Menu
×
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 6 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 6 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Model-Informed Precision Dosing of Tacrolimus: A Systematic Review of Population Pharmacokinetic Models and a Benchmark Study of Software Tools.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Hoffert Y;Hoffert Y; Dia N; Dia N; Vanuytsel T; Vanuytsel T; Vanuytsel T; Vanuytsel T; Vos R; Vos R; Vos R; Kuypers D; Kuypers D; Kuypers D; Van Cleemput J; Van Cleemput J; Van Cleemput J; Verbeek J; Verbeek J; Verbeek J; Dreesen E; Dreesen E
- Source:
Clinical pharmacokinetics [Clin Pharmacokinet] 2024 Oct; Vol. 63 (10), pp. 1407-1421. Date of Electronic Publication: 2024 Sep 20.- Publication Type:
Journal Article; Systematic Review- Language:
English - Source:
- Additional Information
- Source: Publisher: Country of Publication: Switzerland NLM ID: 7606849 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1179-1926 (Electronic) Linking ISSN: 03125963 NLM ISO Abbreviation: Clin Pharmacokinet Subsets: MEDLINE
- Publication Information: Publication: [Switzerland] : Adis, part of Springer Science+Business Media
Original Publication: New York, ADIS Press. - Subject Terms: Tacrolimus*/pharmacokinetics ; Tacrolimus*/administration & dosage ; Immunosuppressive Agents*/pharmacokinetics ; Immunosuppressive Agents*/administration & dosage ; Software* ; Models, Biological*; Humans ; Organ Transplantation/methods ; Cytochrome P-450 CYP3A/genetics ; Cytochrome P-450 CYP3A/metabolism ; Bayes Theorem ; Precision Medicine/methods ; Benchmarking ; Computer Simulation
- Abstract: Background and Objective: Tacrolimus is an immunosuppressant commonly administered after solid organ transplantation. It is characterized by a narrow therapeutic window and high variability in exposure, demanding personalized dosing. In recent years, population pharmacokinetic models have been suggested to guide model-informed precision dosing of tacrolimus. We aimed to provide a comprehensive overview of population pharmacokinetic models and model-informed precision dosing software modules of tacrolimus in all solid organ transplant settings, including a simulation-based investigation of the impact of covariates on exposure and target attainment.
Methods: We performed a systematic literature search to identify population pharmacokinetic models of tacrolimus in solid organ transplant recipients. We integrated selected population pharmacokinetic models into an interactive software tool that allows dosing simulations, Bayesian forecasting, and investigation of the impact of covariates on exposure and target attainment. We conducted a web survey amongst model-informed precision dosing software tool providers and benchmarked publicly available tools in terms of models, target populations, and clinical integration.
Results: We identified 80 population pharmacokinetic models, including 44 one-compartment and 36 two-compartment models. The most frequently retained covariates on clearance and distribution parameters were cytochrome P450 3A5 polymorphisms and body weight, respectively. Our simulation tool, hosted at https://lpmx.shinyapps.io/tacrolimus/ , allows thorough investigation of the impact of covariates on exposure and target attainment. We identified 15 model-informed precision dosing software tool providers, of which ten offer a tacrolimus solution and nine completed the survey.
Conclusions: Our work provides a comprehensive overview of the landscape of available tacrolimus population pharmacokinetic models and model-informed precision dosing software modules. Our simulation tool allows an interactive thorough exploration of covariates on exposure and target attainment.
(© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.) - Comments: Erratum in: Clin Pharmacokinet. 2024 Oct;63(10):1511. doi: 10.1007/s40262-024-01438-4. (PMID: 39446277)
- References: Sikma MA, van Maarseveen EM, van de Graaf EA, Kirkels JH, Verhaar MC, Donker DW, et al. Pharmacokinetics and toxicity of tacrolimus early after heart and lung transplantation. Am J Transplant. 2015;15:2301–13. https://doi.org/10.1111/ajt.13309 . (PMID: 10.1111/ajt.1330926053114)
Brunet M, van Gelder T, Åsberg A, Haufroid V, Hesselink DA, Langman L, et al. Therapeutic drug monitoring of tacrolimus-personalized therapy: second consensus report. Ther Drug Monitor. 2019;41:261–307. https://doi.org/10.1097/FTD.0000000000000640 . (PMID: 10.1097/FTD.0000000000000640)
Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplantation. Clin Pharmacokinet. 2004;43:623–53. https://doi.org/10.2165/00003088-200443100-00001 . (PMID: 10.2165/00003088-200443100-0000115244495)
Vanlerberghe BTK, van Malenstein H, Sainz-Barriga M, Jochmans I, Cassiman D, Monbaliu D, et al. Tacrolimus drug exposure level and smoking are modifiable risk factors for early de novo malignancy after liver transplantation for alcohol-related liver disease. Transpl Int. 2024;37:12055. https://doi.org/10.3389/ti.2024.12055 . (PMID: 10.3389/ti.2024.120553844013210909820)
Degraeve AL, Moudio S, Haufroid V, Chaib Eddour D, Mourad M, Bindels LB, et al. Predictors of tacrolimus pharmacokinetic variability: current evidences and future perspectives. Expert Opin Drug Metabol Toxicol. 2020;16:769–82. https://doi.org/10.1080/17425255.2020.1803277 . (PMID: 10.1080/17425255.2020.1803277)
Holford NHG, Buclin T. Safe and effective variability: a criterion for dose individualization. Ther Drug Monit. 2012;34:565–8. https://doi.org/10.1097/FTD.0b013e31826aabc3 . (PMID: 10.1097/FTD.0b013e31826aabc322960736)
Størset E, Holford N, Hennig S, Bergmann TK, Bergan S, Bremer S, et al. Improved prediction of tacrolimus concentrations early after kidney transplantation using theory-based pharmacokinetic modelling. Br J Clin Pharm. 2014;78:509–23. https://doi.org/10.1111/bcp.12361 . (PMID: 10.1111/bcp.12361)
Lloberas N, Grinyó JM, Colom H, Vidal-Alabró A, Fontova P, Rigo R, et al. A prospective controlled, randomized clinical trial of kidney transplant recipients developed personalized tacrolimus dosing using model-based Bayesian prediction. Kidney Int. 2023;104:840–50. https://doi.org/10.1016/j.kint.2023.06.021 . (PMID: 10.1016/j.kint.2023.06.02137391040)
Shi B, Liu Y, Liu D, Yuan L, Guo W, Wen P, et al. Peng, Genotype-guided model significantly improves accuracy of tacrolimus initial dosing after liver transplantation. ClinicalMedicine. 2023;55: 101752. https://doi.org/10.1016/j.eclinm.2022.101752 . (PMID: 10.1016/j.eclinm.2022.101752)
Khong J, Lee M, Warren C, Kim UB, Duarte S, Andreoni KA, et al. Personalized tacrolimus dosing after liver transplantation: a randomized clinical trial. MedRxiv. 2023. https://doi.org/10.1101/2023.05.26.23290604 . (PMID: 10.1101/2023.05.26.232906043739798310312854)
Taylor ZL, Poweleit EA, Paice K, Somers KM, Pavia K, Vinks AA, et al. Tutorial on model selection and validation of model input into precision dosing software for model-informed precision dosing. CPT Pharm Syst Pharmacol. 2023;12:1827–45. https://doi.org/10.1002/psp4.13056 . (PMID: 10.1002/psp4.13056)
Wickham H. The tidyverse, presentation. 2016. Available from: http://tidyverse.org . [Accessed 27 Aug 2024].
Baron K. mrgsolve: simulate from ODE-based models. 2023. R package version 1.3.0.
Le Louedec F, Puisset F, Thomas F, Chatelut É, White-Koning M. Easy and reliable maximum a posteriori Bayesian estimation of pharmacokinetic parameters with the open-source R package mapbayr. CPT Pharm Syst Pharmacol. 2021;10:1208–20. https://doi.org/10.1002/psp4.12689 . (PMID: 10.1002/psp4.12689)
Charlton M, Levitsky J, Aqel B, O’Grady J, Hemibach J, Rinella M, et al. International liver transplantation society consensus statement on immunosuppression in liver transplant recipients. Transplantation. 2018;102:727. https://doi.org/10.1097/TP.0000000000002147 . (PMID: 10.1097/TP.000000000000214729485508)
Andreu F, Colom H, Elens L, van Gelder T, van Schaik RHN, Hesselink DA, et al. A new CYP3A5*3 and CYP3A4*22 cluster influencing tacrolimus target concentrations: a population approach. Clin Pharmacokinet. 2017;56:963–75. https://doi.org/10.1007/s40262-016-0491-3 . (PMID: 10.1007/s40262-016-0491-328050888)
Franken LG, Francke MI, Andrews LM, van Schaik RHN, Li Y, de Wit LEA, et al. A population pharmacokinetic model of whole-blood and intracellular tacrolimus in kidney transplant recipients. Eur J Drug Metab Pharmacokinet. 2022;47:523–35. https://doi.org/10.1007/s13318-022-00767-8 . (PMID: 10.1007/s13318-022-00767-8354420109232416)
Andrews LM, Hesselink DA, van Schaik RHN, van Gelder T, de Fijter JW, Lloberas N, et al. A population pharmacokinetic model to predict the individual starting dose of tacrolimus in adult renal transplant recipients. Br J Clin Pharm. 2019;85:601–15. https://doi.org/10.1111/bcp.13838 . (PMID: 10.1111/bcp.13838)
Lu Y, Su Q, Wu K, Ren Y, Li L, Zhou T, et al. A population pharmacokinetic study of tacrolimus in healthy Chinese volunteers and liver transplant patients. Acta Pharmacol Sin. 2015;36:281–8. https://doi.org/10.1038/aps.2014.110 . (PMID: 10.1038/aps.2014.11025500866)
Kirubakaran R, Uster DW, Hennig S, Carland JE, Day RO, Wicha SG, et al. Adaptation of a population pharmacokinetic model to inform tacrolimus therapy in heart transplant recipient. Br J Clin Pharm. 2023;89:1162–75. https://doi.org/10.1111/bcp.15566 . (PMID: 10.1111/bcp.15566)
Alqahtani S, Alenazi M, Alsultan A, Alsarhani E. Estimation of tacrolimus clearance in Saudi Adult kidney transplant recipients. Saudi J Kidney Dis Transplant. 2021;32:101. https://doi.org/10.4103/1319-2442.318511 . (PMID: 10.4103/1319-2442.318511)
Al-Kofahi M, Oetting WS, Schladt DP, Remmel RP, Guan W, Wu B, et al. Precision dosing for tacrolimus using genotypes and clinical factors in kidney transplant recipients of European ancestry. J Clin Pharmacol. 2021;61:1035–44. https://doi.org/10.1002/jcph.1823 . (PMID: 10.1002/jcph.18233351272311240873)
Francke MI, Visser WJ, Severs D, de Mik van Egmond AME, Hesselink DA, De Winter BCN. Body composition is associated with tacrolimus pharmacokinetics in kidney transplant recipients. Eur J Clin Pharmacol. 2022;78:1273–87. https://doi.org/10.1007/s00228-022-03323-0 .
Ji E, Kim MG, Oh JM. CYP3A5 genotype-based model to predict tacrolimus dosage in the early postoperative period after living donor liver transplantation. TCRM. 2018;14:2119–26. https://doi.org/10.2147/TCRM.S184376 . (PMID: 10.2147/TCRM.S184376)
Andreu F, Colom H, Grinyó JM, Torras J, Cruzado JM, Lloberas N. Development of a population PK model of tacrolimus for adaptive dosage control in stable kidney transplant patients. Ther Drug Monit. 2015;37:246–55. https://doi.org/10.1097/FTD.0000000000000134 . (PMID: 10.1097/FTD.000000000000013425254416)
Quintairos L, Colom H, Millán O, Fortuna V, Espinosa C, Guirado L, et al. Early prognostic performance of miR155-5p monitoring for the risk of rejection: logistic regression with a population pharmacokinetic approach in adult kidney transplant patients. PLoS ONE. 2021;16: e0245880. https://doi.org/10.1371/journal.pone.0245880 . (PMID: 10.1371/journal.pone.0245880334819557822507)
Zhang S-F, Tang B-H, Wei A, Du Y, Guan Z-W, Li Y. Effect of drug combination on tacrolimus target dose in renal transplant patients with different CYP3A5 genotypes. Xenobiotica. 2022;52:312–21. https://doi.org/10.1080/00498254.2022.2064252 . (PMID: 10.1080/00498254.2022.206425235395919)
Zuo X, Ng CM, Barrett JS, Luo A, Zhang B, Deng C, et al. Effects of CYP3A4 and CYP3A5 polymorphisms on tacrolimus pharmacokinetics in Chinese adult renal transplant recipients: a population pharmacokinetic analysis. Pharmacogenet Genom. 2013;23:251–61. https://doi.org/10.1097/FPC.0b013e32835fcbb6 . (PMID: 10.1097/FPC.0b013e32835fcbb6)
Zhu L, Yang J, Zhang Y, Jing Y, Zhang Y, Li G. Effects of CYP3A5 genotypes, ABCB1 C3435T and G2677T/A polymorphism on pharmacokinetics of tacrolimus in Chinese adult liver transplant patients. Xenobiotica. 2015;45:840–6. https://doi.org/10.3109/00498254.2015.1021733 . (PMID: 10.3109/00498254.2015.102173325869250)
Ling J, Dong L-L, Yang Z-P, Qian Q, Jiang Y, Zou S-L, et al. Effects of CYP3A5, ABCB1 and POR*28 polymorphisms on pharmacokinetics of tacrolimus in the early period after renal transplantation. Xenobiotica. 2020;50:1501–9. https://doi.org/10.1080/00498254.2020.1774682 . (PMID: 10.1080/00498254.2020.177468232453653)
Lu Y, Xu L, Cui J, Shen S, Li X. Effects of postoperative day and NR1I2 on tacrolimus clearance in Chinese liver transplant recipients: a population model approach. Clin Pharm Drug Dev. 2021;10:1385–94. https://doi.org/10.1002/cpdd.971 . (PMID: 10.1002/cpdd.971)
Chen W, Wang X, Li B, Qin W, Li S, Wang X, et al. Effects of voriconazole exposure on the pharmacokinetics of tacrolimus in lung transplantation patients, based on therapeutic drug monitoring data. J Clin Pharm. 2022;62:1310–20. https://doi.org/10.1002/jcph.2066 . (PMID: 10.1002/jcph.2066)
Lee JT, Hahn HJ, Son IJ, Suh KS, Yi NJ, Oh JM, et al. Factors affecting the apparent clearance of tacrolimus in Korean adult liver transplant recipients. Pharmacotherapy. 2006;26:1069–77. https://doi.org/10.1592/phco.26.8.1069 . (PMID: 10.1592/phco.26.8.106916863483)
Press RR, Ploeger BA, den Hartigh J, van der Straaten T, van Pelt J, Danhof M, et al. Explaining variability in tacrolimus pharmacokinetics to optimize early exposure in adult kidney transplant recipients. Ther Drug Monit. 2009;31:187–97. https://doi.org/10.1097/FTD.0b013e31819c3d6d . (PMID: 10.1097/FTD.0b013e31819c3d6d19258929)
Sikma MA, Hunault CC, Van Maarseveen EM, Huitema ADR, Van de Graaf EA, Kirkels JH, et al. High variability of whole-blood tacrolimus pharmacokinetics early after thoracic organ transplantation. Eur J Drug Metab Pharmacokinet. 2020;45:123–34. https://doi.org/10.1007/s13318-019-00591-7 . (PMID: 10.1007/s13318-019-00591-731745812)
Chen L, Lu X, Tan G, Zhu L, Liu Y, Li M. Impact of body composition on pharmacokinetics of tacrolimus in liver transplantation recipients. Xenobiotica. 2020;50:196–201. https://doi.org/10.1080/00498254.2019.1607918 . (PMID: 10.1080/00498254.2019.1607918)
Shao J, Wang C, Fu P, Chen F, Zhang Y, Wei J. Impact of donor and recipient CYP3A5*3 genotype on tacrolimus population pharmacokinetics in Chinese adult liver transplant recipients. Ann Pharmacother. 2024;54:652–61. https://doi.org/10.1177/1060028019897050 . (PMID: 10.1177/1060028019897050)
Fukudo M, Yano I, Yoshimura A, Masuda S, Uesugi M, Hosohata K, et al. Impact of MDR1 and CYP3A5 on the oral clearance of tacrolimus and tacrolimus-related renal dysfunction in adult living-donor liver transplant patients. Pharmacogenet Genom. 2008;18:413–23. https://doi.org/10.1097/FPC.0b013e3282f9ac01 . (PMID: 10.1097/FPC.0b013e3282f9ac01)
Størset E, Holford N, Midtvedt K, Bremer S, Bergan S, Åsberg A. Importance of hematocrit for a tacrolimus target concentration strategy. Eur J Clin Pharmacol. 2014;70:65–77. https://doi.org/10.1007/s00228-013-1584-7 . (PMID: 10.1007/s00228-013-1584-724071959)
Li D, Lu W, Zhu J-Y, Gao J, Lou Y-Q, Zhang G-L. Population pharmacokinetics of tacrolimus and CYP3A5, MDR1 and IL-10 polymorphisms in adult liver transplant patients. J Clin Pharm Ther. 2007;32:505–15. https://doi.org/10.1111/j.1365-2710.2007.00850.x . (PMID: 10.1111/j.1365-2710.2007.00850.x17875118)
Kim JH, Han N, Kim MG, Kim YW, Jang H, Yun H-Y, et al. Model based development of tacrolimus dosing algorithm considering CYP3A5 genotypes and mycophenolate mofetil drug interaction in stable kidney transplant recipients. Sci Rep. 2019;9:11740. https://doi.org/10.1038/s41598-019-47876-0 . (PMID: 10.1038/s41598-019-47876-0314098696692323)
Ogasawara K, Chitnis SD, Gohh RY, Christians U, Akhlaghi F. Multidrug resistance-associated protein 2 (MRP2/ABCC2) haplotypes significantly affect the pharmacokinetics of tacrolimus in kidney transplant recipients. Clin Pharmacokinet. 2013;52:751–62. https://doi.org/10.1007/s40262-013-0069-2 . (PMID: 10.1007/s40262-013-0069-2236331193755037)
Faelens R, Luyckx N, Kuypers D, Bouillon T, Annaert P. Predicting model-informed precision dosing: a test-case in tacrolimus dose adaptation for kidney transplant recipients. CPT Pharm Syst Pharm. 2022;11:348–61. https://doi.org/10.1002/psp4.12758 . (PMID: 10.1002/psp4.12758)
Grover A, Frassetto LA, Benet LZ, Chakkera HA. Pharmacokinetic differences corroborate observed low tacrolimus dosage in native American renal transplant patients. Drug Metab Dispos. 2011;39:2017–9. https://doi.org/10.1124/dmd.111.041350 . (PMID: 10.1124/dmd.111.041350218495163198899)
Choi S, Hong Y, Jung S-H, Kang G, Ghim J-R, Han S. Pharmacokinetic model based on stochastic simulation and estimation for therapeutic drug monitoring of tacrolimus in Korean adult transplant recipients. Ther Drug Monit. 2022;44:729–37. https://doi.org/10.1097/FTD.0000000000001006 . (PMID: 10.1097/FTD.0000000000001006358308809648981)
Allard M, Puszkiel A, Conti F, Chevillard L, Kamar N, Noé G, et al. Pharmacokinetics and pharmacodynamics of once-daily prolonged-release tacrolimus in liver transplant recipients. Clin Ther. 2019;41:882-96.e3. https://doi.org/10.1016/j.clinthera.2019.03.006 . (PMID: 10.1016/j.clinthera.2019.03.00631003735)
Jing Y, Kong Y, Hou X, Liu H, Fu Q, Jiao Z, et al. Population pharmacokinetic analysis and dosing guidelines for tacrolimus co-administration with Wuzhi capsule in Chinese renal transplant recipients. J Clin Pharm Ther. 2021;46:1117–28. https://doi.org/10.1111/jcpt.13407 . (PMID: 10.1111/jcpt.1340733768546)
Gong Y, Yang M, Sun Y, Li J, Lu Y, Li X. Population pharmacokinetic analysis of tacrolimus in Chinese cardiac transplant recipients. Eur J Hosp Pharm. 2020;27:e12-18. https://doi.org/10.1136/ejhpharm-2018-001764 . (PMID: 10.1136/ejhpharm-2018-00176432296499)
Rong Y, Mayo P, Ensom MHH, Kiang TKL. Population pharmacokinetic analysis of immediate-release oral tacrolimus co-administered with mycophenolate mofetil in corticosteroid-free adult kidney transplant recipients. Eur J Drug Metab Pharmacokinet. 2019;44:409–22. https://doi.org/10.1007/s13318-018-0525-3 . (PMID: 10.1007/s13318-018-0525-330377942)
Zahir H, McLachlan AJ, Nelson A, McCaughan G, Gleeson M, Akhlaghi F. Population pharmacokinetic estimation of tacrolimus apparent clearance in adult liver transplant recipients. Ther Drug Monit. 2005;27:422–30. https://doi.org/10.1097/01.ftd.0000170029.36573.a0 . (PMID: 10.1097/01.ftd.0000170029.36573.a016044097)
Woillard J, de Winter BCM, Kamar N, Marquet P, Rostaing L, Rousseau A. Population pharmacokinetic model and Bayesian estimator for two tacrolimus formulations: twice daily Prograf ® and once daily Advagraf ® . Br J Clin Pharm. 2011;71:391–402. https://doi.org/10.1111/j.1365-2125.2010.03837.x . (PMID: 10.1111/j.1365-2125.2010.03837.x)
Li Z, Li R, Niu W, Zheng X, Wang Z, Zhong M, Qiu X. Population pharmacokinetic modeling combined with machine learning approach improved tacrolimus trough concentration prediction in Chinese adult liver transplant recipients. J Clin Pharm. 2023;63:314–25. https://doi.org/10.1002/jcph.2156 . (PMID: 10.1002/jcph.2156)
Monchaud C, de Winter BC, Knoop C, Estenne M, Reynaud-Gaubert M, Pison C, et al. Population pharmacokinetic modelling and design of a Bayesian estimator for therapeutic drug monitoring of tacrolimus in lung transplantation. Clin Pharmacokinet. 2012;51:175–86. https://doi.org/10.2165/11594760-000000000-00000 . (PMID: 10.2165/11594760-000000000-0000022339449)
Han N, Ha S, Yun H, Kim MG, Min S, Ha J, et al. Population pharmacokinetic-pharmacogenetic model of tacrolimus in the early period after kidney transplantation. Basic Clin Pharm Toxicol. 2014;114:400–6. https://doi.org/10.1111/bcpt.12176 . (PMID: 10.1111/bcpt.12176)
Chen B, Shi H-Q, Liu X-X, Zhang W-X, Lu J-Q, Xu BM, et al. Population pharmacokinetics and Bayesian estimation of tacrolimus exposure in Chinese liver transplant patients. J Clin Pharm Ther. 2017;42:679–88. https://doi.org/10.1111/jcpt.12599 . (PMID: 10.1111/jcpt.1259928833329)
Benkali K, Rostaing L, Premaud A, Woillard J-B, Saint-Marcoux F, Urien S, et al. Population pharmacokinetics and Bayesian estimation of tacrolimus exposure in renal transplant recipients on a new once-daily formulation. Clin Pharmacokine. 2010;49:683–92. https://doi.org/10.2165/11535950-000000000-00000 . (PMID: 10.2165/11535950-000000000-00000)
Du Y, Song W, Xiong X, Ge W, Zhu H. Population pharmacokinetics and dosage optimisation of tacrolimus coadministration with Wuzhi capsule in adult liver transplant patients. Xenobiotica. 2022;52:274–83. https://doi.org/10.1080/00498254.2022.2073851 . (PMID: 10.1080/00498254.2022.207385135502774)
Antignac M, Barrou B, Farinotti R, Lechat P, Urien S. Population pharmacokinetics and bioavailability of tacrolimus in kidney transplant patients. Br J Clin Pharmacol. 2007;64:750–7. https://doi.org/10.1111/j.1365-2125.2007.02895.x . (PMID: 10.1111/j.1365-2125.2007.02895.x174256252198785)
Cai X, Song H, Jiao Z, Yang H, Zhu M, Wang C, et al. Population pharmacokinetics and dosing regimen optimization of tacrolimus in Chinese lung transplant recipients. Eur J Pharm Sci. 2020;152: 105448. https://doi.org/10.1016/j.ejps.2020.105448 . (PMID: 10.1016/j.ejps.2020.10544832621968)
Martial LC, Biewenga M, Ruijter BN, Keizer R, Swen JJ, van Hoek B, et al. Population pharmacokinetics and genetics of oral meltdose tacrolimus (Envarsus) in stable adult liver transplant recipients. Br J Clin Pharm. 2021;87:4262–72. https://doi.org/10.1111/bcp.14842 . (PMID: 10.1111/bcp.14842)
Moes DJAR, van der Bent SAS, Swen JJ, van der Straaten T, Inderson A, Olofsen E, et al. Population pharmacokinetics and pharmacogenetics of once daily tacrolimus formulation in stable liver transplant recipients. Eur J Clin Pharmacol. 2016;72:163–74. https://doi.org/10.1007/s00228-015-1963-3 . (PMID: 10.1007/s00228-015-1963-326521259)
Lu Z, Bonate P, Keirns J. Population pharmacokinetics of immediate- and prolonged-release tacrolimus formulations in liver, kidney and heart transplant recipients. Br J Clin Pharm. 2019;85:1692–703. https://doi.org/10.1111/bcp.13952 . (PMID: 10.1111/bcp.13952)
Bergmann TK, Hennig S, Barraclough KA, Isbel NM, Staatz CE. Population pharmacokinetics of tacrolimus in adult kidney transplant patients: impact of CYP3A5 genotype on starting dose. Ther Drug Monit. 2014;36:62–70. (PMID: 10.1097/FTD.0b013e31829f1ab824089074)
Staatz C. Population pharmacokinetics of tacrolimus in adult kidney transplant recipients. Clin Pharmacol Ther. 2002;72:660–9. https://doi.org/10.1067/mcp.2002.129304 . (PMID: 10.1067/mcp.2002.12930412496747)
Fukatsu S, Yano I, Igarashi T, Hashida T, Takayanagi K, Saito H, Uemoto S, Kiuchi T, Tanaka K, Inui K, Tanaka K, Inui K. Population pharmacokinetics of tacrolimus in adult recipients receiving living-donor liver transplantation. Eur J Clin Pharmacol. 2001;57(6–7):479–84. https://doi.org/10.1007/s002280100331 .
Teng F, Zhang W, Wang W, Chen J, Liu S, Li M, et al. Population pharmacokinetics of tacrolimus in Chinese adult liver transplant patients. Biopharm Drug Disp. 2022;43:76–85. https://doi.org/10.1002/bdd.2311 . (PMID: 10.1002/bdd.2311)
Antignac M, Hulot JS, Boleslawski E, Hannoun L, Touitou Y, Farinotti R, et al. Population pharmacokinetics of tacrolimus in full liver transplant patients: modelling of the post-operative clearance. Eur J Clin Pharmacol. 2005;61:409–16. https://doi.org/10.1007/s00228-005-0933-6 . (PMID: 10.1007/s00228-005-0933-615991041)
Velickovic-Radovanovic R, Catic-Djordjevic A, Milovanovic JR, Djordjevic V, Paunovic G, Jankovic SM. Population pharmacokinetics of tacrolimus in kidney transplant patients. In J VLin Pharmacol Ther. 2010;48:375–82. https://doi.org/10.5414/CPP48375 . (PMID: 10.5414/CPP48375)
Vadcharavivad S, Praisuwan S, Techawathanawanna N, Treyaprasert W, Avihingsanon Y. Population pharmacokinetics of tacrolimus in Thai kidney transplant patients: comparison with similar data from other population. J Clin Pharm Ther. 2016;41:310–28. https://doi.org/10.1111/jcpt.12396 . (PMID: 10.1111/jcpt.1239627191538)
Sam WJ, Tham LS, Holmes MJ, Aw M, Quak SH, Lee KH, et al. Population pharmacokinetics of tacrolimus in whole blood and plasma in Asian liver transplant patients. Clin Pharmacokinet. 2006;45:59–75. https://doi.org/10.2165/00003088-200645010-00004 . (PMID: 10.2165/00003088-200645010-0000416430311)
Han Y, Zhou H, Cai J, Huang J, Zhang J, Shi S-J, et al. Prediction of tacrolimus dosage in the early period after heart transplantation: a population pharmacokinetic approach. Pharmacogenomics. 2019;20:21–35. https://doi.org/10.2217/pgs-2018-0116 . (PMID: 10.2217/pgs-2018-011630730287)
Han N, Yun H, Hong J, Kim I-W, Ji E, Hong SH, et al. Prediction of the tacrolimus population pharmacokinetic parameters according to CYP3A5 genotype and clinical factors using NONMEM in adult kidney transplant recipients. Eur J Clin Pharmacol. 2013;69:53–63. https://doi.org/10.1007/s00228-012-1296-4 . (PMID: 10.1007/s00228-012-1296-422660440)
Nakagawa J, Ishido K, Tono Y, Kimura N, Wakiya T, Okamura Y, et al. Relationship between change rate of tacrolimus clearance during continuous intravenous infusion and recipient recovery at an early stage after living donor liver transplantation. Eur J Drug Metab Pharmacokinet. 2020;45:619–26. https://doi.org/10.1007/s13318-020-00628-2 . (PMID: 10.1007/s13318-020-00628-232514937)
Oteo I, Lukas JC, Leal N, Suarez E, Valdivieso A, Gastaca M, et al. Tacrolimus pharmacokinetics in the early post-liver transplantation period and clinical applicability via Bayesian prediction. Eur J Clin Pharmacol. 2013;69:65–74. https://doi.org/10.1007/s00228-012-1300-z . (PMID: 10.1007/s00228-012-1300-z22660442)
Zhu W, Xue L, Peng H, Duan Z, Zheng X, Cao D, et al. Tacrolimus population pharmacokinetic models according to CYP3A5/CYP3A4/POR genotypes in Chinese Han renal transplant patients. Pharmacogenomics. 2018;19:1013–25. https://doi.org/10.2217/pgs-2017-0139 . (PMID: 10.2217/pgs-2017-013930040022)
Benkali K, Prémaud A, Picard N, Rérolle J-P, Toupance O, Hoizey G, et al. Tacrolimus population pharmacokinetic-pharmacogenetic analysis and Bayesian estimation in renal transplant recipients. Clin Pharmacokinet. 2009;48:805–16. https://doi.org/10.2165/11318080-000000000-00000 . (PMID: 10.2165/11318080-000000000-0000019902988)
Zhang HJ, Li DY, Zhu HJ, Fang Y, Liu TS. Tacrolimus population pharmacokinetics according to CYP3A5 genotype and clinical factors in Chinese adult kidney transplant recipients. J Clin Pharm Ther. 2017;42:425–32. https://doi.org/10.1111/jcpt.12523 . (PMID: 10.1111/jcpt.1252328401703)
Campagne O, Mager DE, Brazeau D, Venuto RC, Tornatore KM. Tacrolimus population pharmacokinetics and multiple CYP3A5 genotypes in black and white renal transplant recipients. J Clin Pharm. 2018;58:1184–95. https://doi.org/10.1002/jcph.1118 . (PMID: 10.1002/jcph.1118)
Zhang J-J, Liu S-B, Xue L, Ding X-L, Zhang H, Miao L-Y. The genetic polymorphisms of POR*28 and CYP3A5*3 significantly influence the pharmacokinetics of tacrolimus in Chinese renal transplant recipients. Int J Clin Pharmacol Ther. 2015;53:728–36. https://doi.org/10.5414/CP202152 . (PMID: 10.5414/CP20215226227094)
Zhang X, Wang Z, Fan J, Li Y, Jiao Z, Gao J, et al. The impact of sulfonylureas on tacrolimus apparent clearance revealed by a population pharmacokinetics analysis in Chinese adult liver-transplant patients. Ther Drug Monit. 2012;34:126–33. https://doi.org/10.1097/FTD.0b013e31824a67eb . (PMID: 10.1097/FTD.0b013e31824a67eb22377746)
Zhu L, Wang H, Sun X, Rao W, Qu W, Zhang Y, et al. The population pharmacokinetic models of tacrolimus in Chinese adult liver transplantation patients. J Pharm. 2014;2014:1–7. https://doi.org/10.1155/2014/713650 . (PMID: 10.1155/2014/713650)
Henin E, Govoni M, Cella M, Laveille C, Piotti G. Therapeutic drug monitoring strategies for envarsus in de novo kidney transplant patients using population modelling and simulations. Adv Ther. 2021;38:5317–32. https://doi.org/10.1007/s12325-021-01905-5 . (PMID: 10.1007/s12325-021-01905-534515977)
Golubović B, Vučićević K, Radivojević D, Kovačević SV, Prostran M, Miljković B. Total plasma protein effect on tacrolimus elimination in kidney transplant patients: population pharmacokinetic approach. Eur J Pharm Sci. 2014;52:34–40. https://doi.org/10.1016/j.ejps.2013.10.008 . (PMID: 10.1016/j.ejps.2013.10.00824184751)
Sikma MA, Van Maarseveen EM, Hunault CC, Moreno JM, Van de Graaf EA, Kirkels JH, et al. Unbound plasma, total plasma, and whole-blood tacrolimus pharmacokinetics early after thoracic organ transplantation. Clin Pharmacokinet. 2020;59:771–80. https://doi.org/10.1007/s40262-019-00854-1 . (PMID: 10.1007/s40262-019-00854-131840222)
Staatz C. Toward better outcomes with tacrolimus therapy: population pharmacokinetics and individualized dosage prediction in adult liver transplantation. Liver Transplant. 2003;9:130–7. https://doi.org/10.1053/jlts.2003.50023 . (PMID: 10.1053/jlts.2003.50023)
Chen L, Yang Y, Wang X, Wang C, Lin W, Jiao Z, et al. Wuzhi capsule dosage affects tacrolimus elimination in adult kidney transplant recipients, as determined by a population pharmacokinetics analysis. Pharmacogenomics Pers Med. 2021;14:1093–106. https://doi.org/10.2147/PGPM.S321997 . (PMID: 10.2147/PGPM.S321997)
Paschier A, Destere A, Monchaud C, Labriffe M, Marquet P, Woillard J-B. Tacrolimus population pharmacokinetics in adult heart transplant patients. Br J Clin Pharmacol. 2023;89:3584–95. https://doi.org/10.1111/bcp.15857 . (PMID: 10.1111/bcp.1585737477064)
Koomen JV, Knobbe TJ, Zijp TR, Kremer D, Gan CT, Verschuuren EAM, et al. TransplantLines Investigators A joint pharmacokinetic model for the simultaneous description of plasma and whole blood tacrolimus concentrations in kidney and lung transplant recipients. Clin Pharmacokinet. 2023;62:1117–28. https://doi.org/10.1007/s40262-023-01259-x . (PMID: 10.1007/s40262-023-01259-x3730689910386913)
Abderahmene A, Francke MI, Andrews LM, Hesselink DA, Amor D, Sahtout W, et al. A population pharmacokinetic model to predict the individual starting dose of tacrolimus for Tunisian adults after renal transplantation. Ther Drug Monit. 2023;46:57–66. https://doi.org/10.1097/FTD.0000000000001147 . (PMID: 10.1097/FTD.000000000000114738018879)
Cheng Y, Chen J, Lin X, Qiu H, Zhang J. Population pharmacokinetic analysis for model-based therapeutic drug monitoring of tacrolimus in Chinese Han heart transplant patients. Eur J Drug Metab Pharmacokinet. 2023;48:89–100. https://doi.org/10.1007/s13318-022-00807-3 . (PMID: 10.1007/s13318-022-00807-336482138)
Mohammed Ali Z, Meertens M, Fernández B, Fontova P, Vidal-Alabró A, Rigo-Bonnin R, et al. CYP3A5*3 and CYP3A4*22 cluster polymorphism effects on LCP-Tac tacrolimus exposure: population pharmacokinetic approach. Pharmaceutics. 2023;15:2699. https://doi.org/10.3390/pharmaceutics15122699 . (PMID: 10.3390/pharmaceutics151226993814004010747255)
Li Z-R, Li R-D, Niu W-J, Zheng X-Y, Wang Z-X, Zhong M-K, et al. Population pharmacokinetic modeling combined with machine learning approach improved tacrolimus trough concentration prediction in Chinese adult liver transplant recipients. J Clin Pharmacol. 2023;63:314–25. https://doi.org/10.1002/jcph.2156 . (PMID: 10.1002/jcph.215636097320)
Reséndiz-Galván JE, Medellín-Garibay SE, Milán-Segovia RDC, Niño-Moreno PDC, Isordia-Segovia J, Romano-Moreno S. Dosing recommendations based on population pharmacokinetics of tacrolimus in Mexican adult patients with kidney transplant. Basic Clin Pharmacol Toxicol. 2019;124:303–11. https://doi.org/10.1111/bcpt.13138 . (PMID: 10.1111/bcpt.1313830260084)
Janmahasatian S, Duffull SB, Ash S, Ward LC, Byrne NM, Green G. Quantification of lean bodyweight. Clin Pharmacokinet. 2005;44:1051–65. https://doi.org/10.2165/00003088-200544100-00004 . (PMID: 10.2165/00003088-200544100-0000416176118)
Riff C, Debord J, Monchaud C, Marquet P, Woillard J-B. Population pharmacokinetic model and Bayesian estimator for 2 tacrolimus formulations in adult liver transplant patients. Br J Clin Pharmacol. 2019;85:1740–50. https://doi.org/10.1111/bcp.13960 . (PMID: 10.1111/bcp.13960309739816624397)
Woillard J-B, Debord J, Monchaud C, Saint-Marcoux F, Marquet P. Population pharmacokinetics and Bayesian estimators for refined dose adjustment of a new tacrolimus formulation in kidney and liver transplant patients. Clin Pharmacokinet. 2017;56:1491–8. https://doi.org/10.1007/s40262-017-0533-5 . (PMID: 10.1007/s40262-017-0533-528389935)
Andrews LM, Hesselink DA, van Gelder T, Koch BCP, Cornelissen EAM, Brüggemann RJM, et al. A population pharmacokinetic model to predict the individual starting dose of tacrolimus following pediatric renal transplantation. Clin Pharmacokinet. 2018;57:475–89. https://doi.org/10.1007/s40262-017-0567-8 . (PMID: 10.1007/s40262-017-0567-828681225)
Brooks JT, Keizer RJ, Long-Boyle JR, Kharbanda S, Dvorak CC, Friend BD. Population pharmacokinetic model development of tacrolimus in pediatric and young adult patients undergoing hematopoietic cell transplantation. Front Pharmacol. 2021;12: 750672. https://doi.org/10.3389/fphar.2021.750672 . (PMID: 10.3389/fphar.2021.750672349500268689075)
Jacobson P, Ng J, Ratanatharathorn V, Uberti J, Brundage RC. Factors affecting the pharmacokinetics of tacrolimus (FK506) in hematopoietic cell transplant (HCT) patients. Bone Marrow Transplant. 2001;28:753–8. https://doi.org/10.1038/sj.bmt.1703224 . (PMID: 10.1038/sj.bmt.170322411781626)
Musuamba FT, Mourad M, Haufroid V, De Meyer M, Capron A, Delattre IK, et al. Statistical tools for dose individualization of mycophenolic acid and tacrolimus co-administered during the first month after renal transplantation. Br J Clin Pharmacol. 2013;75:1277–88. https://doi.org/10.1111/bcp.12007 . (PMID: 10.1111/bcp.1200723072565)
Schijvens AM, de Wildt SN, Cornelissen EAM, van Hesteren FHS, Schreuder MF, Ter Heine R. Low bioavailability of oral tacrolimus suspension in pediatric kidney transplant patients. Clin Pharmacokinet. 2020;59:1483–5. https://doi.org/10.1007/s40262-020-00908-9 . (PMID: 10.1007/s40262-020-00908-932789820)
Wallin JE, Friberg LE, Fasth A, Staatz CE. Population pharmacokinetics of tacrolimus in pediatric hematopoietic stem cell transplant recipients: new initial dosage suggestions and a model-based dosage adjustment tool. Ther Drug Monit. 2009;31:457–66. https://doi.org/10.1097/FTD.0b013e3181aab02b . (PMID: 10.1097/FTD.0b013e3181aab02b19531982)
Nanga TM, Doan TTP, Marquet P, Musuamba FT. Toward a robust tool for pharmacokinetic-based personalization of treatment with tacrolimus in solid organ transplantation: a model-based meta-analysis approach. Br J Clin Pharmacol. 2019;85:2793–823. https://doi.org/10.1111/bcp.14110 . (PMID: 10.1111/bcp.14110314719706955410)
Wang C-B, Zhang Y-J, Zhao M-M, Zhao L. Dosage optimization of tacrolimus based on the glucocorticoid dose and pharmacogenetics in adult patients with systemic lupus erythematosus. Int Immunopharmacol. 2023;124: 110866. https://doi.org/10.1016/j.intimp.2023.110866 . (PMID: 10.1016/j.intimp.2023.11086637678026)
Cai X-J, Li R-D, Li J-H, Tao Y-F, Zhang Q-B, Shen C-H, et al. Prospective population pharmacokinetic study of tacrolimus in adult recipients early after liver transplantation: a comparison of Michaelis-Menten and theory-based pharmacokinetic models. Front Pharmacol. 2022;13:1031969. https://doi.org/10.3389/fphar.2022.1031969 . (PMID: 10.3389/fphar.2022.1031969364387939681907)
Åsberg A, Midtvedt K, van Guilder M, Størset E, Bremer S, Bergan S, et al. Inclusion of CYP3A5 genotyping in a nonparametric population model improves dosing of tacrolimus early after transplantation. Transpl Int. 2013;26:1198–207. https://doi.org/10.1111/tri.12194 . (PMID: 10.1111/tri.1219424118301)
Saint-Marcoux F, Knoop C, Debord J, Thiry P, Rousseau A, Estenne M, et al. Pharmacokinetic study of tacrolimus in cystic fibrosis and non-cystic fibrosis lung transplant patients and design of Bayesian estimators using limited sampling strategies. Clin Pharmacokinet. 2005;44:1317–28. https://doi.org/10.2165/00003088-200544120-00010 . (PMID: 10.2165/00003088-200544120-0001016372829)
Saint-Marcoux F, Debord J, Parant F, Labalette M, Kamar N, Rostaing L, et al. Development and evaluation of a simulation procedure to take into account various assays for the Bayesian dose adjustment of tacrolimus. Ther Drug Monit. 2011;33:171–7. https://doi.org/10.1097/FTD.0b013e31820d6ef7 . (PMID: 10.1097/FTD.0b013e31820d6ef721383655)
Saint-Marcoux F, Debord J, Undre N, Rousseau A, Marquet P. Pharmacokinetic modeling and development of Bayesian estimators in kidney transplant patients receiving the tacrolimus once-daily formulation. Ther Drug Monit. 2010;32:129–35. https://doi.org/10.1097/FTD.0b013e3181cc70db . (PMID: 10.1097/FTD.0b013e3181cc70db20110850)
Ponthier L, Marquet P, Moes DJAR, Rostaing L, van Hoek B, Monchaud C, et al. Application of machine learning to predict tacrolimus exposure in liver and kidney transplant patients given the MeltDose formulation. Eur J Clin Pharmacol. 2023;79:311–9. https://doi.org/10.1007/s00228-022-03445-5 . (PMID: 10.1007/s00228-022-03445-536564549)
Rosen RD, Singh A, Burns B. Trauma organ procurement. Treasure Island: StatPearls Publishing; 2024. Available from: http://www.ncbi.nlm.nih.gov/books/NBK555947/ . [Accessed 7 Apr 2024].
Holford N, Ma G, Metz D. TDM is dead: long live TCI! Br J Clin Pharmacol. 2022;88:1406–13. https://doi.org/10.1111/bcp.14434 . (PMID: 10.1111/bcp.1443432543717)
Wicha SG, Märtson A-G, Nielsen EI, Koch BCP, Friberg LE, Alffenaar J-W; International Society of Anti-Infective Pharmacology (ISAP), the PK/PD study group of the European Society of Clinical Microbiology, Infectious Diseases (EPASG). From therapeutic drug monitoring to model-informed precision dosing for antibiotics. Clin Pharmacol Ther. 2021;109:928–41. https://doi.org/10.1002/cpt.2202 .
Koch BC, Muller AE, Hunfeld NG, de Winter BC, Ewoldt TM, Abdulla A, et al. Therapeutic drug monitoring of antibiotics in critically ill patients: current practice and future perspective with a focus on clinical outcome. Ther Drug Monit. 2022;44:11–8. https://doi.org/10.1097/FTD.0000000000000942 . (PMID: 10.1097/FTD.000000000000094234772892)
Zwart TC, Guchelaar H-J, van der Boog PJM, Swen JJ, van Gelder T, de Fijter JW, et al. Model-informed precision dosing to optimise immunosuppressive therapy in renal transplantation. Drug Discov Today. 2021;26:2527–46. https://doi.org/10.1016/j.drudis.2021.06.001 . (PMID: 10.1016/j.drudis.2021.06.00134119665)
Kuypers DRJ. Intrapatient variability of tacrolimus exposure in solid organ transplantation: a novel marker for clinical outcome. Clin Pharmacol Ther. 2020;107:347–58. https://doi.org/10.1002/cpt.1618 . (PMID: 10.1002/cpt.161831449663)
Chen F, Yong J-K, Shen C, Zhou T, Feng M, Wan P, et al. High intra-patient variability of tacrolimus within post-operative 1 month predicted worse 1-year outcomes in pediatric liver transplant recipients. Eur J Clin Pharmacol. 2024. https://doi.org/10.1007/s00228-024-03663-z . (PMID: 10.1007/s00228-024-03663-z3900202411303472)
Meziyerh S, van Gelder T, Kers J, van der Helm D, van der Boog PJM, de Fijter JW, et al. Tacrolimus and mycophenolic acid exposure are associated with biopsy-proven acute rejection: a study to provide evidence for longer-term target ranges. Clin Pharmacol Ther. 2023;114:192–200. https://doi.org/10.1002/cpt.2915 . (PMID: 10.1002/cpt.291537082913)
Brooks E, Tett SE, Isbel NM, Staatz CE. Population pharmacokinetic modelling and Bayesian estimation of tacrolimus exposure: is this clinically useful for dosage prediction yet? Clin Pharmacokinet. 2016;55:1295–335. https://doi.org/10.1007/s40262-016-0396-1 . (PMID: 10.1007/s40262-016-0396-127138787)
Woillard J-B, Labriffe M, Debord J, Marquet P. Tacrolimus exposure prediction using machine learning. Clin Pharmacol Ther. 2021;110:361–9. https://doi.org/10.1002/cpt.2123 . (PMID: 10.1002/cpt.212333253425)
Kirubakaran R, Stocker SL, Hennig S, Day RO, Carland JE. Population pharmacokinetic models of tacrolimus in adult transplant recipients: a systematic review. Clin Pharmacokinet. 2020;59:1357–92. https://doi.org/10.1007/s40262-020-00922-x . (PMID: 10.1007/s40262-020-00922-x32783100)
Abdulla A, Edwina E, Flint RB, Allegaert K, Wildschut ED, Koch BCP, et al. Model-informed precision dosing of antibiotics in pediatric patients: a narrative review. Front Pediatr. 2021;9: 624639. https://doi.org/10.3389/fped.2021.624639 . (PMID: 10.3389/fped.2021.624639337087537940353)
Kantasiripitak W, Van Daele R, Gijsen M, Ferrante M, Spriet I, Dreesen E. Software tools for model-informed precision dosing: how well do they satisfy the needs? Front Pharmacol. 2020;11:620. https://doi.org/10.3389/fphar.2020.00620 . (PMID: 10.3389/fphar.2020.00620324576197224248) - Grant Information: 1SHAA24N Research Foundation Flanders (FWO); 1803521N Research Foundation Flanders (FWO); 1830517N Research Foundation Flanders (FWO)
- Accession Number: WM0HAQ4WNM (Tacrolimus)
0 (Immunosuppressive Agents)
EC 1.14.14.1 (Cytochrome P-450 CYP3A)
EC 1.14.14.1 (CYP3A5 protein, human) - Publication Date: Date Created: 20240920 Date Completed: 20241029 Latest Revision: 20241030
- Publication Date: 20241031
- Accession Number: 10.1007/s40262-024-01414-y
- Accession Number: 39304577
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.