Decreased histone H3K9 dimethylation in synergy with DNA demethylation of Spi-1 binding site contributes to ADAMTS-5 expression in articular cartilage of osteoarthritis mice.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley-Liss Country of Publication: United States NLM ID: 0050222 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-4652 (Electronic) Linking ISSN: 00219541 NLM ISO Abbreviation: J Cell Physiol Subsets: MEDLINE
    • Publication Information:
      Publication: New York, NY : Wiley-Liss
      Original Publication: Philadelphia, Wistar Institute of Anatomy and Biology.
    • Subject Terms:
    • Abstract:
      Osteoarthritis (OA) is defined by articular cartilage degeneration, synovial membrane inflammation, and abnormal bone remodeling. Recent study has discovered that OA development is linked to an aberrant epigenetic modification of OA-related genes. Our previous research showed that DNA demethylation in ADAMTS-5 promoter region had a substantial impact on ADAMTS-5 expression in the mouse OA model. This process facilitated the binding of Spi-1 to ADAMTS-5 promoter. While alterations in histone methylation have been documented during embryonic development and cancer development, there is a paucity of data on the change in OA pathogenesis. Even no data have been reported on the role of histone modifications in ADAMTS-5 activation in OA. Following our previous study on the role of DNA methylation, we aimed to examine the contribution of histone H3K9 dimethylation in ADAMTS-5 activation in OA. Additionally, we aimed to elucidate the molecular mechanisms underlying the cooperative interaction between DNA methylation and histone H3K9 dimethylation. The potential for anti-OA intervention therapy which is based on modulating histone H3K9 dimethylation is also explored. We demonstrated that a reduction in histone H3K9 dimethylation, along with DNA demethylation of the Spi-1 binding site, had a role in ADAMTS-5 activation in the articular cartilage of OA mice. Significantly, the conditional deletion of histone demethylase to be identified as lysine-specific demethylase 1 (LSD1) in articular cartilage could alleviate the degenerative features of OA mice. Our study demonstrates the direct impact of histone H3K9 dimethylation on gene expression, which in turn contributes to OA development. This research enhances our understanding of the underlying causes of OA.
      (© 2024 Wiley Periodicals LLC.)
    • References:
      Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes & Development, 16(1), 6–21. https://doi.org/10.1101/gad.947102.
      Black, J. C., Van Rechem, C., & Whetstine, J. R. (2012). Histone lysine methylation dynamics: establishment, regulation, and biological impact. Molecular Cell, 48(4), 491–507. https://doi.org/10.1016/j.molcel.2012.11.006.
      Blum, R. (2015). Stepping inside the realm of epigenetic modifiers. Biomolecular Concepts, 6(2), 119–136. https://doi.org/10.1515/bmc-2015-0008.
      Botter, S. M., Glasson, S. S., Hopkins, B., Clockaerts, S., Weinans, H., van Leeuwen, J. P. T. M., & van Osch, G. J. V. M. (2009). ADAMTS5‐/‐ mice have less subchondral bone changes after induction of osteoarthritis through surgical instability: implications for a link between cartilage and subchondral bone changes. Osteoarthritis and Cartilage, 17(5), 636–645. https://doi.org/10.1016/j.joca.2008.09.018.
      Buckwalter, J. A., & Mankin, H. J. (1998). Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instructional Course Lectures, 47, 487–504.
      Buckwalter, J. A., Mankin, H. J., & Grodzinsky, A. J. (2005). Articular cartilage and osteoarthritis. Instructional Course Lectures, 54, 465–480.
      Chockalingam, P. S., Zeng, W., Morris, E. A., & Flannery, C. R. (2004). Release of hyaluronan and hyaladherins (aggrecan G1 domain and link proteins) from articular cartilage exposed to ADAMTS‐4 (aggrecanase 1) or ADAMTS‐5 (aggrecanase 2). Arthritis & Rheumatism, 50(9), 2839–2848. https://doi.org/10.1002/art.20496.
      Durand, A. L., Dufour, A., Aubert‐Foucher, E., Oger‐Desfeux, C., Pasdeloup, M., Lustig, S., Servien, E., Vaz, G., Perrier‐Groult, E., Mallein‐Gerin, F., & Lafont, J. E. (2020). The lysine specific demethylase‐1 negatively regulates the COL9A1 gene in human articular chondrocytes. International Journal of Molecular Sciences, 21(17), 6322. https://doi.org/10.3390/ijms21176322.
      Durigova, M., Soucy, P., Fushimi, K., Nagase, H., Mort, J. S., & Roughley, P. J. (2008). Characterization of an ADAMTS‐5‐mediated cleavage site in aggrecan in OSM‐stimulated bovine cartilage. Osteoarthritis and Cartilage, 16(10), 1245–1252. https://doi.org/10.1016/j.joca.2008.02.013.
      Esteller, M. (2011). Cancer epigenetics for the 21st century: What′s next? Genes & Cancer, 2(6), 604–606. https://doi.org/10.1177/1947601911423096.
      Fischle, W. (2012). One, two, three: how histone methylation is read. Epigenomics, 4(6), 641–653. https://doi.org/10.2217/epi.12.56.
      Füllgrabe, J., Kavanagh, E., & Joseph, B. (2011). Histone onco‐modifications. Oncogene, 30(31), 3391–3403. https://doi.org/10.1038/onc.2011.121.
      Glasson, S. S., Askew, R., Sheppard, B., Carito, B., Blanchet, T., Ma, H. L., Flannery, C. R., Peluso, D., Kanki, K., Yang, Z., Majumdar, M. K., & Morris, E. A. (2005). Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature, 434(7033), 644–648. https://doi.org/10.1038/nature03369.
      Goldring, M. B. (2000). The role of the chondrocyte in osteoarthritis. Arthritis & Rheumatism, 43(9), 1916–1926. https://doi.org/10.1002/1529-0131(200009)43:9<1916::AID-ANR2>3.0.CO;2-I.
      Goldring, S. R., & Goldring, M. B. (2004). The role of cytokines in cartilage matrix degeneration in osteoarthritis. Clinical Orthopaedics & Related Research, 427(427 Suppl.), S27–S36. https://doi.org/10.1097/01.blo.0000144854.66565.8f.
      Gu, J., Rong, J., Guan, F., Jiang, L., Zhang, T., Tao, S., Guan, G., Xu, L., & Tao, T. (2013). Association of ADAMTS5 gene polymorphisms with osteoarthritis in Chinese Han population: a community‐based case‐control study. Rheumatology International, 33(11), 2893–2897. https://doi.org/10.1007/s00296-012-2506-1.
      Herranz, M., & Esteller, M. (2007). DNA methylation and histone modifications in patients with cancer: potential prognostic and therapeutic targets. Methods in molecular biology (Clifton, N.J.), 361, 25–62. https://doi.org/10.1385/1-59745-208-4:25.
      Ilic, M. Z., East, C. J., Rogerson, F. M., Fosang, A. J., & Handley, C. J. (2007). Distinguishing aggrecan loss from aggrecan proteolysis in ADAMTS‐4 and ADAMTS‐5 single and double deficient mice. Journal of Biological Chemistry, 282(52), 37420–37428. https://doi.org/10.1074/jbc.M703184200.
      Kim, K. I., Park, Y. S., & Im, G. I. (2013). Changes in the epigenetic status of the SOX‐9 promoter in human osteoarthritic cartilage. Journal of Bone and Mineral Research, 28(5), 1050–1060. https://doi.org/10.1002/jbmr.1843.
      Kim, Y. H., Lee, H. C., Kim, S. Y., Yeom, Y. I., Ryu, K. J., Min, B. H., Kim, D. H., Son, H. J., Rhee, P. L., Kim, J. J., Rhee, J. C., Kim, H. C., Chun, H. K., Grady, W. M., & Kim, Y. S. (2011). Epigenomic analysis of aberrantly methylated genes in colorectal cancer identifies genes commonly affected by epigenetic alterations. Annals of Surgical Oncology, 18(8), 2338–2347. https://doi.org/10.1245/s10434-011-1573-y.
      Kouzarides, T. (2007). Chromatin modifications and their function. Cell, 128(4), 693–705. https://doi.org/10.1016/j.cell.2007.02.005.
      van der Kraan, P. M. (2017). Factors that influence outcome in experimental osteoarthritis. Osteoarthritis and Cartilage, 25(3), 369–375. https://doi.org/10.1016/j.joca.2016.09.005.
      Lawrence, R. C., Helmick, C. G., Arnett, F. C., Deyo, R. A., Felson, D. T., Giannini, E. H., Heyse, S. P., Hirsch, R., Hochberg, M. C., Hunder, G. G., Liang, M. H., Pillemer, S. R., Steen, V. D., & Wolfe, F. (1998). Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis & Rheumatism, 41(5), 778–799. https://doi.org/10.1002/1529-0131(199805)41:5<778::AID-ART4>3.0.CO;2-V.
      Lawson, K. A., Teteak, C. J., Zou, J., Hacquebord, J., Ghatan, A., Zielinska‐Kwiatkowska, A., Fernandes, R. J., Chansky, H. A., & Yang, L. (2013). Mesenchyme‐specific knockout of ESET histone methyltransferase causes ectopic hypertrophy and terminal differentiation of articular chondrocytes. Journal of Biological Chemistry, 288(45), 32119–32125. https://doi.org/10.1074/jbc.M113.473827.
      Li, J., Liao, Y., Huang, J., Sun, Y., Chen, H., Chen, C., Li, S., & Yang, Z. (2018). Epigenetic silencing of ADAMTS5 is associated with increased invasiveness and poor survival in patients with colorectal cancer. Journal of Cancer Research and Clinical Oncology, 144(2), 215–227. https://doi.org/10.1007/s00432-017-2545-9.
      Liu, Z., Lu, T., Ma, L., Zhang, Y., & Li, D. (2024). DNA demethylation of promoter region orchestrates SPI‐1‐induced ADAMTS‐5 expression in articular cartilage of osteoarthritis mice. Journal of Cellular Physiology, 239(2), e31170. https://doi.org/10.1002/jcp.31170.
      Malfait, A. M., Ritchie, J., Gil, A. S., Austin, J. S., Hartke, J., Qin, W., Tortorella, M. D., & Mogil, J. S. (2010). ADAMTS‐5 deficient mice do not develop mechanical allodynia associated with osteoarthritis following medial meniscal destabilization. Osteoarthritis and Cartilage, 18(4), 572–580. https://doi.org/10.1016/j.joca.2009.11.013.
      El Mansouri, F., Nebbaki, S. S., Kapoor, M., Afif, H., Martel‐Pelletier, J., Pelletier, J. P., Benderdour, M., & Fahmi, H. (2014). Lysine‐specific demethylase 1‐mediated demethylation of histone H3 lysine 9 contributes to interleukin 1β‐induced microsomal prostaglandin E synthase 1 expression in human osteoarthritic chondrocytes. Arthritis Research & Therapy, 16(3), R113. https://doi.org/10.1186/ar4564.
      El Mansouri, F. E., Chabane, N., Zayed, N., Kapoor, M., Benderdour, M., Martel‐Pelletier, J., Pelletier, J. P., Duval, N., & Fahmi, H. (2011). Contribution of H3K4 methylation by SET‐1A to interleukin‐1‐induced cyclooxygenase 2 and inducible nitric oxide synthase expression in human osteoarthritis chondrocytes. Arthritis & Rheumatism, 63(1), 168–179. https://doi.org/10.1002/art.27762.
      Mao, F., & Shi, Y. G. (2023). Targeting the LSD1/KDM1 family of lysine demethylases in cancer and other human diseases. Advances in Experimental Medicine and Biology, 1433, 15–49. https://doi.org/10.1007/978-3-031-38176-8_2.
      Martin, C., & Zhang, Y. (2005). The diverse functions of histone lysine methylation. Nature Reviews Molecular Cell Biology, 6(11), 838–849. https://doi.org/10.1038/nrm1761.
      Munshi, A., Shafi, G., Aliya, N., & Jyothy, A. (2009). Histone modifications dictate specific biological readouts. Journal of Genetics and Genomics, 36(2), 75–88. https://doi.org/10.1016/S1673-8527(08)60094-6.
      Pinamont, W. J., Yoshioka, N. K., Young, G. M., Karuppagounder, V., Carlson, E. L., Ahmad, A., Elbarbary, R., & Kamal, F. (2020). Standardized histomorphometric evaluation of osteoarthritis in a surgical mouse model. Journal of Visualized Experiments: JoVE, (159), e60991. https://doi.org/10.3791/60991.
      Poschl, E. (2004). DNA methylation is not likely to be responsible for aggrecan down regulation in aged or osteoarthritic cartilage. Annals of the Rheumatic Diseases, 64(3), 477–480. https://doi.org/10.1136/ard.2004.022509.
      Prashanth, S., Radha Maniswami, R., Rajajeyabalachandran, G., & Jegatheesan, S. K. (2024). SETDB1, an H3K9‐specific methyltransferase: An attractive epigenetic target to combat cancer. Drug Discovery Today, 29(5), 103982. https://doi.org/10.1016/j.drudis.2024.103982.
      Pritzker, K. P. H., Gay, S., Jimenez, S. A., Ostergaard, K., Pelletier, J. P., Revell, P. A., Salter, D., & van den Berg, W. B. (2006). Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis and Cartilage, 14(1), 13–29. https://doi.org/10.1016/j.joca.2005.07.014.
      Razin, A. (1998). CpG methylation, chromatin structure and gene silencing‐a three‐way connection. The EMBO Journal, 17(17), 4905–4908. https://doi.org/10.1093/emboj/17.17.4905.
      Razin, A., & Cedar, H. (1977). Distribution of 5‐methylcytosine in chromatin. Proceedings of the National Academy of Sciences, 74(7), 2725–2728. https://doi.org/10.1073/pnas.74.7.2725.
      Roach, H. I., Yamada, N., Cheung, K. S. C., Tilley, S., Clarke, N. M. P., Oreffo, R. O. C., Kokubun, S., & Bronner, F. (2005). Association between the abnormal expression of matrix‐degrading enzymes by human osteoarthritic chondrocytes and demethylation of specific CpG sites in the promoter regions. Arthritis & Rheumatism, 52(10), 3110–3124. https://doi.org/10.1002/art.21300.
      Santamaria, S. (2020). ADAMTS‐5: A difficult teenager turning 20. International Journal of Experimental Pathology, 101(1–2), 4–20. https://doi.org/10.1111/iep.12344.
      Shi, Y., Lan, F., Matson, C., Mulligan, P., Whetstine, J. R., Cole, P. A., Casero, R. A., & Shi, Y. (2004). Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell, 119(7), 941–953. https://doi.org/10.1016/j.cell.2004.12.012.
      Song, R. H., D. Tortorella, M., Malfait, A. M., Alston, J. T., Yang, Z., Arner, E. C., & Griggs, D. W. (2007). Aggrecan degradation in human articular cartilage explants is mediated by both ADAMTS‐4 and ADAMTS‐5. Arthritis & Rheumatism, 56(2), 575–585. https://doi.org/10.1002/art.22334.
      Stanton, H., Rogerson, F. M., East, C. J., Golub, S. B., Lawlor, K. E., Meeker, C. T., Little, C. B., Last, K., Farmer, P. J., Campbell, I. K., Fourie, A. M., & Fosang, A. J. (2005). ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature, 434(7033), 648–652. https://doi.org/10.1038/nature03417.
      Ukita, M., Matsushita, K., Tamura, M., & Yamaguchi, T. (2020). Histone H3K9 methylation is involved in temporomandibular joint osteoarthritis. International Journal of Molecular Medicine, 45(2), 607–614. https://doi.org/10.3892/ijmm.2019.4446.
      Verrier, L., Vandromme, M., & Trouche, D. (2011). Histone demethylases in chromatin cross‐talks. Biology of the Cell, 103(8), 381–401. https://doi.org/10.1042/BC20110028.
      Völkel, P., & Angrand, P. O. (2007). The control of histone lysine methylation in epigenetic regulation. Biochimie, 89(1), 1–20. https://doi.org/10.1016/j.biochi.2006.07.009.
      Wylie, J. D., Ho, J. C., Singh, S., McCulloch, D. R., & Apte, S. S. (2012). Adamts5 (aggrecanase‐2) is widely expressed in the mouse musculoskeletal system and is induced in specific regions of knee joint explants by inflammatory cytokines. Journal of Orthopaedic Research, 30(2), 226–233. https://doi.org/10.1002/jor.21508.
      Yamamoto, K., Owen, K., Parker, A. E., Scilabra, S. D., Dudhia, J., Strickland, D. K., Troeberg, L., & Nagase, H. (2014). Low density lipoprotein receptor‐related protein 1 (LRP1)‐mediated endocytic clearance of a disintegrin and metalloproteinase with thrombospondin motifs‐4 (ADAMTS‐4). Journal of Biological Chemistry, 289(10), 6462–6474. https://doi.org/10.1074/jbc.M113.545376.
      Yamamoto, K., Troeberg, L., Scilabra, S. D., Pelosi, M., Murphy, C. L., Strickland, D. K., & Nagase, H. (2013). LRP‐1‐mediated endocytosis regulates extracellular activity of ADAMTS‐5 in articular cartilage. The FASEB Journal, 27(2), 511–521. https://doi.org/10.1096/fj.12-216671.
      Yao, Z., Chen, P., Wang, S., Deng, G., Hu, Y., Lin, Q., Zhang, X., & Yu, B. (2019). Reduced PDGF‐AA in subchondral bone leads to articular cartilage degeneration after strenuous running. Journal of Cellular Physiology, 234(10), 17946–17958. https://doi.org/10.1002/jcp.28427.
    • Grant Information:
      82372398 National Natural Science Foundation of China
    • Contributed Indexing:
      Keywords: ADAMTS‐5; LSD1; epigenetics; histone methylation; osteoarthritis
    • Accession Number:
      0 (Histones)
      EC 3.4.24.- (ADAMTS5 Protein)
      EC 1.14.11.- (Histone Demethylases)
      EC 3.4.24.- (Adamts5 protein, mouse)
    • Publication Date:
      Date Created: 20240925 Date Completed: 20241217 Latest Revision: 20241217
    • Publication Date:
      20241217
    • Accession Number:
      10.1002/jcp.31444
    • Accession Number:
      39318150