Menu
×
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 5:30 p.m.
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 4 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 5:30 p.m.
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 4 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Exploring the genetic variability, virulence factors, and antibiotic resistance of Listeria monocytogenes from fresh produce, ready-to-eat hummus, and food-processing environments.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Toit SAD;Toit SAD; Rip D; Rip D
- Source:
Journal of food science [J Food Sci] 2024 Nov; Vol. 89 (11), pp. 6916-6945. Date of Electronic Publication: 2024 Sep 26.- Publication Type:
Journal Article; Review- Language:
English - Source:
- Additional Information
- Source: Publisher: Wiley on behalf of the Institute of Food Technologists Country of Publication: United States NLM ID: 0014052 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1750-3841 (Electronic) Linking ISSN: 00221147 NLM ISO Abbreviation: J Food Sci Subsets: MEDLINE
- Publication Information: Publication: Malden, Mass. : Wiley on behalf of the Institute of Food Technologists
Original Publication: Champaign, Ill. Institute of Food Technologists - Subject Terms: Listeria monocytogenes*/genetics ; Listeria monocytogenes*/drug effects ; Food Handling*/methods ; Food Microbiology* ; Virulence Factors*/genetics ; Fast Foods*/microbiology; Genetic Variation ; Food Contamination/prevention & control ; Drug Resistance, Bacterial ; Vegetables/microbiology ; Humans ; Anti-Bacterial Agents/pharmacology
- Abstract: Listeria monocytogenes is ubiquitous in nature and persistent in food-processing facilities, farms, retail stores, and home and restaurant kitchens. Current research suggests ready-to-eat (RTE) products (including RTE hummus and fresh produce) to be of increasing interest and concern. These foods are typically stored at refrigeration temperatures suited to the survival of L. monocytogenes and are consumed without further processing. Since L. monocytogenes is ubiquitous in agricultural environments, the cultivation of fresh produce predisposes it to contamination. The contamination of RTE foods originates either from raw ingredients or, more commonly, from cross-contamination within food-processing facilities. Research on the food-processing environment has been recommended to reduce the incidence of L. monocytogenes in foods. The consumption of contaminated foods by immunocompromised individuals causes invasive listeriosis, with a 20% to 30% fatality rate despite treatment. The emergence of antibiotic-resistant strains has reduced the effectiveness of modern medicine and may increase morbidity and mortality. Without epidemiological surveillance and identifying trends in disease determinants, no action can be taken to improve food safety and mitigate the risk of such outbreaks.
(© 2024 The Author(s). Journal of Food Science published by Wiley Periodicals LLC on behalf of Institute of Food Technologists.) - References: Acciari, V. A., Ruolo, A., Torresi, M., Ricci, L., Pompei, A., Marfoglia, C., Valente, F. M., Centorotola, G., Conte, A., Salini, R., D'alterio, N., Migliorati, G., & Pomilio, F. (2022). Genetic diversity of Listeria monocytogenes strains contaminating food and food producing environment as single based sample in Italy (retrospective study). International Journal of Food Microbiology, 366, 109562. https://doi.org/10.1016/j.ijfoodmicro.2022.109562.
Adzitey, F. (2015). Antibiotic classes and antibiotic susceptibility of bacterial isolates from selected poultry: A mini review. World's Veterinary Journal, 6(3), 36–41.
Aguado, V., Vitas, A. I., & García‐Jalón, I. (2004). Characterization of Listeria monocytogenes and Listeria innocua from a vegetable processing plant by RAPD and REA. International Journal of Food Microbiology, 90, 341–347. https://doi.org/10.1016/S0168‐1605(03)00313‐1.
Alali, W. Q., Mann, D. A., & Beuchat, L. R. (2012). Viability of Salmonella and Listeria monocytogenes in delicatessen salads and hummus as affected by sodium content and storage temperature. Journal of Food Protection, 75(6), 1043–1056. https://doi.org/10.4315/0362‐028X.JFP‐11–505.
Alvarez‐Molina, A., Cobo‐Díaz, J. F., López, M., Prieto, M., de Toro, M., & Alvarez‐Ordóñez, A. (2021). Unravelling the emergence and population diversity of Listeria monocytogenes in a newly built meat facility through whole genome sequencing. International Journal of Food Microbiology, 340, 109043. https://doi.org/10.1016/j.ijfoodmicro.2021.109043.
Angelos, J. A., Arens, A. L., Johnson, H. A., Cadriel, J. L., & Osburn, B. I. (2017). One Health in food safety and security education: Subject matter outline for a curricular framework. One Health, 3, 56–65. https://doi.org/10.1016/j.onehlt.2017.04.001.
Anwar, T. M., Pan, H., Chai, W., Ed‐Dra, A., Fang, W., Li, Y., & Yue, M. (2022). Genetic diversity, virulence factors, and antimicrobial resistance of Listeria monocytogenes from food, livestock, and clinical samples between 2002 and 2019 in China. International Journal of Food Microbiology, 366, 109572. https://doi.org/10.1016/j.ijfoodmicro.2022.109572.
Arvaniti, M., Tsakanikas, P., Papadopoulou, V., Giannakopoulou, A., & Skandamis, P. (2021). Listeria monocytogenes sublethal Injury and viable‐but‐nonculturable state induced by acidic conditions and disinfectants. Microbiology Spectrum, 9(3), e01377–21. https://doi.org/10.1128/Spectrum.01377‐21.
Asioli, D., Aschemann‐Witzel, J., Caputo, V., Vecchio, R., Annunziata, A., Næs, T., & Varela, P. (2017). Making sense of the “clean label” trends: A review of consumer food choice behaviour and discussion of industry implications. Food Research International, 99, 58–71. https://doi.org/10.1016/j.foodres.2017.07.022.
Aureli, P., Fiorucci, G. C., Caroli, D., Marchiaro, G., Novara, O., Leone, L., & Salmaso, S. (2000). An outbreak of febrile gastroenteritis associated with corn contaminated by Listeria monocytogenes. The New England Journal of Medicine, 342(17), 1236–1241. https://doi.org/10.1056/NEJM200004273421702.
Bester, L. A., & Essack, S. Y. (2010). Antibiotic resistance via the food chain: Fact or fiction? South African Journal of Science, 106(9/10), 1–5. https://doi.org/10.4102/sajs.v106i9/10.281.
Bland, R., Waite‐Cusic, J., Weisberg, A. J., Riutta, E. R., Chang, J. H., & Kovacevic, J. (2022). Adaption to a commercial quaternary ammonium compound sanitizer leads to cross‐resistance to select antibiotics in Listeria monocytogenes isolated from fresh produce environments. Frontiers in Microbiology, 12(12), 782920. https://doi.org/10.3389/fmicb.2021.782920.
Booton, R. D., Meeyai, A., Alhusein, N., Buller, H., Feil, E., Lambert, H., Mongkolsuk, S., Pitchforth, E., Reyher, K. K., Sakcamduang, W., Satayavivad, J., Singer, A. C., Sringernyuang, L., Thamlikitkul, V., Vass, L., Avison, M. B., Turner, K. M. E., Avison, M. B., Alhusein, N., … Wiratsudakul, A. (2021). One Health drivers of antibacterial resistance: Quantifying the relative impacts of human, animal and environmental use and transmission. One Health, 12, 100220. https://doi.org/10.1016/j.onehlt.2021.100220.
Bouymajane, A., Rhazi Filali, F., Oulghazi, S., Lafkih, N., Ed‐Dra, A., Aboulkacem, A., El Allaoui, A., Ouhmidou, B., & Moumni, M. (2021). Occurance, antimicrobial resistance, serotyping and virulence genes of Listeria monocytogenes isolated from foods. Heliyon, 7, e06169. https://doi.org/10.1016/j.heliyon.2021.e06169.
Braga, V., Vázquez, S., Vico, V., Pastorino, V., Mota, M. I., Legnani, M., Schelotto, F., Lancibidad, G., & Varela, G. (2017). Prevalence and serotype distribution of Listeria monocytogenes isolated from foods in Montevideo‐Uruguay. Brazilian Journal of Microbiology, 48, 689–694. https://doi.org/10.1016/j.bjm.2017.01.010.
Byrne, V. D. V., Hofer, E., Vallim, D. C., & Almeida, R. C. D. C. (2016). Occurrence and antimicrobial resistance patterns of Listeria monocytogenes isolated from vegetables. Brazilian Journal of Microbiology, 47, 438–443. https://doi.org/10.1016/j.bjm.2015.11.033.
Cabrera‐Pardo, J. R., Lood, R., Udekwu, K., Gonzalez‐Rocha, G., Munita, J. M., Järhult, J. D., & Opazo‐Capurro, A. (2019). A One Health–One world initiative to control antibiotic resistance: A Chile–Sweden collaboration. One Health, 8, 100100. https://doi.org/10.1016/j.onehlt.2019.100100.
Capita, R., Felices‐Mercado, A., García‐Fernández, C., & Alonso‐Calleja, C. (2019). Characterisation of Listeria monocytogenes originating from the Spanish meat‐processing chain. Foods, 8(8), 542. https://doi.org/10.3390/foods8110542.
Carpentier, B., & Cerf, O. (2011). Review—Persistence of Listeria monocytogenes in food industry equipment and premises. International Journal of Food Microbiology, 145, 1–8. https://doi.org/10.1016/j.ijfoodmicro.2011.01.005.
Cars, O., Xiao, Y., Lundborg, C. S., Nilsson, L. E., Shen, J., Sun, Q., Bi, Z., Börjesson, S., Greko, C., Wany, Y., Liu, Y., Ottoson, J., Li, X., Nilsson, M., Yin, H., Bi, Z., Zheng, B., Xia, X., Chen, B., … Tomson, G. (2016). Building bridges to operationalise one health—A Sino‐Swedish collaboration to tackle antibiotic resistance. One Health, 2, 139–143. https://doi.org/10.1016/j.onehlt.2016.09.002.
Caruso, M., Fraccalvieri, R., Pasquali, F., Santagada, G., Latorre, L. M., Difato, L. M., Miccolupo, A., Normanno, G., & Parisi, A. (2020). Antimicrobial susceptibility and multilocus sequence typing of Listeria monocytogenes isolated over 11 years from food, humans, and the environment in Italy. Foodborne Pathogens and Disease, 17(4), 284–294. https://doi.org/10.1089/fpd.2019.2723.
CDC. (2015a). Listeria (listeriosis): Commercially produced, prepackaged caramel apples. https://www.cdc.gov/listeria/outbreaks/caramel‐apples‐12‐14/index.html.
CDC. (2015b). Listeria (listeriosis): Wholesome soy products, inc. sprouts. https://www.cdc.gov/listeria/outbreaks/bean‐spouts‐11‐14/index.html.
CDC. (2016). Listeria (listeriosis): Packaged salads produced at Dole Ohio facility. https://www.cdc.gov/listeria/outbreaks/bagged‐salads‐01‐16/index.html.
CDC. (2020). Outbreak of listeria infections linked to enoki mushrooms. https://www.cdc.gov/listeria/outbreaks/enoki‐mushrooms‐03‐20/index.html.
Chen, J., Regan, P., Laksanalamai, P., Healey, S., & Hu, Z. (2017). Prevalence and methodologies for detection, characterization and subtyping of Listeria monocytogenes and L. ivanovii in foods and environmental sources. Food Science and Human Wellness, 6, 97–120. https://doi.org/10.1016/j.fshw.2017.06.002.
Chen, M., Chen, Y., Wu, Q., Zhang, J., Cheng, J., Li, F., Zeng, H., Lei, T., Pang, R., Ye, Q., Bai, J., Wang, J., Wei, X., Zhang, Y., & Ding, Y. (2019). Genetic characteristics and virulence of Listeria monocytogenes isolated from fresh vegetables in China. BioMed Central (BMC) Microbiology, 19, 119. https://doi.org/10.1186/s12866‐019‐1488‐5.
Cordano, A. M., & Jacquet, C. (2009). Listeria monocytogenes isolated from vegetable salads sold at supermarkets in Santiago, Chile: Prevalence and strain characterization. International Journal of Food Microbiology, 132, 176–179. https://doi.org/10.1016/j.ijfoodmicro.2009.04.008.
Das, N., Madhavan, J., Selvi, A., & Das, D. (2019). An overview of cephalosporin antibiotics as emerging contaminats: A serious environmental concern. 3 Biotech, 9(6), 231. https://doi.org/10.1007/s13205‐019‐1766‐9.
Desai, A. N., Anyoha, A., Madoff, L. C., & Lassmann, B. (2019). Changing epidemiology of Listeria monocytogenes outbreaks, sporadic cases, and recalls globally: A review of ProMED reports from 1996 to 2018. International Journal of Infectious Diseases, 84, 48–53. https://doi.org/10.1016/j.ijid.2019.04.021.
Ding, T., Iwahori, J., Kasuga, F., Wang, J., Forghani, F., Park, M., & Oh, D. (2013). Risk assessment for Listeria monocytogenes on lettuce from farm to table in Korea. Food Control, 30, 190–199. https://doi.org/10.1016/j.foodcont.2012.07.014.
Disson, O., Moura, A., & Lecuit, M. (2021). Making sense of the biodiversity and virulence of Listeria monocytogenes. Trends in Microbiology, 29(20), 811–822. https://doi.org/10.1016/j.tim.2021.01.008.
Douarre, P., Sévellec, Y., Le Grandois, P., Soumet, C., Bridier, A., & Roussel, S. (2022). FepR as a central genetic target in the adaption to quaternary ammonium compounds and cross‐resistance to ciprofloxacin in Listeria monocytogenes. Frontiers in Microbiology, 13(13), 864576. https://doi.org/10.3389/fmicb.2022.864576.
Doyle, M. P., Loneragan, G. H., Scott, H. M., & Singer, R. S. (2013). Antimicrobial resistance: Challenges and perspectives. Comprehensive Reviews in Food Science and Food Safety, 12(2), 234–248. https://doi.org/10.1111/1541‐4337.12008.
ECDC. (2017). Multi‐country outbreak of Listeria monocytogenes PCR serogroup IVb MLST ST6. https://www.ecdc.europa.eu/en/publications‐data/rapid‐risk‐assessment‐multi‐country‐outbreak‐listeria‐monocytogenes‐pcr‐serogroup.
Fernandes, P. (2016). Fusidic acid: A bacterial elongation factor inhibitor for the oral treatment of acute and chronic Staphylococcal infections. Cold Spring Harbor Perspectives in Medicine, 6(1), a025437. https://doi.org/10.1101/cshperspect.a025437.
Filiousis, G., Johansson, A., Frey, J., & Perreten, V. (2009). Prevalence, genetic diversity and antimicrobial susceptibility of Listeria monocytogenes isolated from open‐air food markets in Greece. Food Control, 20, 314–317. https://doi.org/10.1016/j.foodcont.2008.05.018.
Filipello, V., Mughini‐Gras, L., Gallina, S., Vitale, N., Mannelli, A., Pontello, M., Decastelli, L., Allard, M. W., Brown, E. W., & Lomonaco, S. (2020). Attribution of Listeria monocytogenes human infections to food and animal sources in Northern Italy. Food Microbiology, 89, 103433. https://doi.org/10.1016/j.fm.2020.103433.
Fox, E. M., Allnutt, T., Bradbury, M. I., Fanning, S., & Chandry, P. S. (2016). Comparative genomics of the Listeria monocytogenes ST204 subgroup. Frontiers in Microbiology, 7, 2057. https://doi.org/10.3389/fmicb.2016.02057.
Garner, D., & Kathariou, S. (2016). Fresh produce—Associated listeriosis outbreaks, sources of concern, teachable moments, and insights. Journal of Food Protection, 79(20), 337–344. https://doi.org/10.4315/0362‐028X.JFP‐15‐387.
Gaul, L. K., Farag, N. H., Shim, T., Kingsley, M. A., Silk, B. J., & Hyytia‐Trees, E. (2013). Hospital‐acquired listeriosis outbreak caused by contaminated diced celery—Texas, 2010. Clinical Infectious Diseases, 56(1), 20–26. https://doi.org/10.1093/cid/cis817.
Gerner‐Smidt, P., Hyytia‐Trees, E., & Barrett, T. J. (2013). Molecular source tracking and molecular subtyping. In M. P. Doyle & R. L. Buchanan (Eds.), Food microbiology—Fundamentals and frontiers (4th ed.; pp. 1059–1077). American Society for Microbiology.
Gómez, D., Azón, E., Marco, N., Carramiñana, J. J., Rota, C., Ariño, A., & Yangüela, J. (2014). Antimicrobial resistance of Listeria monocytogenes and Listeria innocua from meat products and meat‐processing environment. Food Microbiology, 42, 61–65. https://doi.org/10.1016/j.fm.2014.02.017.
Gonzalez‐Ruiz, A., Seaton, R. A., & Hamed, K. (2016). Daptomycin: An evidence‐based review of its role in the treatment of gram‐positive infections. Infection and Drug Resistance, 9, 47–58. https://doi.org/10.2147/IDR.S99046.
Hadjilouka, A., Andritsos, N. D., Paramithiotis, S., Mataragas, M., & Drosinos, E. H. (2014). Listeria monocytogenes serotype prevalence and biodiversity in diverse food products. Journal of Food Protection, 77, 2115–2120. https://doi.org/10.4315/0362‐028X.JFP‐14‐072.
Hartmann, C., Lazzarini, G., Funk, A., & Siegrist, M. (2021). Measuring consumers’ knowledge of the environmental impact of foods. Appetite, 167, 105622. https://doi.org/10.1016/j.appet.2021.105622.
Hashemian, S. M. R., Farhadi, T., & Ganjparvar, M. (2018). Linezolid: A review of its properties, function, and use in critical care. Drug Design, Development and Therapy, 12, 1759–1767. https://doi.org/10.2147/DDDT.S164515.
Hilliard, A., Leong, D., O'Callaghan, A., Culligan, E. P., Morgan, C. A., DeLappe, N., Hill, C., Jordan, K., Cormican, M., & Gahan, C. G. M. (2018). Genomic characterization of Listeria monocytogenes isolates associated with clinical listeriosis and the food production environment in Ireland. Genes, 9(171), 171. https://doi.org/10.3390/genes9030171.
Huang, Z., Zhu, Y. I.‐D., Deng, J., & Wang, C.‐L. U. (2022). Marketing healthy diets: The impact of health consciousness on Chinese consumers’ food choices. Sustainability, 14, 2059. https://doi.org/10.3390/su14042059.
Hyden, P., Pietzka, A., Lennkh, A., Murer, A., Springer, B., Blaschitz, M., Indra, A., Huhulescu, S., Allerberger, F., Ruppitsch, W., & Sensen, C. W. (2016). Whole genome sequence‐based serogrouping of Listeria monocytogenes isolates. Journal of Biotechnology, 235, 181–186. https://doi.org/10.1016/j.jbiotec.2016.06.005.
Iwu, C. D., & Okoh, A. I. (2020). Characterization of antibiogram fingerprints in Listeria monocytogenes recovered from irrigation water and agricultural soil samples. PLoS ONE, 15(2), e0228956. https://doi.org/10.1371/journal.pone.0228956.
Jagadeesan, B., Gerner‐Smidt, P., Allard, M. W., Leuillet, S., Winkler, A., Xiao, Y., Chaffron, S., Van Der Vossen, J., Tang, S., Katase, M., Mcclure, P., Kimura, B., Ching Chai, L., Chapman, J., & Grant, K. (2019). The use of next generation sequencing for improving food safety: Translation into practice. Food Microbiology, 79, 96–115. https://doi.org/10.1016/j.fm.2018.11.005.
Jamali, H., Paydar, M., Looi, C. Y., & Wong, W. F. (2013). Prevalence of Listeria species and Listeria monocytogenes serotypes in ready mayonnaise salads and salad vegetables in Iran. African Journal of Microbiology Research, 7(19), 1903–1906. https://doi.org/10.5897/AJMR2013.5658.
Jordan, K., Hunt, K., Lourenco, A., & Pennone, V. (2018). Listeria monocytogenes in the food processing environment. Current Clinical Microbiology Reports, 5, 106–119. URL https://doi.org/10.1007/s40588‐018‐0090‐1.
Jorgensen, J., Bland, R., Waite‐Cusic, J., & Kovacevic, J. (2021). Diversity and antimicrobial resistance of Listeria spp. and L. monocytogenes clones from produce handling and processing facilities in the Pacific Northwest. Food Control, 123, 107665. https://doi.org/10.1016/j.foodcont.2020.107665.
Kathariou, S. (2002). Listeria monocytogenes virulence and pathogenicity, a food safety perspective. Journal of Food Protection, 65(11), 1811–1829. https://doi.org/10.4315/0362‐028x‐65.11.1811.
Kayode, A. J., & Okoh, A. I. (2022). Incidence and genetic diversity of multi‐drug resistant Listeria monocytogenes isolates recovered from fruits and vegetables in the Eastern Cape province, South Africa. International Journal of Food Microbiology, 363, 109513. https://doi.org/10.1016/j.ijfoodmicro.2021.109513.
Keet, R., & Rip, D. (2021). Listeria monocytogenes isolates from Western Cape, South Africa exhibit resistance to multiple antibiotics and contradicts certain global resistance patterns. AIMS Microbiology, 7(1), 40–58. https://doi.org/10.3934/microbiol.2021004.
Khachatourians, G. C. (1998). Agricultural use of antibiotics and the evolution and transfer of antibiotic‐resistant bacteria. Canadian Medical Association Journal, 159, 1129–1136.
Korsak, D., Borek, A., Daniluk, S., Grabowska, A., & Pappelbaum, K. (2012). Antimicrobial susceptibilities of Listeria monocytogenes strains isolated from food and food processing environment in Poland. International Journal of Food Microbiology, 158, 203–208. https://doi.org/10.1016/j.ijfoodmicro.2012.07.016.
Kramarenko, T., Roasto, M., Meremäe, K., Kuningas, M., Põltsama, P., & Elias, T. (2013). Listeria monocytogenes prevalence and serotype diversity in various foods. Food Control, 30, 24–29. https://doi.org/10.1016/j.foodcont.2012.06.047.
Kremer, P. H. C., Lees, J. A., Koopmans, M. M., Ferwerda, B., Arends, A. W. M., Feller, M. M., Schipper, K., Valls Seron, M., van der Ende, A., Brouwer, M. C., van de Beek, D., & Bentley, S. D. (2017). Benzalkonium tolerance genes and outcome in Listeria monocytogenes meningitis. Clinical Microbiology and Infection, 23, 265–e1. https://doi.org/10.1016/j.cmi.2016.12.008.
Kurpas, M., Osek, J., Moura, A., Leclercq, A., Lecuit, M., & Wieczorek, K. (2020). Genomic characterization of Listeria monocytogenes isolated from ready‐to‐eat meat and meat processing environments in Poland. Frontiers in Microbiology, 11(11), 1412. https://doi.org/10.3389/fmicb.2020.01412.
Lai, C. K. C., Ng, R. W. Y., Leung, S. S. Y., Hui, M., & Ip, M. (2022). Overcoming the rising incidence and evolving mechanisms of antibiotic resistance by novel drug delivery approaches—An overview. Advanced Drug Delivery Reviews, 181, 114078. https://doi.org/10.1016/j.addr.2021.114078.
Lake, F. B., Van Overbeek, L. S., Baars, J. J. P., Koomen, J., Abee, T., & Den Besten, H. M. W. (2021). Genomic characteristics of Listeria monocytogenes isolated during mushroom (Agaricus bisporus) production and processing. International Journal of Food Microbiology, 360, 109438. https://doi.org/10.1016/j.ijfoodmicro.2021.109438.
Lambertz, S. T., Ivarsson, S., Lopez‐Valladares, G., Sidstedt, M., & Lindqvist, R. (2013). Subtyping of Listeria monocytogenes isolates recovered from retail ready‐to‐eat foods, processing plants and listeriosis patients in Sweden 2010. International Journal of Food Microbiology, 166, 186–192. https://doi.org/10.1016/j.ijfoodmicro.2013.06.008.
Leong, D., Alvarez‐Ordóñez, A., Jooste, P., & Jordan, K. (2016). Listeria monocytogenes in food: Control by monitoring the food processing environment. African Journal of Microbiology Research, 10(10), 1–14. https://doi.org/10.5897/AJMR2015.7832.
Liu, D. (2006). Identification, subtyping and virulence determination of Listeria monocytogenes, an important foodborne pathogen. Journal of Medical Microbiology, 55, 645–659. https://doi.org/10.1099/jmm.0.46495‐0.
Lotfollahi, L., Chaharbalesh, A., Rezaee, M. A., & Hasani, A. (2017). Prevalence, antimicrobial susceptibility and multiplex PCR‐serotyping of Listeria monocytogenes isolated from humans, food and livestock in Iran. Microbial Pathogenesis, 107, 425–429. https://doi.org/10.1016/j.micpath.2017.04.029.
Maćkiw, E., Korsak, D., Kowalska, J., Felix, B., Stasiak, M., Kucharek, K., & Postupolski (2021). Incidence and genetic variability of Listeria monocytogenes isolated from vegetables in Poland. International Journal of Food Microbiology, 339, 109023. https://doi.org/10.1016/j.ijfoodmicro.2020.109023.
Mafuna, T., Matle, I., Magwedere, K., Pierneef, R. E., & Reva, O. N. (2021). Whole genome‐based characterization of Listeria monocytogenes isolates recovered from the food chain in South Africa. Frontiers in Microbiology, 12, 669287. https://10.3389/fmicb.2021.669287.
Martín, B., Perich, A., Gómez, D., Yangüela, J., Rodríguez, A., Garriga, M., & Aymerich, T. (2014). Diversity and distribution of Listeria monocytogenes in meat processing plants. Food Microbiology, 44, 119–127. https://doi.org/10.1016/j.fm.2014.05.014.
Maruyama, S., Streletskaya, N. A., & Lim, J. (2021). Clean label: Why this ingredient but not that one? Food Quality and Preference, 87, 104062. https://doi.org/10.1016/j.foodqual.2020.104062.
Matereke, L. T., & Okoh, A. I. (2020). Listeria monocytogenes virulence, antimicrobial resistance and environmental persistence: A review. Pathogens, 9(528), 528. https://doi.org/10.3390/pathogens9070528.
Matle, I., Mafuna, T., Madoroba, E., Mbatha, K. R., Magwedere, K., & Pierneef, R. (2020b). Population structure of non‐ST6 Listeria monocytogenes isolated in the red meat and poultry value chain in South Africa. Microorganisms, 8, 1152. https://doi.org/10.3390/microorganisms8081152.
Matle, I., Mbatha, K. R., Lentsoane, O., Magwedere, K., Morey, L., & Madoroba, E. (2019b). Occurrence, serotypes, and characteristics of Listeria monocytogenes in meat and meat products in South Africa between 2014 and 2016. Journal of Food Safety, 39, e12629. https://doi.org/10.1111/jfs.12629.
Matle, I., Mbatha, K. R., & Madoroba, E. (2020a). A review of Listeria monocytogenes from meat and meat products: Epidemiology, virulence factors, antimicrobial resistance and diagnosis. Onderstepoort Journal of Veterinary Research, 87(1), 1–20. https://doi.org/10.4102/ojvr.v87i1.1869.
Matle, I., Pierneef, R., Mbatha, K. R., Magwedere, K., & Madoroba, E. (2019a). Genomic diversity of common sequence types of Listeria monocytogenes isolated from ready‐to‐eat products of animal origin in South Africa. Genes, 10, 1007. https://doi.org/10.3390/genes10121007.
Maury, M. M., Tsai, Y., Charlier, C., Touchon, M., Chenal‐Francisque, V., Leclercq, A., Criscuolo, A., Gaultier, C., Roussel, S., Brisabois, A., Disson, O., Rocha, E. P. C., Brisse, S., & Lecuit, M. (2016). Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity. Nature Genetics, 48(3), 308–313. https://doi.org/10.1038/ng.3501.
Meloni, D., Galluzzo, P., Mureddu, A., Piras, F., Griffiths, M., & Mazzette, R. (2009). Listeria monocytogenes in RTE foods marketed in Italy: Prevalence and automated EcoRI ribotyping of the isolates. International Journal of Food Microbiology, 129, 166–173. https://doi.org/10.1016/j.ijfoodmicro.2008.11.014.
Mohan, V., Cruz, C. D., van Vliet, A. H. M., Pitman, A. R., Visnovsky, S. B., Rivas, L., Gilpin, B., & Fletcher, G. C. (2021). Genomic diversity of Listeria monocytogenes isolates from seafood, horticulture and factory environments in New Zealand. International Journal of Food Microbiology, 347, 109166. https://j.ijfoodmicro.2021.109166.
Montero, D., Bodero, M., Riveros, G., Lapierre, L., Gaggero, A., Vidal, R. M., & Vidal, M. (2015). Molecular epidemiology and genetic diversity of Listeria monocytogenes isolates from a wide variety of ready‐to‐eat foods and their relationship to clinical strains from listeriosis outbreaks in Chile. Frontiers in Microbiology, 6, 384. https://doi.org/10.3389/fmicb.2015.00384.
Nadon, C., Walle, I. V., Gerner‐Smidt, P., Campos, J., Chinen, I., Concepcion‐Acevedo, J., Gilpin, B., Smith, A. M., Kam, K. M., Perez, E., Trees, E., Kubota, K., Takkinen, J., Nielsen, E. M., Carleton, H., & FWD‐NEXT Expert Panel. (2017). PulseNet International: Visions for the implementation of whole genome sequencing (WGS) for global foodborne disease surveillance. Euro Surveillance, 22(23), 30544. https://doi.org/10.2807/1560‐7917.ES.2017.22.23.30544.
Nastasijevic, I., Milanov, D., Velebit, B., Djordjevic, V., Swift, C., Painset, A., & Lakicevic, B. (2017). Tracking of Listeria monocytogenes in meat establishment using whole genome sequencing as a food safety management tool: A proof of concept. International Journal of Food Microbiology, 257, 157–164. https://doi.org/10.1016/j.ijfoodmicro.2017.06.015.
NICD. (2017). Listeriosis: clinical recommendations for diagnosis and treatment. https://www.nicd.ac.za/wp‐content/uploads/2017/12/Clinicalguidelines_20171206_v2.pdf.
O'connor, L., O'leary, M., Leonard, N., Godinho, M., O'reilly, C., Egan, J., & O'mahony, R. (2010). The characterization of Listeria spp. isolated from food products and the food processing environment. Letters in Applied Microbiology, 51, 490–498. https://doi.org/10.1111/j.1472‐765X.2010.02928.x.
Olaimat, A. N., Al‐Holy, M. A., Abu Ghoush, M., Al‐Nabulsi, A., & Holley, R. A. (2018a). Control of Salmonella enterica and Listeria monocytogenes in hummus using allyl isothiocyanate. International Journal of Food Microbiology, 278, 73–80. https://doi.org/10.1016/j.ijfoodmicro.2018.04.033.
Olaimat, A. N., Al‐Holy, M. A., Abu Ghoush, M. H., Al‐Nabulsi, A. A., Osaili, T. M., Ayyash, M., Al‐Degs, Y. S., & Holley, R. A. (2022). Use of citric acid and garlic extract to inhibit Salmonella enterica and Listeria monocytogenes in hummus. International Journal of Food Microbiology, 362, 109474. https://doi.org/10.1016/j.ijfoodmicro.2021.109474.
Olaimat, A. N., Al‐Holy, M. A., Shahbaz, H. M., Al‐Nabulsi, A. A., Abu Ghoush, M. H., Osaili, T. M., Ayyash, M. A., & Holley, R. A. (2018b). Emergence of antibiotic resistance in Listeria monocytogenes isolated from food products: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 17, 1277–1292. https://doi.org/10.1111/1541‐4337.12387.
Olaniran, A. O., Nzimande, S. B. T., & Mkize, N. G. (2015). Antimicrobial resistance and virulence signatures of Listeria and Aeromonas species recovered from treated wastewater effluent and receiving surface water in Durban, South Africa. BioMed Central (BMC) Microbiology, 15, 1–10. https://doi.org/10.1186/s12866‐015‐0570‐x.
Olanya, O. M., Hoshide, A. K., Ijabadeniyi, O. A., Ukuku, D. O., Mukhopadhyay, S., Niemira, B. A., & Ayeni, O. (2019). Cost estimation of listeriosis (Listeria monocytogenes) occurrence in South Africa in 2017 and its food safety implications. Food Control, 102, 231–239. https://doi.org/10.1016/j.foodcont.2019.02.007.
Oliveira, M., Viñas, I., Colàs, P., Anguera, M., Usall, J., & Abadias, M. (2014). Effectiveness of a bacteriophage in reducing Listeria monocytogenes on fresh‐cut fruits and fruit juices. Food Microbiology, 38, 137–142. https://doi.org/10.1016/j.fm.2013.08.018.
Orsi, R. H., den Bakker, H. C., & Wiedmann, M. (2011). Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics. International Journal of Medical Microbiology, 301, 79–96. https://doi.org/10.1016/j.ijmm.2010.05.002.
Ortiz, S., López, V., Villatoro, D., López, P., Dávila, J. C., & Martínez‐Suárez, J. V. (2010). A 3‐year surveillance of the genetic diversity and persistence of Listeria monocytogenes in an Iberian pig slaughterhouse and processing plant. Foodborne Pathogens and Disease, 7(10), 1177–1184. https://doi.org/10.1089/fpd.2010.0535.
Pappelbaum, K., Grif, K., Heller, I., Würzner, R., Hein, I., Ellerbroek, L., & Wagner, M. (2008). Monitoring hygiene on‐ and at‐line is critical for controlling Listeria monocytogenes during produce processing. Journal of Food Protection, 71(71), 735–741. https://doi.org/10.4315/0362‐028x‐71.4.735.
Paramithiotis, S., Drosinos, E. H., & Skandamis, P. N. (2017). Food recalls and warnings due to the presence of foodborne pathogens—A focus on fresh fruits, vegetables, dairy and eggs. Current Opinion in Food Science, 18, 71–75. http://doi.org/10.1016/j.cofs.2017.11.007.
Paramithiotis, S., Kotsakou, C., & Drosinos, E. H. (2021). Transcription of Listeria monocytogenes key virulence genes on tomato, cucumber and carrot. Applied Sciences, 11(5983), 5983. https://doi.org/10.3390/app11135983.
Parisi, A., Latorre, L., Normanno, G., Miccolupo, A., Fraccalvieri, R., Lorusso, V., & Santagada, G. (2010). Amplified fragment length polymorphism and multi‐locus sequence typing for high‐resolution genotyping of Listeria monocytogenes from foods and the environment. Food Microbiology, 27, 101–108. https://doi.org/10.1016/j.fm.2009.09.001.
Parra‐Flores, J., Holý, O., Bustamante, F., Lepuschitz, S., Pietzka, A., Contreras‐Fernández, A., Castillo, C., Ovalle, C., Alarcón‐Lavín, M. P., Cruz‐Córdova, A., Xicohtencatl‐Cortes, J., Mancilla‐Rojano, J., Troncoso, M., Figueroa, G., & Ruppitsch, W. (2022). Virulence and antibiotic resistance genes in Listeria monocytogenes strains isolated from ready‐to‐eat foods in Chile. Frontiers in Microbiology, 12(12), 796040. https://doi.org/10.3389/fmicb.2021.796040.
Pérez‐Baltar, A., Pérez‐Boto, D., Medina, M., & Montiel, R. (2021). Genomic diversity and characterization of Listeria monocytogenes from dry‐cured ham processing plants. Food Microbiology, 99, 103779. https://doi.org/10.1016/j.fm.2021.103779.
Ponniah, J., Robin, T., Paie, M. S., Radu, S., Ghazali, F. M., Kqueen, C. Y., Nishibuchi, M., Nakaguchi, Y., & Malakar, P. K. (2010). Listeria monocytogenes in raw salad vegetables sold at retail level in Malaysia. Food Control, 21, 774–778. http://doi.org/10.1016/j.foodcont.2009.09.008.
Radoshevich, L., & Cossart, P. (2018). Listeria monocytogenes: Towards a complete picture of its physiology and pathogenesis. Nature Reviews Microbiology, 16, 32–46. https://doi.org/10.1038/nrmicro.2017.126.
Raz, R. (2011). Fosfomycin: An old‐new antibiotic. Clinical Microbiology and Infection, 18, 4–7. https://doi.org/10.1111/j.1469‐0691.2011.03636.x.
Rip, D., & Gouws, P. A. (2020). PCR‐restriction fragment length polymorphism and pulsed‐field gel electrophoresis characterisation of Listeria monocytogenes isolates from ready‐to‐eat foods, the food processing environment, and clinical samples in South Africa. Journal of Food Protection, 83(3), 518–533. https://doi.org/10.4315/0362‐028X.JFP‐19‐301.
Roedel, A., Dieckmann, R., Brendebach, H., Hammerl, J. A., Kleta, S., Noll, M., Al Dahouk, A., & Vincze, S. (2019). Biocide‐tolerant Listeria monocytogenes isolates from German food production plants do not show cross‐resistance to clinically relevant antibiotics. Applied and Environmental Microbiology, 85(85), e01253. 19. https://doi.org/10.1128/AEM.01253‐19.
Rugna, G., Carra, E., Bergamini, F., Franzini, G., Faccini, S., Gattuso, A., Morganti, M., Baldi, D., Naldi, S., Serraino, A., Piva, S., Merialdi, G., & Giacometti, F. (2021). Distribution, virulence, genotypic characteristics and antibiotic resistance of Listeria monocytogenes isolated over one‐year monitoring from two pig slaughterhouses and processing plants and their fresh hams. International Journal of Food Microbiology, 336, 108912. https://doi.org/10.1016/j.ijfoodmicro.2020.108912.
Ryser, E. T., & Buchanan, R. L. (2013). Listeria monocytogenes. In M. P. Doyle & R. L. Buchanan (Eds), Food microbiology—Fundamentals and frontiers (4th ed., pp. 503–525). American Society for Microbiology.
Salazar, J. K., Natarajan, V., Stewart, D., Fay, M., Gonsalves, J., Mhetras, T., Sule, C., & Tortorello, M. L. (2020). Listeria monocytogenes growth kinetics in refrigerated ready‐to‐eat dips and dip components. PLoS ONE, 15(6), e0235472. https://doi.org/10.1371/journal.pone.0235472.
Sant'ana, A. S., Igarashi, M. C., Landgraf, M., Destro, M. T., & Franco, B. D. G. M. (2012). Prevalence, populations and pheno‐ and genotypic characteristics of Listeria monocytogenes isolated from ready‐to‐eat vegetables marketed in São Paulo, Brazil. International Journal of Food Microbiology, 155, 1–9. https://doi.org/10.1016/j.ijfoodmicro.2011.12.036.
Sauders, B. D., Mangione, K., Vincent, C., Schermerhorn, J., Farchione, C. M., Dumas, N. B., Bopp, D., Kornstein, L., Fortes, E. D., Windham, K., & Wiedmann, M. (2004). Distribution of Listeria monocytogenes molecular subtypes among human and food isolates from New York state shows persistence of human disease: Associated Listeria monocytogenes strains in retail environment. Journal of Food Protection, 67(7), 1417–1428. https://doi.org/10.4315/0362‐028x‐67.7.1417.
Schmitz‐Esser, S., Müller, A., Stessl, B., & Wagner, M. (2015). Genomes of sequence type 121 Listeria monocytogenes strains harbor highly conserved plasmids and prophages. Frontiers in Microbiology, 6, 380. https://doi.org/10.3389/fmicb.2015.00380.
Self, J. L., Conrad, A., Stroika, S., Jackson, A., Whitlock, L., Jackson, K. A., Beal, J., Wellman, A., Fatica, M. K., Bidol, S., Huth, P. P., Hamel, M., Franklin, K., Tschetter, L., Kopko, C., Kirsch, P., Wise, M. E., & Basler, C. (2019). Multistate outbreak of listeriosis associated with packaged leafy green salads, United States and Canada, 2015–2016. Emerging Infectious Diseases, 8(25), 1461–1468. https://doi.org/10.3201/eid2507.180761.
Sereno, M. J., Viana, C., Pegoraro, K., da Silva, D. A. L., Yamatogi, R. S., Nero, L. A., & Bersot, L. D. S. (2019). Distribution, adhesion, virulence and antibiotic resistance of persistent Listeria monocytogenes in a pig slaughterhouse in Brazil. Food Microbiology, 84, 103234. https://doi.org/10.1016/j.fm.2019.05.018.
Shrivastava, S. (2011). Listeria outbreak—bacteria found in romaine lettuce: FDA. https://www.ibtimes.com/listeria‐outbreak‐bacteria‐found‐romaine‐lettuce‐fda‐320544.
Skowron, K., Kwiecińska‐Piróg, J., Grudlewska, K., Świeca, A., Paluszak, Z., Bauza‐Kaszewska, J., Wałecka‐Zacharska, E., & Gospodarek‐Komkowska, E. (2018). The occurrence, transmission, virulence and antibiotic resistance of Listeria monocytogenes in fish processing plant. International Journal of Food Microbiology, 282, 71–83. https://doi.org/10.1016/j.ijfoodmicro.2018.06.011.
Smith, A., Hearn, J., Taylor, C., Wheelhouse, N., Kaczmarek, M., Moorhouse, E., & Singleton, I. (2019b). Listeria monocytogenes isolates from ready‐to‐eat plant produce are diverse and have virulence potential. International Journal of Food Microbiology, 299, 23–32. https://doi.org/10.1016/j.ijfoodmicro.2019.03.013.
Smith, A. M., Naicker, P., Bamford, C., Shuping, L., McCarthy, K. M., Sooka, A., Smouse, S. L., Tau, N., & Keddy, K. H. (2016). Genome sequences for a cluster of human isolates of Listeria monocytogenes identified in South Africa in 2015. Genome Announcements, 4(2), 1110–1128. https://doi.org/10.1128/genomeA.00200‐16.
Smith, A. M., Tau, N. P., Smouse, S. L., Allam, M., Ismail, A., Ramalwa, N. R., Disenyeng, B., Ngomane, M., & Thomas, J. (2019a). Outbreak of Listeria monocytogenes in South Africa, 2017–2018: Laboratory activities and experiences associated with whole‐genome sequencing analysis of isolates. Foodborne Pathogens and Disease, 16(7), 524–530. https://doi.org/10.1089/fpd.2018.2586.
Soni, D. K., Singh, M., Singh, D. V., & Dubey, S. K. (2014). Virulence and genotypic characterization of Listeria monocytogenes isolated from vegetable and soil samples. BioMed Central (BMC) Microbiology, 14(241), 1–10. https://doi.org/10.1186/s12866‐014‐0241‐3.
Stephan, R., Althaus, D., Kiefer, S., Lehner, A., Hatz, C., Schmutz, C., Jost, M., Gerber, N., Baumgartner, A., Hächler, H., & Mäusezahl‐Feuz, M. (2015). Foodborne transmission of Listeria monocytogenes via ready‐to‐eat salad: A nationwide outbreak in Switzerland, 2013–2014. Food Control, 57, 14–17. https://doi.org/10.1016/j.foodcont.2015.03.034.
Swaminathan, B., & Gerner‐Smidt, P. (2007). The epidemiology of human listeriosis. Microbes and Infection, 9, 1236–1243. https://doi.org/10.1016/j.micinf.2007.05.011.
Tiedje, J. M., Wang, F., Manaia, C. M., Virta, M., Sheng, H., Ma, L., Zhang, T., & Topp, E. (2019). Antibiotic resistance genes in the human‐impacted environment: A One Health perspective. Pedosphere, 29(3), 273–282. https://doi.org/10.1016/S1002‐0160(18)60062‐1.
Todd, E. C. D., & Notermans, S. (2011). Surveillance of listeriosis and its causative pathogen, Listeria monocytogenes. Food Control, 22, 1484–1490. https://doi.org/10.1016/j.foodcont.2010.07.021.
Troxler, R., von Graevenitz, A., Funke, G., Wiedemann, B., & Stock, I. (2000). Natural antibiotic susceptibility of Listeria species: L. grayi, L. innocua, L. ivanovii, L. monocytogenes, L. seeligeri and L. welshimeri strains. Clinical Microbiology and Infection, 6(6), 525–535. https://doi.org/10.1046/j.1469‐0691.2000.00168.x.
Uddin, T. M., Chakraborty, A. J., Khusro, A., Zidan, B. M. R. M., Mitra, S., Emran, T. B., Dhama, K., Ripon, K. H., Gajdács, M., Sahibzada, M. U. K., Hossain, J., & Koirala, N. (2021). Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. Journal of Infection and Public Health, 14, 1750–1766. https://doi.org/10.1016/j.jiph.2021.10.020.
Uelze, L., Grützke, J., Borowiak, M., Hammerl, J. A., Juraschek, K., Deneke, C., Tausch, S. H., & Malorny, B. (2020). Typing methods based on whole genome sequencing data. One Health Outlook, 2, 1–19. https://doi.org/10.1186/s42522‐020‐0010‐1.
Vandamm, J. P., Li, D., Harris, L. J., Schaffner, D. W., & Danyluk, M. D. (2013). Fate of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella on fresh‐cut celery. Food Microbiology, 34, 151–157. https://doi.org/10.1016/j.fm.2012.11.016.
Varma, J. K., Samuel, M. C., Marcus, R., Hoekstra, R. M., Medus, C., S egler, S., Anderson, B. J., Jones, T. F., Shiferaw, B., Haubert, N., Megginson, M., Mccarthy, P. V., Graves, L., Gilder, T. V., & Angulo, F. J. (2007). Listeria monocytogenes infection from foods prepared in a commercial establishment: A case‐control study of potential sources of sporadic illness in the United States. Clinical Infectious Diseases, 44, 521–528. https://doi.org/10.1086/509920.
Ventola, C. L. (2015). The antibiotic resistance crisis. Pharmacy and Therapeutics, 40(4), 277–283.
Verraes, C., Van Boxstael, S., Van Meervenne, E., Van Coillie, E., Butaye, P., Catry, B., de Schaetzen, M., Van Huffel, X., Imberechts, H., Dierick, K., Daube, G., Saegerman, C., De Block, J., Dewulf, J., & Herman, L. (2013). Antimicrobial resistance in the food chain: A review. International Journal of Environmental Research and Public Health, 10, 2643–2669. https://doi.org/10.3390/ijerph10072643.
Vojkovská, H., Myšková, P., Gelbíčová, T., Skočková, A., Koláčková, I., & Karpíšková, R. (2017). Occurrence and characterization of food‐borne pathogens isolated from fruit, vegetables and sprouts retailed in the Czech Republic. Food Microbiology, 63, 147–152. https://doi.org/10.1016/j.fm.2016.11.012.
Wang, F., Fu, Y., Sheng, H., Topp, E., Jiang, X., Zhu, Y., & Tiedje, J. M. (2021). Antibiotic resistance in the soil ecosystem: A One Health perspective. Current Opinion in Environmental Science & Health, 20, 100230. https://doi.org/10.1016/j.coesh.2021.100230.
Wang, Y., Zhao, A., Zhu, R., Lan, R., Jin, D., Cui, Z., Wang, Y., Li, Z., Wang, Y., Xu, J., & Ye, C. (2012). Genetic diversity and molecular typing of Listeria monocytogenes in China. BioMed Central (BMC) Microbiology, 12(119), 1–9. http://www.biomedcentral.com/1471‐2180/12/119.
WHO. (2001). WHO global strategy for containment of antimicrobial resistance. https://apps.who.int/iris/bitstream/handle/10665/66860/WHO_CDS_CSR_DRS_2001.2.pdf.
WHO. (2018).Whole genome sequencing for foodborne disease surveillance. http://apps.who.int/iris/bitstream/handle/10665/272430/9789241513869‐eng.pdf?ua=1.
Yu, T., & Jiang, X. (2014). Prevalence and characterization of Listeria monocytogenes isolated from retail food in Henan, China. Food Control, 37, 228–231. https://doi.org/10.1016/j.foodcont.2013.09.047.
Zankari, E., Hasman, H., Kaas, R. S., Seyfarth, A. M., Agerso, Y., Lund, O., Larsen, M. V., & Aarestrup, F. M. (2012). Genotyping using whole‐genome sequencing is a realistic alternative to surveillance based on phenotypic antimicrobial susceptibility testing. Journal of Antimicrobial Chemotherapy, 68, 771–777. https://doi.org/10.1093/jac/dks496.
Zhang, Y., Yeh, E., Hall, G., Cripe, J., Bhagwat, A. A., & Meng, J. (2007). Characterization of Listeria monocytogenes isolated from retail foods. International Journal of Food Microbiology, 113, 47–53. https://doi.org/10.1016/j.ijfoodmicro.2006.07.010.
Zhu, Q., Gooneratne, R., & Hussain, M. A. (2017). Listeria monocytogenes in fresh produce: Outbreaks, prevalence and contamination levels. Foods, 6(6), 21. https://doi.org/10.3390/foods6030021. - Grant Information: 138101 National Research Foundation of South Africa
- Contributed Indexing: Keywords: Listeria monocytogenes; one health; sequence type; serotype; surveillance
- Accession Number: 0 (Virulence Factors)
0 (Anti-Bacterial Agents) - Publication Date: Date Created: 20240926 Date Completed: 20241112 Latest Revision: 20241112
- Publication Date: 20241114
- Accession Number: 10.1111/1750-3841.17399
- Accession Number: 39327637
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.