson C. Evaluation of electroosmotic markers in aqueous and nonaqueous capillary electrophoresis. Electrophoresis. 2013;34:3252–3259.
Wilke CR, Chang P. Correlation of diffusion coefficients in dilute solutions. AIChE J. 1955;1:264–270.
Treybal RE. Mass transfer operations. New York: McGraw‐Hill; 1980.
Poling BE, Prausnitz JM, O'connell JP. The properties of gases and liquids. New York: McGraw‐Hill; 2001.
Bird RB, Stewart WE, Lightfoot EN. Transport phenomena. New York: John Wiley and Sons; 2002.
Miller CC. The stokes‐einstein law for diffusion in solution. Proc R Soc London Ser A. 1924;106:724–749.
Pfitzner J. Poiseuille and his law. Anaesthesia. 1976;31:273–275.
Grushka E, McCormick RM, Kirkland JJ. Effect of temperature gradients on the efficiency of capillary zone electrophoresis separations. Anal Chem. 1989;61:241–246.
Suzuki N, Miyabe K. Evaluation of migration time and variance for accurate kinetic studies based on affinity capillary electrophoresis. Anal Chem. 2017;89:10487–10495.
No Comments.