Nanocarrier-mediated siRNA delivery: a new approach for the treatment of traumatic brain injury-related Alzheimer's disease.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wolters Kluwer Health, Medknow Country of Publication: India NLM ID: 101316351 Publication Model: Print-Electronic Cited Medium: Print ISSN: 1673-5374 (Print) Linking ISSN: 16735374 NLM ISO Abbreviation: Neural Regen Res Subsets: PubMed not MEDLINE
    • Publication Information:
      Publication: 2013 - : Mumbai : Wolters Kluwer Health, Medknow
      Original Publication: Shenyang : Editorial Board of Neural Regeneration Research
    • Abstract:
      Traumatic brain injury and Alzheimer's disease share pathological similarities, including neuronal loss, amyloid-β deposition, tau hyperphosphorylation, blood-brain barrier dysfunction, neuroinflammation, and cognitive deficits. Furthermore, traumatic brain injury can exacerbate Alzheimer's disease-like pathologies, potentially leading to the development of Alzheimer's disease. Nanocarriers offer a potential solution by facilitating the delivery of small interfering RNAs across the blood-brain barrier for the targeted silencing of key pathological genes implicated in traumatic brain injury and Alzheimer's disease. Unlike traditional approaches to neuroregeneration, this is a molecular-targeted strategy, thus avoiding non-specific drug actions. This review focuses on the use of nanocarrier systems for the efficient and precise delivery of siRNAs, discussing the advantages, challenges, and future directions. In principle, siRNAs have the potential to target all genes and non-targetable proteins, holding significant promise for treating various diseases. Among the various therapeutic approaches currently available for neurological diseases, siRNA gene silencing can precisely "turn off" the expression of any gene at the genetic level, thus radically inhibiting disease progression; however, a significant challenge lies in delivering siRNAs across the blood-brain barrier. Nanoparticles have received increasing attention as an innovative drug delivery tool for the treatment of brain diseases. They are considered a potential therapeutic strategy with the advantages of being able to cross the blood-brain barrier, targeted drug delivery, enhanced drug stability, and multifunctional therapy. The use of nanoparticles to deliver specific modified siRNAs to the injured brain is gradually being recognized as a feasible and effective approach. Although this strategy is still in the preclinical exploration stage, it is expected to achieve clinical translation in the future, creating a new field of molecular targeted therapy and precision medicine for the treatment of Alzheimer's disease associated with traumatic brain injury.
      (Copyright © 2025 Copyright: © 2025 Neural Regeneration Research.)
    • References:
      Abou-El-Hassan H, Rezende RM, Izzy S, Gabriely G, Yahya T, Tatematsu BK, Habashy KJ, Lopes JR, de Oliveira GL, Maghzi AH (2023) Vγ1 and Vγ4 gamma-delta T cells play opposing roles in the immunopathology of traumatic brain injury in males. Nat Commun 14:4286.
      Abrahamson EE, Ikonomovic MD (2020) Brain injury-induced dysfunction of the blood brain barrier as a risk for dementia. Exp Neurol 328:113257.
      Abu Hamdeh S, Waara ER, Möller C, Söderberg L, Basun H, Alafuzoff I, Hillered L, Lannfelt L, Ingelsson M, Marklund N (2018) Rapid amyloid‐β oligomer and protofibril accumulation in traumatic brain injury. Brain Pathol 28:451–462.
      Abyadeh M, Gupta V, Paulo JA, Mahmoudabad AG, Shadfar S, Mirshahvaladi S, Gupta V, Nguyen CTO, Finkelstein DI, You Y, Haynes PA, Salekdeh GH, Graham SL, Mirzaei M (2024) Amyloid-beta and tau protein beyond Alzheimer’s disease. Neural Regen Res 19:1262–1276.
      Ahn I, Kang CS, Han J (2023) Where should siRNAs go: applicable organs for siRNA drugs. Exp Mol Med 55:1283–1292.
      Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345.
      Andrzejewska A, Dabrowska S, Lukomska B, Janowski M (2021) Mesenchymal stem cells for neurological disorders. Adv Sci 8:2002944.
      Anselmo AC, Mitragotri S (2019) Nanoparticles in the clinic: an update. Bioeng transl med 4:e10143.
      Barenholz YC (2012) Doxil®-The first FDA-approved nano-drug: lessons learned. J Control Release 160:117–134.
      Barisano G, Montagne A, Kisler K, Schneider JA, Wardlaw JM, Zlokovic BV (2022) Blood–brain barrier link to human cognitive impairment and Alzheimer’s disease. Nat Cardiovasc Res 1:108–115.
      Bashyal S, Thapa C, Lee S (2022) Recent progresses in exosome-based systems for targeted drug delivery to the brain. J Control Release 348:723–744.
      Begines B, Ortiz T, Pérez-Aranda M, Martínez G, Merinero M, Argüelles-Arias F, Alcudia A (2020) Polymeric nanoparticles for drug delivery: recent developments and future prospects. Nanomaterials (Basel) 10:1403.
      Boone DR, Leek JM, Falduto MT, Torres KEO, Sell SL, Parsley MA, Cowart JC, Uchida T, Micci MA, DeWitt DS, Prough DS, Hellmich HL (2017) Effects of AAV-mediated knockdown of nNOS and GPx-1 gene expression in rat hippocampus after traumatic brain injury. PLoS One 12:e0185943.
      Brett BL, Gardner RC, Godbout J, Dams-O’Connor K, Keene CD (2022) Traumatic brain injury and risk of neurodegenerative disorder. Biol Psychiatry 91:498–507.
      Budd Haeberlein S, Aisen P, Barkhof F, Chalkias S, Chen T, Cohen S, Dent G, Hansson O, Harrison K, Von Hehn C (2022) Two randomized phase 3 studies of aducanumab in early Alzheimer’s disease. J Prev Alzheimer’s Dis 9:197–210.
      Cai L, Gong Q, Qi L, Xu T, Suo Q, Li X, Wang W, Jing Y, Yang D, Xu Z (2022) ACT001 attenuates microglia-mediated neuroinflammation after traumatic brain injury via inhibiting AKT/NFκB/NLRP3 pathway. Cell Commun 20:56.
      Calzoni E, Cesaretti A, Polchi A, Di Michele A, Tancini B, Emiliani C (2019) Biocompatible polymer nanoparticles for drug delivery applications in cancer and neurodegenerative disorder therapies. J Funct Biomater 10:4.
      Castellani RJ, Perry G (2017) Dementia pugilistica revisited. J Alzheimer’s Dis 60:1209–1221.
      Chang J, Li Y, Shan X, Chen X, Yan X, Liu J, Zhao L (2024) Neural stem cells promote neuroplasticity: a promising therapeutic strategy for the treatment of Alzheimer’s disease. Neural Regen Res 19:619–628.
      Chen B, Song L, Yang J, Zhou WY, Cheng YY, Lai YJ (2023) Proteomics of serum exosomes identified fibulin-1 as a novel biomarker for mild cognitive impairment. Neural Regen Res 18:587–593.
      Chen F, Ghosh A, Lin J, Zhang C, Pan Y, Thakur A, Singh K, Hong H, Tang S (2020) 5-lipoxygenase pathway and its downstream cysteinyl leukotrienes as potential therapeutic targets for Alzheimer’s disease. Brain Behav Immun 88:844–855.
      Chiu CC, Liao YE, Yang LY, Wang JY, Tweedie D, Karnati HK, Greig NH, Wang JY (2016) Neuroinflammation in animal models of traumatic brain injury. J Neurosci Methods 272:38–49.
      Cho H, Mundada NS, Apostolova LG, Carrillo MC, Shankar R, Amuiri AN, Zeltzer E, Windon CC, Soleimani‐Meigooni DN, Tanner JA (2023) Amyloid and tau‐PET in early‐onset AD: baseline data from the longitudinal early-onset Alzheimer’s disease study (LEADS). Alzheimers Dement 19 Suppl 9:S98–S114.
      Chu J, Zhang W, Liu Y, Gong B, Ji W, Yin T, Gao C, Liangwen D, Hao M, Chen C, Zhuang J, Gao J, Yin Y (2024) Biomaterials-based anti-inflammatory treatment strategies for Alzheimer’s disease. Neural Regen Res 19:100–115.
      Chung S, Sugimoto Y, Huang J, Zhang M (2022) Iron oxide nanoparticles decorated with functional peptides for a targeted siRNA delivery to glioma cells. ACS Appl Mater Interfaces 15:106–119.
      Clark IA, Vissel B (2018) Therapeutic implications of how TNF links apolipoprotein E, phosphorylated tau, α‐synuclein, amyloid‐β and insulin resistance in neurodegenerative diseases. Br J Pharmacol 175:3859–3875.
      Cogill SA, Lee JH, Jeon MT, Kim D-G, Chang Y (2024) Hopping the hurdle: strategies to enhance the molecular delivery to the brain through the Blood–Brain Barrier. Cells (Basel) 13:789.
      Cordaro M, Trovato Salinaro A, Siracusa R, D’Amico R, Impellizzeri D, Scuto M, Ontario ML, Crea R, Cuzzocrea S, Di Paola R (2021) Hidrox® roles in neuroprotection: biochemical links between traumatic brain injury and alzheimer’s disease. Antioxidants (Basel) 10:818.
      Cordell B (1994) beta-Amyloid formation as a potential therapeutic target for Alzheimer’s disease. Annu Rev Pharmacol Toxicol 34:69–89.
      Cornelius C, Crupi R, Calabrese V, Graziano A, Milone P, Pennisi G, Radak Z, Calabrese EJ, Cuzzocrea S (2013) Traumatic brain injury: oxidative stress and neuroprotection. Antioxid Redox Signal 19:836–853.
      Crismon ML (1994) Tacrine: first drug approved for Alzheimer’s disease. Ann Pharmacother 28:744–751.
      Cullis PR, Hope MJ (2017) Lipid nanoparticle systems for enabling gene therapies. Mol Ther 25:1467–1475.
      Cully M (2021) Exosome-based candidates move into the clinic. Nat Rev Drug Discov 20:6–7.
      Czosnyka M, Pickard JD (2004) Monitoring and interpretation of intracranial pressure. J Neurol Neurosurg Psychiatry 75:813–821.
      D’Souza GM, Churchill NW, Guan DX, Khoury MA, Graham SJ, Kumar S, Fischer CE, Schweizer TA (2024) Interaction of Alzheimer disease and traumatic brain injury on cortical thickness. Alzheimer Dis Assoc Disord 38:14–21.
      Datta D, Conroy AL, Castelluccio PF, Ssenkusu JM, Park GS, Opoka RO, Bangirana P, Idro R, Saykin AJ, John CC (2020) Elevated cerebrospinal fluid tau protein concentrations on admission are associated with long-term neurologic and cognitive impairment in Ugandan children with cerebral malaria. Clin Infect Dis 70:1161–1168.
      de Freitas Cardoso MG, Faleiro RM, De Paula JJ, Kummer A, Caramelli P, Teixeira AL, De Souza LC, Miranda AS (2019) Cognitive impairment following acute mild traumatic brain injury. Front Neurol 10:198.
      Demers-Marcil S, Coles JP (2022) Cerebral metabolic derangements following traumatic brain injury. Curr Opin Anaesthesiol 35:562.
      Dhapola R, Hota SS, Sarma P, Bhattacharyya A, Medhi B, Reddy DH (2021) Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer’s disease. Inflammopharmacology 29:1669–1681.
      Dickson SP, Hennessey S, Nicodemus Johnson J, Knowlton N, Hendrix SB (2023) Avoiding future controversies in the Alzheimer’s disease space through understanding the aducanumab data and FDA review. Alzheimers Res Ther 15:98.
      Digma LA, Winer JR, Greicius MD (2024) Substantial doubt remains about the efficacy of anti-amyloid antibodies. J Alzheimers Dis 97:567–572.
      Ding S, Khan AI, Cai X, Song Y, Lyu Z, Du D, Dutta P, Lin Y (2020) Overcoming blood–brain barrier transport: advances in nanoparticle-based drug delivery strategies. Mater Today 37:112–125.
      Diomede L, Zanier ER, Moro F, Vegliante G, Colombo L, Russo L, Cagnotto A, Natale C, Xodo FM, De Luigi A (2023) Aβ1–6A2V (D) peptide, effective on Aβ aggregation, inhibits tau misfolding and protects the brain after traumatic brain injury. Mol Psychiatry:1–12.
      Dourlen P, Kilinc D, Malmanche N, Chapuis J, Lambert J-C (2019) The new genetic landscape of Alzheimer’s disease: from amyloid cascade to genetically driven synaptic failure hypothesis? Acta Neuropathol 138:221–236.
      Du M, Wu C, Yu R, Cheng Y, Tang Z, Wu B, Fu J, Tan W, Zhou Q, Zhu Z (2022) A novel circular RNA, circIgfbp2, links neural plasticity and anxiety through targeting mitochondrial dysfunction and oxidative stress-induced synapse dysfunction after traumatic brain injury. Mol Psychiatry 27:4575–4589.
      Edwards III G, Zhao J, Dash PK, Soto C, Moreno-Gonzalez I (2020) Traumatic brain injury induces tau aggregation and spreading. J Neurotrauma 37:80–92.
      Elliott JE, De Luche SE, Churchill MJ, Moore C, Cohen AS, Meshul CK, Lim MM (2018) Dietary therapy restores glutamatergic input to orexin/hypocretin neurons after traumatic brain injury in mice. Sleep 41:zsx212.
      Faustino C, Rijo P, Reis CP (2017) Nanotechnological strategies for nerve growth factor delivery: therapeutic implications in Alzheimer’s disease. Pharmacol Res 120:68–87.
      Fayazi N, Sheykhhasan M, Soleimani Asl S, Najafi R (2021) Stem cell-derived exosomes: a new strategy of neurodegenerative disease treatment. Mol Neurobiol 58:3494–3514.
      Feng L, Sun J, Xia L, Shi Q, Hou Y, Zhang L, Li M, Fan C, Sun B (2024) Ferroptosis mechanism and Alzheimer’s disease. Neural Regen Res 19:1741–1750.
      Figueiro Longo MG, Tan CO, Chan ST, Welt J, Avesta A, Ratai E, Mercaldo ND, Yendiki A, Namati J, Chico-Calero I, Parry BA, Drake L, Anderson R, Rauch T, Diaz-Arrastia R, Lev M, Lee J, Hamblin M, Vakoc B, Gupta R (2020) Effect of transcranial low-level light therapy vs sham therapy among patients with moderate traumatic brain injury: a randomized clinical trial. JAMA Netw Open 3:e2017337.
      Filipczak N, Pan J, Yalamarty SSK, Torchilin VP (2020) Recent advancements in liposome technology. Adv Drug Deliv Rev 156:4–22.
      Fire AZ (2007) Gene silencing by double‐stranded RNA (Nobel lecture). Angew Chem Int Ed 46:6966–6984.
      Fitz NF, Nam KN, Wolfe CM, Letronne F, Playso BE, Iordanova BE, Kozai TD, Biedrzycki RJ, Kagan VE, Tyurina YY (2021) Phospholipids of APOE lipoproteins activate microglia in an isoform-specific manner in preclinical models of Alzheimer’s disease. Nat Commun 12:3416.
      Gandhi S, Abramov AY (2012) Mechanism of oxidative stress in neurodegeneration. Oxid Med Cell Longev 2012:428010.
      Gao F, Hu M, Zhang J, Hashem J, Chen C (2022a) TDP-43 drives synaptic and cognitive deterioration following traumatic brain injury. Acta Neuropathol 144:187–210.
      Gao H, Pang Z, Jiang X (2013) Targeted delivery of nano-therapeutics for major disorders of the central nervous system. Pharm Res 30:2485–2498.
      Gao H, Kan S, Ye Z, Feng Y, Jin L, Zhang X, Deng J, Chan G, Hu Y, Wang Y (2022b) Development of in silico methodology for siRNA lipid nanoparticle formulations. Chem Eng J 442:136310.
      Gao SM, Wu X, Han X, Xu SQ, Li SF, Peng Y (2024) Establishment of a rat model of traumatic brain injury using the modified Feeney’s free-fall method. Zhongguo Zuzhi Gongcheng Yanjiu 28:4164–4169.
      Gao X, Deng P, Xu ZC, Chen J (2011) Moderate traumatic brain injury causes acute dendritic and synaptic degeneration in the hippocampal dentate gyrus. PLoS One 6:e24566.
      Gopu B, Pandian R, Sevvel A, Shukla S (2023) Routes of nano-drug administration and nano-based drug delivery system and toxicity. In: biomedical applications and toxicity of nanomaterials. Springer.
      Gorgoraptis N, Zaw-Linn J, Feeney C, Tenorio-Jimenez C, Niemi M, Malik A, Ham T, Goldstone AP, Sharp DJ (2019a) Cognitive impairment and health-related quality of life following traumatic brain injury. NeuroRehabilitation 44:321–331.
      Gorgoraptis N, Li LM, Whittington A, Zimmerman KA, Maclean LM, McLeod C, Ross E, Heslegrave A, Zetterberg H, Passchier J (2019b) In vivo detection of cerebral tau pathology in long-term survivors of traumatic brain injury. Sci Transl Med 11:eaaw1993.
      Graham NS, Jolly A, Zimmerman K, Bourke NJ, Scott G, Cole JH, Schott JM, Sharp DJ (2020) Diffuse axonal injury predicts neurodegeneration after moderate–severe traumatic brain injury. Brain 143:3685–3698.
      Graham NS, Cole JH, Bourke NJ, Schott JM, Sharp DJ (2023) Distinct patterns of neurodegeneration after TBI and in Alzheimer’s disease. Alzheimers Dement 19:3065–3077.
      Green TR, Ortiz JB, Wonnacott S, Williams RJ, Rowe RK (2020) The bidirectional relationship between sleep and inflammation links traumatic brain injury and Alzheimer’s disease. Front Neurosci 14:894.
      Guo Q, Zheng X, Yang P, Pang X, Qian K, Wang P, Xu S, Sheng D, Wang L, Cao J (2019a) Small interfering RNA delivery to the neurons near the amyloid plaques for improved treatment of Alzheimer׳ s disease. Acta Pharm Sin B 9:590–603.
      Guo S, Perets N, Betzer O, Ben-Shaul S, Sheinin A, Michaelevski I, Popovtzer R, Offen D, Levenberg S (2019b) Intranasal delivery of mesenchymal stem cell derived exosomes loaded with phosphatase and tensin homolog siRNA repairs complete spinal cord injury. ACS Nano 13:10015–10028.
      Guo S, Cázarez-Márquez F, Jiao H, Foppen E, Korpel NL, Grootemaat AE, Liv N, Gao Y, van der Wel N, Zhou B (2022) Specific silencing of microglial gene expression in the rat brain by nanoparticle-based small interfering RNA delivery. ACS Appl Mater Interfaces 14:5066–5079.
      Han L, Jiang C (2021) Evolution of blood-brain barrier in brain diseases and related systemic nanoscale brain-targeting drug delivery strategies. Acta Pharm Sin B 11:2306–2325.
      Han W, Zhang H, Feng L, Dang R, Wang J, Cui C, Jiang P (2023) The emerging role of exosomes in communication between the periphery and the central nervous system. MedComm 4:e410.
      Hanif S, Muhammad P, Chesworth R, Rehman FU, Qian RJ, Zheng M, Shi BY (2020) Nanomedicine-based immunotherapy for central nervous system disorders. Acta Pharmacol Sin 41:936–953.
      Hanscom M, Loane DJ, Shea-Donohue T (2021) Brain-gut axis dysfunction in the pathogenesis of traumatic brain injury. J Clin Investig 131:e143777.
      Hansen DV, Hanson JE, Sheng M (2018) Microglia in Alzheimer’s disease. J Cell Biol 217:459–472.
      Hardy JA, Higgins GA (1992) Alzheimer’s disease:the amyloid cascade hypothesis. Science 256:184–185.
      Hascup ER, Hascup KN (2020) Toward refining Alzheimer’s disease into overlapping subgroups. Alzheimers Dement 6:e12070.
      Hausrat TJ, Janiesch PC, Breiden P, Lutz D, Hoffmeister-Ullerich S, Hermans-Borgmeyer I, Failla AV, Kneussel M (2022) Disruption of tubulin-alpha4a polyglutamylation prevents aggregation of hyper-phosphorylated tau and microglia activation in mice. Nat Commun 13:4192.
      He Z, Li X, Wang Z, Cao Y, Han S, Li N, Cai J, Cheng S, Liu Q (2023) Protective effects of luteolin against amyloid beta-induced oxidative stress and mitochondrial impairments through peroxisome proliferator-activated receptor γ-dependent mechanism in Alzheimer’s disease. Redox Biol 66:102848.
      Hefter D, Draguhn A (2017) APP as a protective factor in acute neuronal insults. Front Mol Neurosci 10:22.
      Heidebrink JL, Paulson HL (2024) Lessons learned from approval of aducanumab for Alzheimer’s disease. Annu Rev Med 75:99–111.
      Hermanides J, Hong YT, Trivedi M, Outtrim J, Aigbirhio F, Nestor PJ, Guilfoyle M, Winzeck S, Newcombe VF, Das T (2021) Metabolic derangements are associated with impaired glucose delivery following traumatic brain injury. Brain 144:3492–3504.
      Hill CS, Coleman MP, Menon DK (2016) Traumatic axonal injury:mechanisms and translational opportunities. Trends Neurosci 39:311–324.
      Hu B, Zhong L, Weng Y, Peng L, Huang Y, Zhao Y, Liang XJ (2020) Therapeutic siRNA: state of the art. Sig Transduct Target Ther 5:101.
      Huang B, Tang T, Chen SH, Li H, Sun ZJ, Zhang ZL, Zhang M, Cui R (2023a) Near-infrared-IIb emitting single-atom catalyst for imaging-guided therapy of blood-brain barrier breakdown after traumatic brain injury. Nat Commun 14:197.
      Huang Q, Jiang C, Xia X, Wang Y, Yan C, Wang X, Lei T, Yang X, Yang W, Cheng G (2023b) Pathological BBB crossing melanin-like nanoparticles as metal-ion chelator and neuroinflammation regulator against Alzheimer’s disease. Research 6:0180.
      Huang Z, Wong LW, Su Y, Huang X, Wang N, Chen H, Yi C (2020) Blood-brain barrier integrity in the pathogenesis of Alzheimer’s disease. Front Neuroendocrinol 59:100857.
      Jamjoom AA, Rhodes J, Andrews PJ, Grant SG (2021) The synapse in traumatic brain injury. Brain 144:18–31.
      Javadpour P, Abbaszadeh F, Ahmadiani A, Rezaei M, Ghasemi R (2024) Mitochondrial transportation, transplantation, and subsequent immune response in Alzheimer’s disease: an update. Mol Neurobiol doi: 10.1007/s12035-024-04009-7.
      Jha RM, Kochanek PM, Simard JM (2019) Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology 145:230–246.
      Ji Y, Yang C, Pang X, Yan Y, Wu Y, Geng Z, Hu W, Hu P, Wu X, Wang K (2024) Repetitive transcranial magnetic stimulation in Alzheimer’s disease: effects on neural and synaptic rehabilitation. Neural Regen Res 20:326–342.
      Jiang D, Gong F, Ge X, Lv C, Huang C, Feng S, Zhou Z, Rong Y, Wang J, Ji C (2020) Neuron-derived exosomes-transmitted miR-124-3p protect traumatically injured spinal cord by suppressing the activation of neurotoxic microglia and astrocytes. J Nanobiotechnology 18:1–20.
      Johnson NH, de Rivero Vaccari JP, Bramlett HM, Keane RW, Dietrich WD (2023a) Inflammasome activation in traumatic brain injury and Alzheimer’s disease. Transl Res 254:1–12.
      Johnson NH, Kerr NA, de Rivero Vaccari JP, Bramlett HM, Keane RW, Dietrich WD (2023b) Genetic predisposition to Alzheimer’s disease alters inflammasome activity after traumatic brain injury. Transl Res 257:66–77.
      Johnson VE, Stewart W, Smith DH (2010) Traumatic brain injury and amyloid-β pathology: a link to Alzheimer’s disease? Nat Rev Neurosci 11:361–370.
      Julien J, Joubert S, Ferland M-C, Frenette L, Boudreau-Duhaime M, Malo-Véronneau L, De Guise E (2017) Association of traumatic brain injury and Alzheimer disease onset: a systematic review. Ann Phys Rehabil Med 60:347–356.
      Kang J, Ren B, Huang L, Dong X, Xiong Q, Feng Z (2024) Orexin-A alleviates ferroptosis by activating the Nrf2/HO-1 signaling pathway in traumatic brain injury. Aging 16:3404.
      Khaledian S, Dayani M, Fatahian A, Fatahian R, Martinez F (2022) Efficiency of lipid-based nano drug delivery systems in crossing the blood–brain barrier: a review. J Mol Liq 346:118278.
      Khare P, Dave KM, Kamte YS, Manoharan MA, O’Donnell LA, Manickam DS (2021) Development of lipidoid nanoparticles for siRNA delivery to neural cells. AAPS J 24:8.
      Khare P, Edgecomb SX, Hamadani CM, Tanner EE, Manickam DS (2023) Lipid nanoparticle-mediated drug delivery to the brain. Adv Drug Deliv Rev 197:114861.
      Kim B, Park JH, Sailor MJ (2019) Rekindling RNAi therapy:materials design requirements for in vivo siRNA delivery. Adv Mater 31:1903637.
      Kim J, Um H, Kim NH, Kim D (2023) Potential Alzheimer’s disease therapeutic nano-platform: Discovery of amyloid-beta plaque disaggregating agent and brain-targeted delivery system using porous silicon nanoparticles. Bioact Mater 24:497–506.
      Kim YK (2022) RNA therapy: rich history, various applications and unlimited future prospects. Exp Mol Med 54:455–465.
      Kokiko-Cochran ON, Godbout JP (2018) The inflammatory continuum of traumatic brain injury and Alzheimer’s disease. Front Immunol 9:672.
      Kousi C, Lampri E, Voulgaris S, Vougiouklakis T, Galani V, Mitselou A (2021) Expression of orexin-A (hypocretin-A) in the hypothalamus after traumatic brain injury: a postmortem evaluation. Forensic Sci Int 327:110961.
      Kulkarni JA, Witzigmann D, Leung J, Tam YYC, Cullis PR (2019a) On the role of helper lipids in lipid nanoparticle formulations of siRNA. Nanoscale 11:21733–21739.
      Kulkarni JA, Witzigmann D, Chen S, Cullis PR, van der Meel R (2019b) Lipid nanoparticle technology for clinical translation of siRNA therapeutics. Acc Chem Res 52:2435–2444.
      Kumar A, Loane DJ (2012) Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention. Brain Behav Immun 26:1191–1201.
      Kwon EJ, Skalak M, Lo Bu R, Bhatia SN (2016) Neuron-targeted nanoparticle for siRNA delivery to traumatic brain injuries. ACS Nano 10:7926–7933.
      Kwon HS, Koh SH (2020) Neuroinflammation in neurodegenerative disorders:the roles of microglia and astrocytes. Transl Neurodegener 9:42.
      Lai JQ, Shi YC, Lin S, Chen XR (2022) Metabolic disorders on cognitive dysfunction after traumatic brain injury. Trends Endocrinol Metab 33:451–462.
      Lamade AM, Anthonymuthu TS, Hier ZE, Gao Y, Kagan VE, Bayır H (2020) Mitochondrial damage & lipid signaling in traumatic brain injury. Exp Neurol 329:113307.
      Landau SM, Mormino EC (2023) Tau pathology without Aβ—A limited PART of clinical progression. JAMA Neurol 80:1025–1027.
      Li H, Lin L, Yan R, Chen Z, Wen X, Zeng X, Tao C (2022) Multi-functional Fe3O4@ HMPDA@ G5-Au core-releasable satellite nano drug carriers for multimodal treatment of tumor cells. Eur Polym J 181:111647.
      Li L, Liang J, Fu H (2021a) An update on the association between traumatic brain injury and Alzheimer’s disease:Focus on Tau pathology and synaptic dysfunction. Neurosci Biobehav Rev 120:372–386.
      Li T, Huang L, Yang M (2020a) Lipid-based vehicles for siRNA delivery in biomedical field. Curr Pharm Biotechnol 21:3–22.
      Li W, Qiu J, Li XL, Aday S, Zhang J, Conley G, Xu J, Joseph J, Lan H, Langer R (2021b) BBB pathophysiology–independent delivery of siRNA in traumatic brain injury. Sci Adv 7:eabd6889.
      Li Y, Zhang J, Wan J, Liu A, Sun J (2020b) Melatonin regulates Aβ production/clearance balance and Aβ neurotoxicity: a potential therapeutic molecule for Alzheimer’s disease. Biomed Pharmacother 132:110887.
      Li Y, Liu L, Ji W, Peng H, Zhao R, Zhang X (2020c) Strategies and materials of” SMART” non-viral vectors:Overcoming the barriers for brain gene therapy. Nano Today 35:101006.
      Liaw K, Zhang Z, Kannan S (2019) Neuronanotechnology for brain regeneration. Adv Drug Deliv Rev 148:3–18.
      Lifshitz J, Sullivan PG, Hovda DA, Wieloch T, McIntosh TK (2004) Mitochondrial damage and dysfunction in traumatic brain injury. Mitochondrion 4:705–713.
      Lim SH, Yee GT, Khang D (2024) Nanoparticle-based combinational strategies for overcoming the blood–brain barrier and blood-tumor barrier. Int J Nanomedicine:2529–2552.
      Liu S, Liu J, Li H, Mao K, Wang H, Meng X, Wang J, Wu C, Chen H, Wang X (2022) An optimized ionizable cationic lipid for brain tumor-targeted siRNA delivery and glioblastoma immunotherapy. Biomaterials 287:121645.
      Liu X, Zhong X, Li C (2021) Challenges in cell membrane-camouflaged drug delivery systems:Development strategies and future prospects. Chin Chem Lett 32:2347–2358.
      Liu XL, Sun DD, Zheng MT, Li XT, Niu HH, Zhang L, Zhou ZW, Rong HT, Wang Y, Wang JW, Yang GL, Liu X, Chen FL, Zhou Y, Zhang S, Zhang JN (2023a) Maraviroc promotes recovery from traumatic brain injury in mice by suppression of neuroinflammation and activation of neurotoxic reactive astrocytes. Neural Regen Res 18:141–149.
      Liu Y, Zhang T, Zou X, Yuan Z, Li Y, Zang J, He N, He L, Xu A, Lu D (2023b) Penumbra-targeted CircOGDH siRNA-loaded nanoparticles alleviate neuronal apoptosis in focal brain ischaemia. Stroke Vasc Neurol 9:134–144.
      Liyanage W, Wu T, Kannan S, Kannan RM (2022) Dendrimer–siRNA conjugates for targeted intracellular delivery in glioblastoma animal models. ACS Appl Mater Interfaces 14:46290–46303.
      Lu ZG, Shen J, Yang J, Wang JW, Zhao RC, Zhang TL, Guo J, Zhang X (2023) Nucleic acid drug vectors for diagnosis and treatment of brain diseases. Sig Transduct Target Ther 8:39.
      Lundy DJ, Nguyễn H, Hsieh PC (2021) Emerging nano-carrier strategies for brain tumor drug delivery and considerations for clinical translation. Pharmaceutics 13:1193.
      Luo M, Lee LKC, Peng B, Choi CHJ, Tong WY, Voelcker NH (2022) Delivering the promise of gene therapy with nanomedicines in treating central nervous system diseases. Adv Sci 9:2201740.
      Luo ZW, Ovcjak A, Wong R, Yang BX, Feng ZP, Sun HS (2020) Drug development in targeting ion channels for brain edema. Acta Pharmacologica Sinica 41:1272–1288.
      Luther DC, Huang R, Jeon T, Zhang X, Lee YW, Nagaraj H, Rotello VM (2020) Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles. Adv Drug Deliv Rev 156:188–213.
      Lyman M, Lloyd DG, Ji X, Vizcaychipi MP, Ma D (2014) Neuroinflammation:the role and consequences. Neurosci Res 79:1–12.
      Ma X, Luan Z, Li J (2023) Inorganic nanoparticles-based systems in biomedical applications of stem cells: opportunities and challenges. Int J Nanomedicine:143–182.
      Maas AI, Menon DK, Manley GT, Abrams M, Åkerlund C, Andelic N, Aries M, Bashford T, Bell MJ, Bodien YG (2022) Traumatic brain injury: progress and challenges in prevention, clinical care, and research. Lancet Neurol 21:1004–1060.
      Macks C, Jeong D, Lee JS (2021) Local delivery of RhoA siRNA by PgP nanocarrier reduces inflammatory response and improves neuronal cell survival in a rat TBI model. Nanomedicine (Lond) 32:102343.
      Madni A, Sarfraz M, Rehman M, Ahmad M, Akhtar N, Ahmad S, Tahir N, Ijaz S, Al-Kassas R, Löbenberg R (2014) Liposomal drug delivery: a versatile platform for challenging clinical applications. J Pharm Pharm Sci 17:401–426.
      Majumder J, Taratula O, Minko T (2019) Nanocarrier-based systems for targeted and site specific therapeutic delivery. Adv Drug Deliv Rev 144:57–77.
      Marklund N, Bellander BM, Godbolt A, Levin H, McCrory P, Thelin EP (2019) Treatments and rehabilitation in the acute and chronic state of traumatic brain injury. J Intern Med 285:608–623.
      Mathew SA, Praveena P, Dhanavel S, Manikandan R, Senthilkumar S, Stephen A (2020) Luminescent chitosan/carbon dots as an effective nano-drug carrier for neurodegenerative diseases. Rsc Adv 10:24386–24396.
      Md S, Bhattmisra SK, Zeeshan F, Shahzad N, Mujtaba MA, Meka VS, Radhakrishnan A, Kesharwani P, Baboota S, Ali J (2018) Nano-carrier enabled drug delivery systems for nose to brain targeting for the treatment of neurodegenerative disorders. J Drug Deliv Sci Technol 43:295–310.
      Meena R, Kumar S, Paulraj R (2015) Titanium oxide (TiO 2) nanoparticles in induction of apoptosis and inflammatory response in brain. J Nanopart Res 17:1–14.
      Mendonça MC, Kont A, Aburto MR, Cryan JF, O’Driscoll CM (2021) Advances in the design of (nano) formulations for delivery of antisense oligonucleotides and small interfering RNA:Focus on the central nervous system. Mol Pharm 18:1491–1506.
      Meng Q, Meng H, Pan Y, Liu J, Li J, Qi Y, Huang Y (2022) Influence of nanoparticle size on blood–brain barrier penetration and the accumulation of anti-seizure medicines in the brain. J Mater Chem B 10:271–281.
      Meunier F, Prentice H, Ringden O (1991) Liposomal amphotericin B (AmBisome): safety data from a phase II/III clinical trial. J Antimicrob Chemother 28:83–91.
      Michinaga S, Koyama Y (2021) Pathophysiological responses and roles of astrocytes in traumatic brain injury. Int J Mol Sci 22:6418.
      Mikolić A, van Klaveren D, Groeniger JO, Wiegers EJ, Lingsma HF, Zeldovich M, von Steinbüchel N, Maas AI, Roeters van Lennep JE, Polinder S (2021) Differences between men and women in treatment and outcome after traumatic brain injury. J Neurotrauma 38:235–251.
      Mocciaro E, Grant A, Esenaliev RO, Petrov IY, Petrov Y, Sell SL, Hausser NL, Guptarak J, Bishop E, Parsley MA (2020) Non-invasive transcranial nano-pulsed laser therapy ameliorates cognitive function and prevents aberrant migration of neural progenitor cells in the hippocampus of rats subjected to traumatic brain injury. J Neurotrauma 37:1108–1123.
      Mohamed AZ, Nestor PJ, Cumming P, Nasrallah FA; Initiative AsDN (2022) Traumatic brain injury fast-forwards Alzheimer’s pathology: evidence from amyloid positron emission tomorgraphy imaging. J Neurol 269:873–884.
      Monge-Fuentes V, Biolchi Mayer A, Lima MR, Geraldes LR, Zanotto LN, Moreira KG, Martins OP, Piva HL, Felipe MSS, Amaral AC (2021a) Dopamine-loaded nanoparticle systems circumvent the blood–brain barrier restoring motor function in mouse model for Parkinson’s Disease. Sci Rep 11:15185.
      Monge-Fuentes V, Biolchi Mayer A, Lima MR, Geraldes LR, Zanotto LN, Moreira KG, Martins OP, Piva HL, Felipe MSS, Amaral AC, Bocca AL, Tedesco AC, Mortari MR (2021b) Dopamine-loaded nanoparticle systems circumvent the blood-brain barrier restoring motor function in mouse model for Parkinson’s Disease. Sci Rep 11:15185.
      Murdock MH, et al. (2024) Multisensory gamma stimulation promotes glymphatic clearance of amyloid. Nature 627:149–156.
      Ng SY, Lee AYW (2019) Traumatic brain injuries:pathophysiology and potential therapeutic targets. Front Cell Neurosci 13:528.
      Panayi N, Schulz P, He P, Hanna B, Lifshitz J, Rowe RK, Sierks MR (2024) Traumatic brain injury in mice generates early-stage Alzheimer’s disease related protein pathology that correlates with neurobehavioral deficits. Mol Neurobiol doi: 10.1007/s12035-024-04035-5.
      Patnaik S, Gorain B, Padhi S, Choudhury H, Gabr GA, Md S, Mishra DK, Kesharwani P (2021) Recent update of toxicity aspects of nanoparticulate systems for drug delivery. Eur J Pharm Biopharm 161:100–119.
      Pattipeiluhu R, Arias‐Alpizar G, Basha G, Chan KY, Bussmann J, Sharp TH, Moradi MA, Sommerdijk N, Harris EN, Cullis PR (2022) Anionic lipid nanoparticles preferentially deliver mRNA to the hepatic reticuloendothelial system. Adv Mater 34:2201095.
      Pérez-Carrión MD, Posadas I, Ceña V (2024) Nanoparticles and siRNA: a new era in therapeutics? Pharmacol Res 201:107102.
      Porsteinsson A, Isaacson R, Knox S, Sabbagh M, Rubino I (2021) Diagnosis of early Alzheimer’s disease:clinical practice in 2021. J Prev Alzheimer’s Dis 8:371–386.
      Prins M, Greco T, Alexander D, Giza CC (2013) The pathophysiology of traumatic brain injury at a glance. Dis Models Mech 6:1307–1315.
      Qiao Y, Gu J, Yu M, Chi Y, Ma Y (2024) Comparative efficacy and safety of monoclonal antibodies for cognitive decline in patients with alzheimer’s disease: a systematic review and network meta-analysis. CNS Drugs 38:169–192.
      Ragelle H, Vandermeulen G, Préat V (2013) Chitosan-based siRNA delivery systems. J Control Release 172:207–218.
      Ralvenius WT, Andresen JL, Huston MM, Penney J, Bonner JM, Fenton OS, Langer R, Tsai LH (2023) Nanoparticle‐mediated delivery of Anti‐PU. 1 siRNA via localized intracisternal administration reduces neuroinflammation. Adv Mater 36:e2309225.
      Ramos-Cejudo J, Wisniewski T, Marmar C, Zetterberg H, Blennow K, de Leon MJ, Fossati S (2018) Traumatic brain injury and Alzheimer’s disease:the cerebrovascular link. Ebiomedicine 28:21–30.
      Raulin A-C, Doss SV, Trottier ZA, Ikezu TC, Bu G, Liu C-C (2022) ApoE in Alzheimer’s disease:Pathophysiology and therapeutic strategies. Mol Neurodegener 17:1–26.
      Reynolds N, Dearnley M, Hinton TM (2017) Polymers in the delivery of siRNA for the treatment of virus infections. Top Curr Chem 375:38.
      Rosa JM, Farré‐Alins V, Ortega MC, Navarrete M, Lopez‐Rodriguez AB, Palomino‐Antolín A, Fernández‐López E, Vila‐del Sol V, Decouty C, Narros‐Fernández P (2021) TLR4 pathway impairs synaptic number and cerebrovascular functions through astrocyte activation following traumatic brain injury. Br J Pharmacol 178:3395–3413.
      Rostowsky KA, Irimia A; Alzheimer’s Disease Neuroimaging Initiative (2021) Acute cognitive impairment after traumatic brain injury predicts the occurrence of brain atrophy patterns similar to those observed in Alzheimer’s disease. Geroscience 43:2015–2039.
      Sajid MI, Sheikh FS, Anis F, Nasim N, Sumbria RK, Nauli SM, Tiwari RK (2023) siRNA drug delivery across the blood-brain barrier in Alzheimer’s Disease. Adv Drug Deliv Rev 199:114968.
      Schepici G, Silvestro S, Bramanti P, Mazzon E (2020) Traumatic brain injury and stem cells: an overview of clinical trials, the current treatments and future therapeutic approaches. Medicina 56:137.
      Schneider AL, Huie JR, Boscardin WJ, Nelson L, Barber JK, Yaffe K, Diaz-Arrastia R, Ferguson AR, Kramer J, Jain S (2022) Cognitive outcome 1 year after mild traumatic brain injury: results from the TRACK-TBI study. Neurology 98:e1248-1261.
      Shan S, Chen J, Sun Y, Wang Y, Xia B, Tan H, Pan C, Gu G, Zhong J, Qing G (2022) Functionalized macrophage exosomes with panobinostat and PPM1D‐siRNA for diffuse intrinsic pontine gliomas therapy. Adv Sci 9:2200353.
      Sharma R, Kambhampati SP, Zhang Z, Sharma A, Chen S, Duh EI, Kannan S, Tso MO, Kannan RM (2020) Dendrimer mediated targeted delivery of sinomenine for the treatment of acute neuroinflammation in traumatic brain injury. J Control Release 323:361–375.
      Sharp PA (2001) RNA interference-2001. Genes Dev 15:485–490.
      Shaw TK, Paul P (2022) Recent approaches and success of liposome-based nano drug carriers for the treatment of brain tumor. Curr Drug Deliv 19:815–829.
      Shi K, Zhang J, Dong JF, Shi FD (2019) Dissemination of brain inflammation in traumatic brain injury. Cell Mol Immunol 16:523–530.
      Shin HJ, Kim IS, Choi SG, Lee K, Park H, Shin J, Kim D, Beom J, Yi YY, Gupta DP (2024) Rejuvenating aged microglia by p16ink4a-siRNA-loaded nanoparticles increases amyloid-β clearance in animal models of Alzheimer’s disease. Mol Neurodegener 19:25.
      Shin MK, Vázquez-Rosa E, Koh Y, Dhar M, Chaubey K, Cintrón-Pérez CJ, Barker S, Miller E, Franke K, Noterman MF (2021) Reducing acetylated tau is neuroprotective in brain injury. Cell 184:2715–2732.e2723.
      Siddiqi SH, Kandala S, Hacker CD, Bouchard H, Leuthardt EC, Corbetta M, Morey RA, Brody DL (2023) Precision functional MRI mapping reveals distinct connectivity patterns for depression associated with traumatic brain injury. Sci Transl Med 15:eabn0441.
      Simon DW, McGeachy MJ, Bayır H, Clark RS, Loane DJ, Kochanek PM (2017) The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol 13:171–191.
      Sivandzade F, Cucullo L (2021) Regenerative stem cell therapy for neurodegenerative diseases: an overview. Int J Mol Sci 22:2153.
      Small DH, Cappai R (2006) Alois Alzheimer and Alzheimer’s disease: a centennial perspective. J Neurochem 99:708–710.
      Söderberg L, Johannesson M, Nygren P, Laudon H, Eriksson F, Osswald G, Möller C, Lannfelt L (2023) Lecanemab, aducanumab, and gantenerumab-binding profiles to different forms of amyloid-beta might explain efficacy and side effects in clinical trials for Alzheimer’s disease. Neurotherapeutics 20:195–206.
      Somaa FA, de Graaf TA, Sack AT (2022) Transcranial magnetic stimulation in the treatment of neurological diseases. Front Neurol 13:793253.
      Spillantini MG, Goedert M (1998) Tau protein pathology in neurodegenerative diseases. Trends Neurosci 21:428–433.
      Spirescu VA, Chircov C, Grumezescu AM, Vasile BȘ, Andronescu E (2021) Inorganic nanoparticles and composite films for antimicrobial therapies. Int J Mol Sci 22:4595.
      Srivastava S, Ahmad R, Khare SK (2021) Alzheimer’s disease and its treatment by different approaches: a review. Eur J Med Chem 216:113320.
      Staal JA, Dickson TC, Gasperini R, Liu Y, Foa L, Vickers JC (2010) Initial calcium release from intracellular stores followed by calcium dysregulation is linked to secondary axotomy following transient axonal stretch injury. J Neurochem 112:1147–1155.
      Sun J, Liu J, Gao C, Zheng J, Zhang J, Ding Y, Gong W, Yang M, Li Z, Wang Y (2022a) Targeted delivery of PARP inhibitors to neuronal mitochondria via biomimetic engineered nanosystems in a mouse model of traumatic brain injury. Acta Biomater 140:573–585.
      Sun T, Zhao K, Liu M, Cai Z, Zeng L, Zhang J, Li Z, Liu R (2022b) miR-30a-5p induces Aβ production via inhibiting the nonamyloidogenic pathway in Alzheimer’s disease. Pharmacol Res 178:106153.
      Sur S, Rathore A, Dave V, Reddy KR, Chouhan RS, Sadhu V (2019) Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Struct Nano-Objects 20:100397.
      Tajiri N, Kellogg SL, Shimizu T, Arendash GW, Borlongan CV (2013) Traumatic brain injury precipitates cognitive impairment and extracellular Aβ aggregation in Alzheimer’s disease transgenic mice. PLoS One 8:e78851.
      Taliyan R, Kakoty V, Sarathlal K, Kharavtekar SS, Karennanavar CR, Choudhary YK, Singhvi G, Riadi Y, Dubey SK, Kesharwani P (2022) Nanocarrier mediated drug delivery as an impeccable therapeutic approach against Alzheimer’s disease. J Control Release 343:528–550.
      Tang L, Zhang R, Wang Y, Zhang X, Yang Y, Zhao B, Yang L (2023) A simple self-assembly nanomicelle based on brain tumor-targeting peptide-mediated siRNA delivery for glioma immunotherapy via intranasal administration. Acta Biomater 155:521–537.
      Tani J, Wen YT, Hu CJ, Sung JY (2022) Current and potential pharmacologic therapies for traumatic brain injury. Pharmaceuticals 15:838.
      Targa Dias Anastacio H, Matosin N, Ooi L (2022) Neuronal hyperexcitability in Alzheimer’s disease: what are the drivers behind this aberrant phenotype? Transl Psychiatry 12:257.
      Thapa K, Khan H, Singh TG, Kaur A (2021) Traumatic brain injury: mechanistic insight on pathophysiology and potential therapeutic targets. J Mol Neurosci 71:1725–1742.
      Timofeev I, Carpenter KL, Nortje J, Al-Rawi PG, O’Connell MT, Czosnyka M, Smielewski P, Pickard JD, Menon DK, Kirkpatrick PJ (2011) Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain 134:484–494.
      Twohig D, Nielsen HM (2019) α-synuclein in the pathophysiology of Alzheimer’s disease. Mol Neurodegener 14:1–19.
      Unterberg A, Stover J, Kress B, Kiening K (2004) Edema and brain trauma. Neuroscience 129:1019–1027.
      van der Velpen V, Teav T, Gallart-Ayala H, Mehl F, Konz I, Clark C, Oikonomidi A, Peyratout G, Henry H, Delorenzi M (2019) Systemic and central nervous system metabolic alterations in Alzheimer’s disease. Alzheimer’s Res Ther 11:1–12.
      Vaz M, Silva V, Monteiro C, Silvestre S (2022) Role of aducanumab in the treatment of Alzheimer’s disease:Challenges and opportunities. Clin Interv Aging 17:797–810.
      Voet S, Srinivasan S, Lamkanfi M, van Loo G (2019) Inflammasomes in neuroinflammatory and neurodegenerative diseases. Embo Mol Med 11:e10248.
      Waggoner LE, Miyasaki KF, Kwon EJ (2023) Analysis of PEG-lipid anchor length on lipid nanoparticle pharmacokinetics and activity in a mouse model of traumatic brain injury. Biomater Sci 11:4238–4253.
      Walker KR, Tesco G (2013) Molecular mechanisms of cognitive dysfunction following traumatic brain injury. Front Aging Neurosci 5:29.
      Wang W, Zhao F, Ma X, Perry G, Zhu X (2020) Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: recent advances. Mol Neurodegener 15:1–22.
      Williams SM, Peltz C, Yaffe K, Schulz P, Sierks MR (2018) CNS disease-related protein variants as blood-based biomarkers in traumatic brain injury. Neurology 91:702–709.
      Willing AE, Das M, Howell M, Mohapatra SS, Mohapatra S (2020) Potential of mesenchymal stem cells alone, or in combination, to treat traumatic brain injury. CNS Neurosci Ther 26:616–627.
      Wu H, Zheng J, Xu S, Fang Y, Wu Y, Zeng J, Shao A, Shi L, Lu J, Mei S (2021a) Mer regulates microglial/macrophage M1/M2 polarization and alleviates neuroinflammation following traumatic brain injury. J Neuroinflammation 18:1–20.
      Wu Y, Wu H, Zeng J, Pluimer B, Dong S, Xie X, Guo X, Ge T, Liang X, Feng S (2021b) Mild traumatic brain injury induces microvascular injury and accelerates Alzheimer-like pathogenesis in mice. Acta Neuropathol Commun 9:74.
      Wu Z, Wang Z-H, Liu X, Zhang Z, Gu X, Yu SP, Keene CD, Cheng L, Ye K (2020) Traumatic brain injury triggers APP and Tau cleavage by delta-secretase, mediating Alzheimer’s disease pathology. Prog Neurobiol 185:101730.
      Xiao H, Amarsaikhan O, Zhao Y, Yu X, Hu X, Han S, Baigude H (2023) Astrocyte-targeted siRNA delivery by adenosine-functionalized LNP in mouse TBI model. Mol Ther Nucleic Acids 34:102065.
      Xu CH, Ye PJ, Zhou YC, He DX, Wei H, Yu CY (2020) Cell membrane-camouflaged nanoparticles as drug carriers for cancer therapy. Acta Biomater 105:1–14.
      Xu J, Wu S, Huo L, Zhang Q, Liu L, Ye Z, Cao J, Ma H, Shang C, Ma C (2023) Trigeminal nerve stimulation restores hippocampal dopamine deficiency to promote cognitive recovery in traumatic brain injury. Prog Neurobiol 227:102477.
      Xu L, Wang X, Liu Y, Yang G, Falconer RJ, Zhao CX (2022) Lipid nanoparticles for drug delivery. Adv Nanobiomed Res 2:2100109.
      Xu M, Feng T, Liu B, Qiu F, Xu Y, Zhao Y, Zheng Y (2021a) Engineered exosomes: desirable target-tracking characteristics for cerebrovascular and neurodegenerative disease therapies. Theranostics 11:8926.
      Xu XJ, Yang MS, Zhang B, Niu F, Dong JQ, Liu BY (2021b) Glucose metabolism: a link between traumatic brain injury and Alzheimer’s disease. Chin J Traumatol 24:5–10.
      Xu Z, Wang D, Cheng Y, Yang M, Wu LP (2018) Polyester based nanovehicles for siRNA delivery. Mater Sci Eng C Mater Biol Appl 92:1006–1015.
      Yang CZ, Wang SH, Zhang RH, Lin JH, Tian YH, Yang YQ, Liu J, Ma YX (2023) Neuroprotective effect of astragalin via activating PI3K/Akt-mTOR-mediated autophagy on APP/PS1 mice. Cell Death Discovery 9:15.
      Yang T, Velagapudi R, Terrando N (2020) Neuroinflammation after surgery: from mechanisms to therapeutic targets. Nat Immunol 21:1319–1326.
      Yang X, Yang W, Xia X, Lei T, Yang Z, Jia W, Zhou Y, Cheng G, Gao H (2022a) Intranasal delivery of BACE1 siRNA and rapamycin by dual targets modified nanoparticles for Alzheimer’s disease therapy. Small 18:2203182.
      Yang Y, Yin N, Gu Z, Zhao Y, Liu C, Zhou T, Zhang K, Zhang Z, Liu J, Shi J (2022b) Engineered biomimetic drug-delivery systems for ischemic stroke therapy. Med Drug Discov 15:100129.
      Yang Y, Zhang X, Wu S, Zhang R, Zhou B, Zhang X, Tang L, Tian Y, Men K, Yang L (2022c) Enhanced nose-to-brain delivery of siRNA using hyaluronan-enveloped nanomicelles for glioma therapy. J Control Release 342:66–80.
      Yang Z, Wang Z, Deng X, Zhu L, Song Z, Cao C, Li X (2024) P7C3-A20 treats traumatic brain injury in rats by inhibiting excessive autophagy and apoptosis. Neural Regen Res 19:1078–1083.
      Ye Z, Izadi A, Gurkoff GG, Rickerl K, Sharp FR, Ander BP, Bauer SZ, Lui A, Lyeth BG, Liu D (2022) Combined inhibition of Fyn and c-Src protects hippocampal neurons and improves spatial memory via ROCK after traumatic brain injury. J Neurotraum 39:520–529.
      Yi LX, Tan EK, Zhou ZD (2024) Passive immunotherapy for Alzheimer’s disease: challenges future directions. J Transl Med 22:1–10.
      Yonezawa S, Koide H, Asai T (2020) Recent advances in siRNA delivery mediated by lipid-based nanoparticles. Adv Drug Deliv Rev 154:64–78.
      Yu F, Zheng M, Zhang AY, Han Z (2019) A cerium oxide loaded glycol chitosan nano-system for the treatment of dry eye disease. J Control Release 315:40–54.
      Yue C, Feng S, Chen Y, Jing N (2022) The therapeutic prospects and challenges of human neural stem cells for the treatment of Alzheimer’s Disease. Cell Regen 11:28.
      Yuzwa SA, Shan X, Macauley MS, Clark T, Skorobogatko Y, Vosseller K, Vocadlo DJ (2012) Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation. Nat Chem Biol 8:393–399.
      Yuzwa SA, Vocadlo DJ (2014) O-GlcNAc and neurodegeneration:biochemical mechanisms and potential roles in Alzheimer’s disease and beyond. Chem Soc Rev 43:6839–6858.
      Zha S, Liu H, Li H, Li H, Wong KL, All AH (2024) Functionalized nanomaterials capable of crossing the blood–brain barrier. ACS Nano 18:1820–1845.
      Zhang D, Ren Y, He Y, Chang R, Guo S, Ma S, Guan F, Yao M (2022a) In situ forming and biocompatible hyaluronic acid hydrogel with reactive oxygen species-scavenging activity to improve traumatic brain injury repair by suppressing oxidative stress and neuroinflammation. Mater Today Bio 15:100278.
      Zhang F, Jiang L (2015) Neuroinflammation in Alzheimer’s disease. Neuropsychiatr Dis Treat:243–256.
      Zhang F, Lin YA, Kannan S, Kannan RM (2016) Targeting specific cells in the brain with nanomedicines for CNS therapies. J Control Release 240:212–226.
      Zhang L, Chen C, Mak MS, Lu J, Wu Z, Chen Q, Han Y, Li Y, Pi R (2020) Advance of sporadic Alzheimer’s disease animal models. Med Res Rev 40:431–458.
      Zhang R, Wu S, Ding Q, Fan Q, Dai Y, Guo S, Ye Y, Li C, Zhou M (2021a) Recent advances in cell membrane-camouflaged nanoparticles for inflammation therapy. Drug Deliv 28:1109–1119.
      Zhang R, Fu Y, Cheng M, Ma W, Zheng N, Wang Y, Wu Z (2022b) sEVsRVG selectively delivers antiviral siRNA to fetus brain, inhibits ZIKV infection and mitigates ZIKV-induced microcephaly in mouse model. Mol Ther 30:2078–2091.
      Zhang S, Lachance BB, Mattson MP, Jia X (2021b) Glucose metabolic crosstalk and regulation in brain function and diseases. Prog Neurobiol 204:102089.
      Zhang W, Mehta A, Tong Z, Esser L, Voelcker NH (2021c) Development of polymeric nanoparticles for blood–brain barrier transfer—strategies and challenges. Adv Sci 8:2003937.
      Zhang X, Song W (2013) The role of APP and BACE1 trafficking in APP processing and amyloid-β generation. Alzheimers Res Ther 5:46.
      Zhang X, Huang X, Hang D, Jin J, Li S, Zhu Y, Liu H (2024) Targeting pyroptosis with nanoparticles to alleviate neuroinflammatory for preventing secondary damage following traumatic brain injury. Sci Adv 10:eadj4260.
      Zhao J, Qu D, Xi Z, Huan Y, Zhang K, Yu C, Yang D, Kang J, Lin W, Wu S (2021a) Mitochondria transplantation protects traumatic brain injury via promoting neuronal survival and astrocytic BDNF. Transl Res 235:102–114.
      Zhao M, Jiang XF, Zhang HQ, Sun JH, Pei H, Ma LN, Cao Y, Li H (2021b) Interactions between glial cells and the blood-brain barrier and their role in Alzheimer’s disease. Ageing Res Rev 72:101483.
      Zhao X, Zeng W, Xu H, Sun Z, Hu Y, Peng B, McBride JD, Duan J, Deng J, Zhang B (2023) A microtubule stabilizer ameliorates protein pathogenesis and neurodegeneration in mouse models of repetitive traumatic brain injury. Sci Transl Med 15:eabo6889.
      Zheng Y, Zhang L, Zhao J, Li L, Wang M, Gao P, Wang Q, Zhang X, Wang W (2022) Advances in aptamers against Aβ and applications in Aβ detection and regulation for Alzheimer’s disease. Theranostics 12:2095.
      Zhou Y, Peng Z, Seven ES, Leblanc RM (2018) Crossing the blood-brain barrier with nanoparticles. J Control Release 270:290–303.
      Zhou Y, Shao A, Yao Y, Tu S, Deng Y, Zhang J (2020a) Dual roles of astrocytes in plasticity and reconstruction after traumatic brain injury. Cell Commun 18:1–16.
      Zhou Y, Zhu F, Liu Y, Zheng M, Wang Y, Zhang D, Anraku Y, Zou Y, Li J, Wu H (2020b) Blood-brain barrier–penetrating siRNA nanomedicine for Alzheimer’s disease therapy. Sci Adv 6:eabc7031.
      Zielińska A, Carreiró F, Oliveira AM, Neves A, Pires B, Venkatesh DN, Durazzo A, Lucarini M, Eder P, Silva AM (2020) Polymeric nanoparticles:production, characterization, toxicology and ecotoxicology. Molecules 25:3731.
      Zinger A, Soriano S, Baudo G, De Rosa E, Taraballi F, Villapol S (2021) Biomimetic nanoparticles as a theranostic tool for traumatic brain injury. Adv Funct Mater 31:2100722.
      Zorkina Y, Abramova O, Ushakova V, Morozova A, Zubkov E, Valikhov M, Melnikov P, Majouga A, Chekhonin V (2020) Nano carrier drug delivery systems for the treatment of neuropsychiatric disorders: advantages and limitations. Molecules 25:5294.
      Zou Y, Sun X, Wang Y, Yan C, Liu Y, Li J, Zhang D, Zheng M, Chung RS, Shi B (2020) Single siRNA nanocapsules for effective siRNA brain delivery and glioblastoma treatment. Adv Mater 32:2000416.
      Zyśk M, Clausen F, Aguilar X, Sehlin D, Syvänen S, Erlandsson A (2019) Long-term effects of traumatic brain injury in a mouse model of Alzheimer’s disease. J Alzheimers Dis 72:161–180.
    • Publication Date:
      Date Created: 20240924 Latest Revision: 20241106
    • Publication Date:
      20241106
    • Accession Number:
      10.4103/NRR.NRR-D-24-00303
    • Accession Number:
      39314170