Odour characterisation of recycled HDPE in different washing and processing processes.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
    • Publication Information:
      Publication: <2013->: Berlin : Springer
      Original Publication: Landsberg, Germany : Ecomed
    • Subject Terms:
    • Abstract:
      The waste of polymeric materials in our society is increasing year after year, generating a serious pollution problem. One way to deal with this waste problem is to recycle and reuse these materials. This process of recovery of used plastic materials aims to minimise their impact on the environment and reduce the energy consumption required for the generation of new consumer products. Recycling companies that recover these plastic materials must take into account some aspects such as transparency and colour, cleanliness, size, odour and sorting. One of the major disadvantages in accepting these recycled materials in the production processes is their odour, which in some cases causes the rejection of materials with comparable mechanical characteristics. High-density polyethylene, HDPE, is one of the polymeric wastes generated in the packaging industry. The aim of this work is to eliminate the bad odour of HDPE from waste collection plants for application in the recovery and reuse industry. HDPE supplied by a recycling company was washed, characterised and processed, and the odour was analysed by gas chromatography at each stage and by olfactory panel. In view of the results, it was observed that the washing processes managed to reduce the odour. Likewise, the processing of this waste by extrusion and injection managed to further reduce this effect, even eliminating some of the components responsible for odour by treating the samples with acetone and then extruding and injecting these samples. These results have a direct application in the packaging industry with significant shares of recycled material.
      (© 2024. The Author(s).)
    • References:
      Antonopoulos I, Faraca G, Tonini D (2021) Recycling of post-consumer plastic packaging waste in the EU: recovery rates, material flows, and barriers. Waste Manag 126:694–705. https://doi.org/10.1016/J.WASMAN.2021.04.002. (PMID: 10.1016/J.WASMAN.2021.04.002)
      Atkinson JR, Biddlestone F, Hay JN (2000) An investigation of glass formation and physical ageing in poly(ethylene terephthalate) by FT-IR spectroscopy. Polymer 41(18):6965–6968. https://doi.org/10.1016/S0032-3861(00)00017-3. (PMID: 10.1016/S0032-3861(00)00017-3)
      Boz Noyan EC, Venkatesh A, Boldizar A (2022) Washing post-consumer flexible polyethylene packaging waste. Recycling 7(6):90. https://doi.org/10.3390/RECYCLING7060090. (PMID: 10.3390/RECYCLING7060090)
      Brent SA (2006) Plastics materials and processing 3rd edition - A. Brent Strong PDF | PDF. https://es.scribd.com/document/404025898/Plastics-Materials-and-Processing-3rd-Edition-A-Brent-Strong-pdf . Accessed 10 Mar 2024.
      Cabanes A, Fullana A (2021) New methods to remove volatile organic compounds from post-consumer plastic waste. Sci Total Environ 758:144066. https://doi.org/10.1016/J.SCITOTENV.2020.144066. (PMID: 10.1016/J.SCITOTENV.2020.144066)
      Chen ZF, Lin QB, Song XC, Chen S, Zhong HN, Nerin C (2020) Discrimination of virgin and recycled polyethylene based on volatile organic compounds using a headspace GC-MS coupled with chemometrics approach. Food Packag Shelf Life 26:100553. https://doi.org/10.1016/J.FPSL.2020.100553. (PMID: 10.1016/J.FPSL.2020.100553)
      Cobbs WH, Burton RL (1953) Crystallization of polyethylene terephthalate. J Polym Sci 10(3):275–290. https://doi.org/10.1002/POL.1953.120100302. (PMID: 10.1002/POL.1953.120100302)
      Dewi R, Sylvia N, Zulnazri, Riza M (2023) Melt flow index (MFI) analysis of sago based thermoplastic starch blend with polypropylene and polyethylene. Mater Today: Proc 87:396–400. https://doi.org/10.1016/J.MATPR.2023.04.173. (PMID: 10.1016/J.MATPR.2023.04.173)
      Dorai R, Kushner MJ (2003) A model for plasma modification of polypropylene using atmospheric pressure discharges. J Phys D Appl Phys 36(6):666. https://doi.org/10.1088/0022-3727/36/6/309. (PMID: 10.1088/0022-3727/36/6/309)
      Vilarrasa García E (2014) Development of adsorption materials. Available: http://hdl.handle.net/10630/8659.
      Fernanda J, Batallas A (2016) Evaluación del efecto de dos sistemas de radiación ionizante aplicados en el proceso de degradación de bolsas con aditivo pro-oxidante. http://bibdigital.epn.edu.ec/handle/15000/16562 . Accessed 10 Mar 2024.
      Fuller J, White D, Yi H, Colley J, Vickery Z, Liu S (2020) Analysis of volatile compounds causing undesirable odors in a polypropylene - high-density polyethylene recycled plastic resin with solid-phase microextraction. Chemosphere 260:127589. https://doi.org/10.1016/J.CHEMOSPHERE.2020.127589. (PMID: 10.1016/J.CHEMOSPHERE.2020.127589)
      Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3(7). https://doi.org/10.1126/SCIADV.1700782.
      Gulmine JV, Janissek PR, Heise HM, Akcelrud L (2002) Polyethylene characterization by FTIR. Polym Testing 21(5):557–563. https://doi.org/10.1016/S0142-9418(01)00124-6. (PMID: 10.1016/S0142-9418(01)00124-6)
      Hamad K, Kaseem M, Deri F (2012) Poly(lactic acid)/low density polyethylene polymer blends: preparation and characterization. Asia-Pac J Chem Eng 7(SUPPL. 3):S310–S316. https://doi.org/10.1002/APJ.1649. (PMID: 10.1002/APJ.1649)
      Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL (2015) Plastic waste inputs from land into the ocean. Science 347(6223):768–771. https://doi.org/10.1126/SCIENCE.1260352. (PMID: 10.1126/SCIENCE.1260352)
      Karaagac E, Koch T, Archodoulaki VM (2021) The effect of PP contamination in recycled high-density polyethylene (rPE-HD) from post-consumer bottle waste and their compatibilization with olefin block copolymer (OBC). Waste Manag 119:285–294. https://doi.org/10.1016/J.WASMAN.2020.10.011. (PMID: 10.1016/J.WASMAN.2020.10.011)
      Lebreton LCM, Van Der Zwet J, Damsteeg JW, Slat B, Andrady A, Reisser J (2017) River plastic emissions to the world’s oceans. Nat Commun 8:15611. https://doi.org/10.1038/NCOMMS15611. (PMID: 10.1038/NCOMMS15611)
      Liang CY, Krimm S (1959) Infrared spectra of high polymers: part IX. Polyethylene terephthalate. J Mol Spectrosc 3(1–6):554–574. https://doi.org/10.1016/0022-2852(59)90048-7. (PMID: 10.1016/0022-2852(59)90048-7)
      Moreno PA, Ballerini A, Gacitúa W, Rodrigue D (2017) Extrusión de compuestos madera plástico espumados. Parte I: caracterización física y morfológica. Rev Chapingo Ser Cienc Forestales y Del Ambiente 23(3):385–400. https://doi.org/10.5154/R.RCHSCFA.2016.09.051. (PMID: 10.5154/R.RCHSCFA.2016.09.051)
      Peacock A (2000) Handbook of polyethylene : structures: properties, and applications. Handbook of polyethylene. https://doi.org/10.1201/9781482295467.
      Plastics - the Facts 2020 • Plastics Europe (n.d.) from https://plasticseurope.org/knowledge-hub/plastics-the-facts-2020/ . Retrieved 10 March 2024.
      PlasticsEurope, 2017. Plastics - the facts 2017: an analysis of European plastics production, demand and waste data 2017 (n.d.).
      Prado KS, Strangl M, Pereira SR, Tiboni AR, Ortner E, Spinacé MAS, Buettner A (2020) Odor characterization of post-consumer and recycled automotive polypropylene by different sensory evaluation methods and instrumental analysis. Waste Manag (New York, n.y.) 115:36–46. https://doi.org/10.1016/J.WASMAN.2020.07.021. (PMID: 10.1016/J.WASMAN.2020.07.021)
      Radusin T, Nilsen J, Larsen S, Annfinsen S, Waag C, Eikeland MS, Pettersen MK, Fredriksen SB (2020) Use of recycled materials as mid layer in three layered structures-new possibility in design for recycling. J Clean Prod 259:120876. https://doi.org/10.1016/J.JCLEPRO.2020.120876. (PMID: 10.1016/J.JCLEPRO.2020.120876)
      Ricardo J, Cabra V (2017) Identificación de polímeros por espectroscopía infrarroja. Revista ONTARE, ISSN-e 2745–2220, ISSN 2382–3399, N o . 5, 2017, 5, 3. https://doi.org/10.21158/23823399.v5.n0.2017.2005.
      Roosen M, Harinck L, Ügdüler S, De Somer T, Hucks AG, Belé TGA, Buettner A, Ragaert K, Van Geem KM, Dumoulin A, De Meester S (2022) Deodorization of post-consumer plastic waste fractions: a comparison of different washing media. Sci Total Environ 812:152467. https://doi.org/10.1016/J.SCITOTENV.2021.152467. (PMID: 10.1016/J.SCITOTENV.2021.152467)
      Sammon C, Yarwood J, Everall N (2000) An FT–IR study of the effect of hydrolytic degradation on the structure of thin PET films. Polym Degrad Stab 67(1):149–158. https://doi.org/10.1016/S0141-3910(99)00104-4. (PMID: 10.1016/S0141-3910(99)00104-4)
      Schmidt PG (1963) Polyethylene terephthalate structural studies. J Polym Sci Part a: Gen Pap 1(4):1271–1292. https://doi.org/10.1002/POL.1963.100010417. (PMID: 10.1002/POL.1963.100010417)
      Sciarratta V, Vohrer U, Hegemann D, Müller M, Oehr C (2003) Plasma functionalization of polypropylene with acrylic acid. Surf Coat Technol 174–175:805–810. https://doi.org/10.1016/S0257-8972(03)00564-4. (PMID: 10.1016/S0257-8972(03)00564-4)
      Socrates G (2001) Infrared and Raman characteristic group frequencies. Tables and charts. J Raman Spectrosc 347. https://www.wiley.com/en-us/Infrared+and+Raman+Characteristic+Group+Frequencies%3A+Tables+and+Charts%2C+3rd+Edition-p-9780470093078 . Accessed 10 Mar 2024.
      Stangenberg F, Ågren S, Karlsson S (2004) Quality assessments of recycled plastics by spectroscopy and chromatography. Chromatographia 59(1–2):101–106. https://doi.org/10.1365/S10337-003-0133-4/METRICS. (PMID: 10.1365/S10337-003-0133-4/METRICS)
      Statheropoulos M, Agapiou A, Pallis G (2005) A study of volatile organic compounds evolved in urban waste disposal bins. Atmos Environ 39(26):4639–4645. https://doi.org/10.1016/J.ATMOSENV.2005.04.013. (PMID: 10.1016/J.ATMOSENV.2005.04.013)
      Strangl M, Schlummer M, Maeurer A, Buettner A (2018) Comparison of the odorant composition of post-consumer high-density polyethylene waste with corresponding recycled and virgin pellets by combined instrumental and sensory analysis. J Clean Prod 181:599–607. https://doi.org/10.1016/J.JCLEPRO.2018.01.137. (PMID: 10.1016/J.JCLEPRO.2018.01.137)
      Strangl M, Ortner E, Buettner A (2019) Evaluation of the efficiency of odor removal from recycled HDPE using a modified recycling process. Resour Conserv Recycl 146:89–97. https://doi.org/10.1016/J.RESCONREC.2019.03.009. (PMID: 10.1016/J.RESCONREC.2019.03.009)
      Thermal Analysis of Pharmaceuticals (2006) Thermal analysis of pharmaceuticals. https://doi.org/10.1201/9781420014891.
      Tipos de Plásticos HDPE | Catálogo | ACTECO (n.d.) from https://www.acteco.es/tipos-plastico/hdpe/ . Retrieved 10 March 2024.
      Völtz LR, Berglund L, Oksman K (2023) Resource-efficient manufacturing process of composite materials: fibrillation of recycled textiles and compounding with thermoplastic polymer. Compos A Appl Sci Manuf 175:107773. https://doi.org/10.1016/J.COMPOSITESA.2023.107773. (PMID: 10.1016/J.COMPOSITESA.2023.107773)
    • Contributed Indexing:
      Keywords: Characterisation; High-density polyethylene; Odour; Recycling
    • Accession Number:
      9002-88-4 (Polyethylene)
      0 (Plastics)
    • Publication Date:
      Date Created: 20240923 Date Completed: 20241010 Latest Revision: 20241020
    • Publication Date:
      20241021
    • Accession Number:
      PMC11467004
    • Accession Number:
      10.1007/s11356-024-34976-2
    • Accession Number:
      39313606