MolPredictX: A Pioneer Mobile App Version for Online Biological Activity Predictions by Machine Learning Models.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Humana Press Country of Publication: United States NLM ID: 9214969 Publication Model: Print Cited Medium: Internet ISSN: 1940-6029 (Electronic) Linking ISSN: 10643745 NLM ISO Abbreviation: Methods Mol Biol Subsets: MEDLINE
    • Publication Information:
      Publication: Totowa, NJ : Humana Press
      Original Publication: Clifton, N.J. : Humana Press,
    • Subject Terms:
    • Abstract:
      MolPredictX is a free-access web tool in which it is possible to analyze the prediction of biological activity of chemical molecules. MolPredictX has been available online to the general public for just over a year and has now gone through its first update. We also developed its version for android, being the first free app capable of predicting biological activities. MolPredictX is available for free at https://www.molpredictX.ufpb.br/ , and its mobile application version can be obtained from Google Play.
      (© 2025. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)
    • References:
      Willems H, De Cesco S, Svensson F (2020) Computational chemistry on a budget: supporting drug discovery with limited resources: miniperspective. J Med Chem 63:10158–10169. (PMID: 3229812310.1021/acs.jmedchem.9b02126)
      Cumming JG, Davis AM, Muresan S et al (2013) Chemical predictive modelling to improve compound quality. Nat Rev Drug Discov 12:948–962. (PMID: 2428778210.1038/nrd4128)
      Sydow D, Burggraaff L, Szengel A et al (2019) Advances and challenges in computational target prediction. J Chem Inf Model. 59:1728–1742. (PMID: 3081714610.1021/acs.jcim.8b00832)
      Singh N, Chaput L, Villoutreix BO (2021) Virtual screening web servers: designing chemical probes and drug candidates in the cyberspace. Brief Bioinform 22:1790–1818. (PMID: 3218735610.1093/bib/bbaa034)
      Shen C, Weng G, Zhang X et al (2021) Accuracy or novelty: what can we gain from target-specific machine-learning-based scoring functions in virtual screening? Brief Bioinform 22:bbaa 410. (PMID: 10.1093/bib/bbaa410)
      Zhang H, Shen C, Zhang H-R et al (2021) Discovery of novel DGAT1 inhibitors by combination of machine learning methods, pharmacophore model and 3D-QSAR model. Mol Divers 25:1481–1495. (PMID: 3416071310.1007/s11030-021-10247-x)
      Quadri TW, Olasunkanmi LO, Fayemi OE et al (2021) Quantitative structure activity relationship and artificial neural network as vital tools in predicting coordination capabilities of organic compounds with metal surface: a review. Coord Chem Rev 446:214101. (PMID: 10.1016/j.ccr.2021.214101)
      Hammett LP (1937) The effect of structure upon the reactions of organic compounds. Benzene derivatives. J Am Chem Soc 59:96–103. (PMID: 10.1021/ja01280a022)
      Hammett LP (1940) Physical organic chemistry.
      Vamathevan J, Clark D, Czodrowski P et al (2019) Applications of machine learning in drug discovery and development. Nat Rev Drug Discov 18:463–477. (PMID: 30976107655267410.1038/s41573-019-0024-5)
      Mangiatordi GF, Trisciuzzi D, Alberga D et al (2017) Novel chemotypes targeting tubulin at the colchicine binding site and unbiasing P-glycoprotein. Eur J Med Chem 139:792–803. (PMID: 2886335910.1016/j.ejmech.2017.07.037)
      Nicolotti O, Catto M, Giangreco I et al (2012) Design, synthesis and biological evaluation of 5-hydroxy, 5-substituted-pyrimidine-2,4,6-triones as potent inhibitors of gelatinases MMP-2 and MMP-9. Eur J Med Chem 58:368–376. (PMID: 2314929910.1016/j.ejmech.2012.09.036)
      Jabeen A, Ranganathan S (2019) Applications of machine learning in GPCR bioactive ligand discovery. Curr Opin Struct Biol 55:66–76. (PMID: 3100567910.1016/j.sbi.2019.03.022)
      Song S, Wang Y, Chen F et al (2022) Machine learning-assisted high-throughput virtual screening for on-demand customization of advanced energetic materials. Engineering 10:99–109. (PMID: 10.1016/j.eng.2022.01.008)
      Muratov EN, Bajorath J, Sheridan RP et al (2020) QSAR without borders. Chem Soc Rev 49:3525–3564. (PMID: 32356548800849010.1039/D0CS00098A)
      Nayarisseri A, Khandelwal R, Tanwar P et al (2021) Artificial intelligence, big data and machine learning approaches in precision medicine & drug discovery. Curr Drug Targets 22:631–655. (PMID: 3339726510.2174/18735592MTEzsMDMnz)
      Akare UR, Bandaru S, Shaheen U et al (2014) Molecular docking approaches in identification of High affinity inhibitors of Human SMO receptor. Bioinformation 10:737. (PMID: 25670876431236610.6026/97320630010737)
      Bandaru S, Alvala M, Akka J et al (2016) Identification of small molecule as a high affinity β2 agonist promiscuously targeting wild and mutated (Thr164Ile) β 2 adrenergic receptor in the treatment of bronchial asthma. Curr Pharm Des 22:5221–5233. (PMID: 2717481210.2174/1381612822666160513145721)
      Ali MA, Vuree S, Goud H et al (2019) Identification of high-affinity small molecules targeting gamma secretase for the treatment of Alzheimer’s disease. Curr Top Med Chem 19:1173–1187. (PMID: 3124442710.2174/1568026619666190617155326)
      Hevener KE, Zhao W, Ball DM et al (2009) Validation of molecular docking programs for virtual screening against dihydropteroate synthase. J Chem Inf Model 49:444–460. (PMID: 19434845278879510.1021/ci800293n)
      Nayarisseri A, Moghni SM, Yadav M et al (2013) In silico investigations on HSP90 and its inhibition for the therapeutic prevention of breast cancer. J Pharm Res 7:150–156.
      Achary PGR (2020) Applications of quantitative structure-activity relationships (QSAR) based virtual screening in drug design: a review. Mini Rev Med Chem 20:1375–1388. (PMID: 3234821910.2174/1389557520666200429102334)
      Zaki MEA, Al-Hussain SA, Masand VH et al (2021) Identification of anti-SARS-CoV-2 compounds from food using QSAR-based virtual screening, molecular docking, and molecular dynamics simulation analysis. Pharmaceuticals (Basel) 14:357. (PMID: 3392439510.3390/ph14040357)
      Gramatica P (2020) Principles of QSAR modeling: comments and suggestions from personal experience. Int J Quant Struct Relatsh 5:61–97.
      Gramatica P, Papa E, Sangion A (2018) QSAR modeling of cumulative environmental end-points for the prioritization of hazardous chemicals. Environ Sci Process Impacts 20:38–47. (PMID: 2922692610.1039/C7EM00519A)
      Toropov AA, Toropova AP (2020) QSPR/QSAR: state-of-art, weirdness, the future. Molecules 25:1292. (PMID: 32178379714398410.3390/molecules25061292)
      Wang Y-L, Wang F, Shi X-X et al (2021) Cloud 3D-QSAR: a web tool for the development of quantitative structure–activity relationship models in drug discovery. Brief Bioinform 22:bbaa276. (PMID: 3314082010.1093/bib/bbaa276)
      Tullius Scotti M, Herrera-Acevedo C, Barros de Menezes RP et al (2022) MolPredictX: online biological activity predictions by machine learning models. Mol Inform 41:1–9. (PMID: 10.1002/minf.202200133)
      Lunghini F, Fava A, Pisapia V et al (2023) ProfhEX: AI-based platform for small molecules liability profiling. J Cheminform 15:1–17. (PMID: 10.1186/s13321-023-00728-6)
      Lyu J, Wang S, Balius TE et al (2019) Ultra-large library docking for discovering new chemotypes. Nature 566:224–229. (PMID: 30728502638376910.1038/s41586-019-0917-9)
      Grebner C, Malmerberg E, Shewmaker A et al (2020) Virtual screening in the cloud: how big is big enough? J Chem Inf Model 60:4274–4282. (PMID: 3168242110.1021/acs.jcim.9b00779)
      Wang Y-L, Li J-Y, Shi X-X et al (2021) Web-based quantitative structure–activity relationship resources facilitate effective drug discovery. Top Curr Chem 379:37. (PMID: 10.1007/s41061-021-00349-3)
      Barros RPC, Sousa NF, Scotti L et al (2020) Use of machine learning and classical QSAR methods in computational ecotoxicology. In: Ecotoxicological QSARs, pp 151–175. (PMID: 10.1007/978-1-0716-0150-1_7)
      de Oliveira Viana J, Félix MB, MDS M et al (2018) Drug discovery and computational strategies in the multitarget drugs era. Brazilian J Pharm Sci 54:1–25.
      Neves BJ, Braga RC, Melo-Filho CC et al (2018) QSAR-based virtual screening: advances and applications in drug discovery. Front Pharmacol 9:945–959. (PMID: 10.3389/fphar.2018.01275)
      Chen H, Kogej T, Engkvist O (2018) Cheminformatics in drug discovery, an industrial perspective. Mol Inform 37:1800041. (PMID: 10.1002/minf.201800041)
      Alves VM, Golbraikh A, Capuzzi SJ et al (2018) Multi-Descriptor Read Across (MuDRA): a simple and transparent approach for developing accurate quantitative structure–activity relationship models. J Chem Inf Model 58:1214–1223. (PMID: 29809005791700610.1021/acs.jcim.8b00124)
      Fourches D, Muratov E, Tropsha A (2010) Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research. J Chem Inf Model 50:1189–1204. (PMID: 20572635298941910.1021/ci100176x)
      Fourches D, Muratov E, Tropsha A (2016) Trust, but verify II: a practical guide to chemogenomics data curation. J Chem Inf Model 56:1243–1252. (PMID: 27280890565714610.1021/acs.jcim.6b00129)
      Fourches D, Muratov E, Tropsha A (2015) Curation of chemogenomics data. Nat Chem Biol 11:535–535. (PMID: 2619676310.1038/nchembio.1881)
      Tropsha A (2010) Best practices for QSAR model development, validation, and exploitation. Mol Inform 29:476–488. (PMID: 2746332610.1002/minf.201000061)
      Golbraikh A, Muratov E, Fourches D et al (2014) Data set modelability by QSAR. J Chem Inf Model 54:1–4. (PMID: 24251851398429810.1021/ci400572x)
      Capuzzi SJ, Kim ISJ, Lam WI et al (2017) Chembench: a publicly accessible, integrated cheminformatics portal. J Chem Inf Model 57:105–108. (PMID: 28045544572036910.1021/acs.jcim.6b00462)
      Poroikov VV, Filimonov DA, Ihlenfeldt WD et al (2002) PASS biological activity spectrum predictions in the enhanced open NCI database browser. J Chem Ind Comput Sci 43:228–236. (PMID: 10.1021/ci020048r)
      Filimonov DA, Lagunin AA, Gloriozova TA et al (2014) Prediction of the biological activity spectra of organic compounds using the pass online web resource. Chem Heterocycl Compd 50:444–457. (PMID: 10.1007/s10593-014-1496-1)
      Filimonov D, Poroikov V (2008) Probabilistic approaches in activity prediction. In: Chemoinformatics approaches to virtual screening. The Royal Society of Chemistry, pp 182–216. (PMID: 10.1039/9781847558879-00182)
      Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717. (PMID: 28256516533560010.1038/srep42717)
      Daina A, Michielin O, Zoete V (2019) SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res 47:W357–W364. (PMID: 31106366660248610.1093/nar/gkz382)
      https://ochem.eu/home/show.do OCHEM – the online chemical database. Accessed 24 Jan 2024.
      Sushko I, Novotarskyi S, Körner R et al (2011) Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information. J Comput Aided Mol Des 25:533. (PMID: 21660515313151010.1007/s10822-011-9440-2)
      Alberga D, Trisciuzzi D, Montaruli M et al (2019) A new approach for drug target and bioactivity prediction: the multifingerprint similarity search algorithm (MuSSeL). J Chem Inf Model 59:586–596. (PMID: 3048509710.1021/acs.jcim.8b00698)
      Ciriaco F, Gambacorta N, Trisciuzzi D et al (2022) PLATO: a predictive drug discovery web platform for efficient target fishing and bioactivity profiling of small molecules. Int J Mol Sci 23:5245. (PMID: 35563636910365510.3390/ijms23095245)
      Ciriaco F, Gambacorta N, Alberga D et al (2021) Quantitative polypharmacology profiling based on a multifingerprint similarity predictive approach. J Chem Inf Model 61:4868–4876. (PMID: 3457049810.1021/acs.jcim.1c00498)
      Deepchem-contributors DeepChem Available online: https://deepchem.readthedocs.io/en/latest/ . Accessed 24 Jan 2024.
      Clark RL, Johnston BF, Mackay SP et al (2010) The drug discovery portal: a resource to enhance drug discovery from academia. Drug Discov Today 15:679–683. (PMID: 2054724210.1016/j.drudis.2010.06.003)
      Clark AM, Ekins S, Williams AJ (2012) Redefining cheminformatics with intuitive collaborative mobile apps. Mol Inform 31:569–584. (PMID: 23198002350326110.1002/minf.201200010)
      Ekins S, Clark AM, Swamidass SJ et al (2014) Bigger data, collaborative tools and the future of predictive drug discovery. J Comput Aided Mol Des 28:997–1008. (PMID: 24943138419846410.1007/s10822-014-9762-y)
      Williams AJ, Ekins S, Clark AM et al (2011) Mobile apps for chemistry in the world of drug discovery. Drug Discov Today 16:928–939. (PMID: 2192437610.1016/j.drudis.2011.09.002)
      Burger MC (2015) ChemDoodle web components: HTML5 toolkit for chemical graphics, interfaces, and informatics. J Cheminform 7:1–7. (PMID: 10.1186/s13321-015-0085-3)
      Jiang M, Zhang R, Xia Y et al (2022) i2APP: a two-step machine learning framework for antiparasitic peptides identification. Front Genet 13:1–9.
      Hanwell MD, de Jong WA, Harris CJ (2017) Open chemistry: RESTful web APIs, JSON, NWChem and the modern web application. J Cheminform 9:55. (PMID: 29086154566252310.1186/s13321-017-0241-z)
      Clark AM, Dole K, Coulon-Spektor A et al (2015) Open source Bayesian models. 1. Application to ADME/Tox and drug discovery datasets. J Chem Inf Model 55:1231–1245. (PMID: 25994950447861510.1021/acs.jcim.5b00143)
      KingDraw Business Corporation (2009), King Draw.
      Taylor S (2022), Chemical equation balancer.
      Sarker IH, Salah K (2019) AppsPred: Predicting context-aware smartphone apps using random forest learning. Internet of Things (Netherlands) 8:100106. (PMID: 10.1016/j.iot.2019.100106)
      Source MO (2023), React.
      Copyright © 2023 650 Industries, I.A. rights reserved. (2023), Expo.
      Herrera-Acevedo C, Dos Santos Maia M, Cavalcanti ÉBVS et al (2021) Selection of antileishmanial sesquiterpene lactones from SistematX database using a combined ligand-/structure-based virtual screening approach. Mol Divers 25:2411–2427. (PMID: 3290908410.1007/s11030-020-10139-6)
      Borgo J, Elso OG, Gomez J et al (2023) Anti-Trypanosoma cruzi properties of sesquiterpene lactones isolated from Stevia spp.: in vitro and in silico studies. Pharmaceutics 15:647. (PMID: 36839969996162510.3390/pharmaceutics15020647)
      Acevedo CH, Scotti L, Scotti MT (2018) In silico studies designed to select sesquiterpene lactones with potential antichagasic activity from an in-house asteraceae database. Chem Med Chem 13:634–645. (PMID: 2932346810.1002/cmdc.201700743)
      Hassan AHE, Bayoumi WA, El-Sayed SM et al (2023) Rational repurposing, synthesis, in vitro and in silico studies of chromone-peptidyl hybrids as potential agents against Leishmania donovani. J Enzyme Inhib Med Chem 38:2229071. (PMID: 373817561031203910.1080/14756366.2023.2229071)
      del Rosario García-Lozano M, Dragoni F, Gallego P et al (2023) Piperazine-derived small molecules as potential Flaviviridae NS3 protease inhibitors. In vitro antiviral activity evaluation against Zika and Dengue viruses. Bioog Chem 133:106408. (PMID: 10.1016/j.bioorg.2023.106408)
      Fernandes DA, Barros RPC, Teles YCF et al (2019) Larvicidal compounds extracted from helicteres velutina K. Schum (Sterculiaceae) evaluated against Aedes aegypti L. Molecules 24(12):2315. (PMID: 31234501663190410.3390/molecules24122315)
      Jacques Dit Lapierre TJW, de Moura Lodi Cruz MGF, Brito NPF et al (2023) Hit-to-lead optimization of a pyrazinylpiperazine series against Leishmania infantum and Leishmania braziliensis. Eur J Med Chem 256:115445. (PMID: 3715618310.1016/j.ejmech.2023.115445)
      dos Santos MM, Silva JPR, de Lima Nunes TA et al (2020) Virtual screening and the in vitro assessment of the antileishmanial activity of lignans. Molecules 25:1–33.
      de Sousa NF, da Silva Souza HD, de Menezes RPB et al (2023) Selene-ethylenelacticamides and N-aryl-propanamides as broad-spectrum leishmanicidal agents. Pathogens 12:1–22. (PMID: 10.3390/pathogens12010136)
      Limited E (2023) ReactionFlash(R).
    • Contributed Indexing:
      Keywords: Computer-aided drug design; Quantitative structure activity relationships
    • Publication Date:
      Date Created: 20240923 Date Completed: 20240923 Latest Revision: 20240923
    • Publication Date:
      20240923
    • Accession Number:
      10.1007/978-1-0716-4003-6_17
    • Accession Number:
      39312174