Responses to Valsalva's maneuver in spinal cord injury do not broadly relate to vasoconstrictor capacity.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Steinkopff Country of Publication: Germany NLM ID: 9106549 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1619-1560 (Electronic) Linking ISSN: 09599851 NLM ISO Abbreviation: Clin Auton Res Subsets: MEDLINE
    • Publication Information:
      Publication: 2002- : Darnstadt : Steinkopff
      Original Publication: Oxford, UK : Rapid Communications of Oxford, c1991-
    • Subject Terms:
    • Abstract:
      Purpose: A blood pressure stabilization during late phase II of Valsalva's maneuver may be utilized to confirm sympathetic vasoconstrictor control after a spinal cord injury. This study investigated whether Valsalva response was predictive of hemodynamics during tilt or isometric handgrip.
      Methods: Presence/absence of Valsalva response was compared to heart rate, mean arterial pressure, leg blood flow, and vascular resistance during head-up tilt and isometric handgrip to fatigue in 14 adults with spinal cord injury from C7 to T12 and 14 controls. Statistics were performed with two-way repeated measure analysis of variance (ANOVA), post hoc t-tests for between-group comparisons, and Mann-Whitney U tests for within-group.
      Results: In total, six participants with spinal cord injury lacked a blood pressure stabilization for Valsalva's maneuver. However, this was not related to vasoconstrictor responses during the other tests. The groups had similar heart rate and blood pressure changes during tilt, though leg blood flow decreases and vascular resistance increases tended to be smaller at 20° tilt in those with spinal cord injury (p = 0.07 and p = 0.11, respectively). Participants with spinal cord injury had lower heart rates and markedly smaller blood pressure increases during handgrip (both p < 0.05). There were no group differences in leg blood flow, but those with spinal cord injury demonstrated a blunted vascular resistance increase by the final 10% of the handgrip (p < 0.01).
      Conclusions: Valsalva response was not consistent with hemodynamics during other stimuli, but some individuals evidence increases in sub-lesional vascular resistance to isometric handgrip comparable to controls, suggesting a sympathoexcitatory stimulus may be critical to provoke hemodynamic responses after spinal cord injury.
      (© 2024. Springer-Verlag GmbH Germany.)
    • References:
      Al Dera H, Brock JA (2018) Changes in sympathetic neurovascular function following spinal cord injury. Auton Neurosci 209:25–36. https://doi.org/10.1016/j.autneu.2017.02.003. (PMID: 10.1016/j.autneu.2017.02.00328209424)
      Draghici AE, Taylor JA (2018) Baroreflex autonomic control in human spinal cord injury: Physiology, measurement, and potential alterations. Auton Neurosci 209:37–42. https://doi.org/10.1016/j.autneu.2017.08.007. (PMID: 10.1016/j.autneu.2017.08.00728844537)
      Wecht JM, Bauman WA (2018) Implication of altered autonomic control for orthostatic tolerance in SCI. Auton Neurosci 209:51–58. https://doi.org/10.1016/j.autneu.2017.04.004. (PMID: 10.1016/j.autneu.2017.04.00428499865)
      Myers J, Lee M, Kiratli J (2007) Cardiovascular disease in spinal cord injury: an overview of prevalence, risk, evaluation, and management. Am J Phys Med Rehabil 86:142–152. https://doi.org/10.1097/PHM.0b013e31802f0247. (PMID: 10.1097/PHM.0b013e31802f024717251696)
      Dance DL, Chopra A, Campbell K et al (2017) Exploring daily blood pressure fluctuations and cardiovascular risk among individuals with motor complete spinal cord injury: a pilot study. J Spinal Cord Med 40:405–414. https://doi.org/10.1080/10790268.2016.1236161. (PMID: 10.1080/10790268.2016.123616127813450)
      Smith ML, Beightol LA, Fritsch-Yelle JM et al (1996) Valsalva’s maneuver revisited: a quantitative method yielding insights into human autonomic control. Am J Physiol 271:H1240-1249. https://doi.org/10.1152/ajpheart.1996.271.3.H1240. (PMID: 10.1152/ajpheart.1996.271.3.H12408853364)
      Denq JC, O’Brien PC, Low PA (1998) Normative data on phases of the Valsalva maneuver. J Clin Neurophysiol 15:535–540. https://doi.org/10.1097/00004691-199811000-00013. (PMID: 10.1097/00004691-199811000-000139881927)
      Sandroni P, Benarroch EE (1985) Low PA (1991) Pharmacological dissection of components of the Valsalva maneuver in adrenergic failure. J Appl Physiol 71:1563–1567. https://doi.org/10.1152/jappl.1991.71.4.1563. (PMID: 10.1152/jappl.1991.71.4.1563)
      Novak P (2011) Assessment of sympathetic index from the Valsalva maneuver. Neurology 76:2010–2016. https://doi.org/10.1212/WNL.0b013e31821e5563. (PMID: 10.1212/WNL.0b013e31821e5563216466293269073)
      Berger MJ, Kimpinski K, Currie KD et al (2017) Multi-domain assessment of autonomic function in spinal cord injury using a modified autonomic reflex screen. J Neurotrauma 34:2624–2633. https://doi.org/10.1089/neu.2016.4888. (PMID: 10.1089/neu.2016.488828537464)
      Cooke WH, Hoag JB, Crossman AA et al (1999) Human responses to upright tilt: a window on central autonomic integration. J Physiol 517(Pt 2):617–628. https://doi.org/10.1111/j.1469-7793.1999.0617t.x. (PMID: 10.1111/j.1469-7793.1999.0617t.x103321072269357)
      O’Brien IA, O’Hare P, Corrall RJ (1986) Heart rate variability in healthy subjects: effect of age and the derivation of normal ranges for tests of autonomic function. Br Heart J 55:348–354. https://doi.org/10.1136/hrt.55.4.348. (PMID: 10.1136/hrt.55.4.34839645011236737)
      Mark AL, Victor RG, Nerhed C, Wallin BG (1985) Microneurographic studies of the mechanisms of sympathetic nerve responses to static exercise in humans. Circ Res 57:461–469. https://doi.org/10.1161/01.res.57.3.461. (PMID: 10.1161/01.res.57.3.4614028348)
      Kaufmann H, Biaggioni I, Voustianiouk A et al (2002) Vestibular control of sympathetic activity. An otolith-sympathetic reflex in humans. Exp Brain Res 143:463–469. https://doi.org/10.1007/s00221-002-1002-3. (PMID: 10.1007/s00221-002-1002-311914792)
      Bluvshtein V, Korczyn AD, Akselrod S et al (2011) Hemodynamic responses to head-up tilt after spinal cord injury support a role for the mid-thoracic spinal cord in cardiovascular regulation. Spinal Cord 49:251–256. https://doi.org/10.1038/sc.2010.98. (PMID: 10.1038/sc.2010.9820714335)
      Freeman R, Chapleau MW (2013) Testing the autonomic nervous system. Handb Clin Neurol 115:115–136. https://doi.org/10.1016/B978-0-444-52902-2.00007-2. (PMID: 10.1016/B978-0-444-52902-2.00007-223931777)
      Kirshblum SC, Waring W, Biering-Sorensen F et al (2011) Reference for the 2011 revision of the international standards for neurological classification of spinal cord injury. J Spinal Cord Med 34:547–554. https://doi.org/10.1179/107902611X13186000420242. (PMID: 10.1179/107902611X13186000420242223301093232637)
      Villar R, Hughson RL (2013) Lower limb vascular conductance and resting popliteal blood flow during head-up and head-down postural challenges. Clin Physiol Funct Imaging 33:186–191. https://doi.org/10.1111/cpf.12008. (PMID: 10.1111/cpf.1200823522011)
      Tan CO, Tamisier R, Hamner JW, Taylor JA (2013) Characterizing sympathetic neurovascular transduction in humans. PLoS ONE 8:e53769. https://doi.org/10.1371/journal.pone.0053769. (PMID: 10.1371/journal.pone.0053769233265013542370)
      Cívicos Sánchez N, Acera M, Murueta-Goyena A et al (2021) Quantitative analysis of dysautonomia in patients with autonomic dysreflexia. J Neurol 268:2985–2994. https://doi.org/10.1007/s00415-021-10478-w. (PMID: 10.1007/s00415-021-10478-w33634338)
      Woo MA, Macey PM, Keens PT et al (2007) Aberrant central nervous system responses to the Valsalva maneuver in heart failure. Congest Heart Fail 13:29–35. https://doi.org/10.1111/j.1527-5299.2007.05856.x. (PMID: 10.1111/j.1527-5299.2007.05856.x17272960)
      Elisberg EI (1963) Heart rate response to the Valsalva maneuver as a test of circulatory integrity. JAMA 186:200–205. https://doi.org/10.1001/jama.1963.03710030040006. (PMID: 10.1001/jama.1963.0371003004000614057108)
      Matalon SV, Farhi LE (1979) Cardiopulmonary readjustments in passive tilt. J Appl Physiol 47:503–507. https://doi.org/10.1152/jappl.1979.47.3.503. (PMID: 10.1152/jappl.1979.47.3.503533742)
      Kawanokuchi J, Fu Q, Cui J et al (2001) Influence of vestibulo-sympathetic reflex on muscle sympathetic outflow during head-down tilt. Environ Med 45:66–68. (PMID: 12353535)
      Saito M, Foldager N, Mano T et al (1997) Sympathetic control of hemodynamics during moderate head-up tilt in human subjects. Environ Med 41:151–155. (PMID: 11541507)
      Borg G (1998) Borg’s perceived exertion and pain scales. Human Kinetics.
      Berger MJ, Dorey T, Nouraei H, Krassioukov AV (2022) Test-retest reliability of the Valsalva maneuver in spinal cord injury. J Spinal Cord Med 45:230–237. https://doi.org/10.1080/10790268.2020.1798134. (PMID: 10.1080/10790268.2020.179813432795170)
      Previnaire JG, Soler JM, Leclercq V, Denys P (2012) Severity of autonomic dysfunction in patients with complete spinal cord injury. Clin Auton Res 22:9–15. https://doi.org/10.1007/s10286-011-0132-8. (PMID: 10.1007/s10286-011-0132-821796354)
      Houtman S, Oeseburg B, Hopman MT (1999) Non-invasive assessment of autonomic nervous system integrity in able-bodied and spinal cord-injured individuals. Clin Auton Res 9:115–122. https://doi.org/10.1007/BF02281623. (PMID: 10.1007/BF0228162310454056)
      Legg Ditterline BE, Aslan SC, Randall DC et al (2016) Baroreceptor reflex during forced expiratory maneuvers in individuals with chronic spinal cord injury. Respir Physiol Neurobiol 229:65–70. https://doi.org/10.1016/j.resp.2016.04.006. (PMID: 10.1016/j.resp.2016.04.006271374124887317)
      Phillips AA, Krassioukov AV, Ainslie PN (1985) Warburton DER (2014) Perturbed and spontaneous regional cerebral blood flow responses to changes in blood pressure after high-level spinal cord injury: the effect of midodrine. J Appl Physiol 116:645–653. https://doi.org/10.1152/japplphysiol.01090.2013. (PMID: 10.1152/japplphysiol.01090.2013)
      Itoh M, Endo MY, Hojo T et al (2018) Characteristics of cardiovascular responses to an orthostatic challenge in trained spinal cord-injured individuals. J Physiol Anthropol 37:22. https://doi.org/10.1186/s40101-018-0182-x. (PMID: 10.1186/s40101-018-0182-x302681546162881)
      Kooijman M, Rongen GA, Smits P et al (2009) The role of the alpha-adrenergic receptor in the leg vasoconstrictor response to orthostatic stress. Acta Physiol (Oxf) 195:357–366. https://doi.org/10.1111/j.1748-1716.2008.01904.x. (PMID: 10.1111/j.1748-1716.2008.01904.x18801054)
      Groothuis JT, Boot CRL, Houtman S et al (2005) Does peripheral nerve degeneration affect circulatory responses to head-up tilt in spinal cord-injured individuals? Clin Auton Res 15:99–106. https://doi.org/10.1007/s10286-005-0248-9. (PMID: 10.1007/s10286-005-0248-915834766)
      Seals DR (1985) (1989) Influence of muscle mass on sympathetic neural activation during isometric exercise. J Appl Physiol 67:1801–1806. https://doi.org/10.1152/jappl.1989.67.5.1801. (PMID: 10.1152/jappl.1989.67.5.1801)
      Saito M, Mano T, Iwase S (1990) Changes in muscle sympathetic nerve activity and calf blood flow during static handgrip exercise. Eur J Appl Physiol Occup Physiol 60:277–281. https://doi.org/10.1007/BF00379396. (PMID: 10.1007/BF003793962357983)
      Minson CT, Halliwill JR, Young TM, Joyner MJ (2000) Influence of the menstrual cycle on sympathetic activity, baroreflex sensitivity, and vascular transduction in young women. Circulation 101:862–868. https://doi.org/10.1161/01.cir.101.8.862. (PMID: 10.1161/01.cir.101.8.86210694525)
      Halliwill JR, Taylor JA, Eckberg DL (1996) Impaired sympathetic vascular regulation in humans after acute dynamic exercise. J Physiol 495(Pt 1):279–288. https://doi.org/10.1113/jphysiol.1996.sp021592. (PMID: 10.1113/jphysiol.1996.sp02159288663701160743)
      Shoemaker JK, Herr MD, Sinoway LI (2000) Dissociation of muscle sympathetic nerve activity and leg vascular resistance in humans. Am J Physiol Heart Circ Physiol 279:H1215-1219. https://doi.org/10.1152/ajpheart.2000.279.3.H1215. (PMID: 10.1152/ajpheart.2000.279.3.H121510993787)
      Seals DR (1985) (1989) Sympathetic neural discharge and vascular resistance during exercise in humans. J Appl Physiol 66:2472–2478. https://doi.org/10.1152/jappl.1989.66.5.2472. (PMID: 10.1152/jappl.1989.66.5.2472)
      Sakamoto K, Nakamura T, Umemoto Y et al (2012) Cardiovascular responses to arm static exercise in men with thoracic spinal cord lesions. Eur J Appl Physiol 112:661–666. https://doi.org/10.1007/s00421-011-2017-x. (PMID: 10.1007/s00421-011-2017-x21656231)
      Takahashi M, Sakaguchi A, Matsukawa K et al (1985) (2004) Cardiovascular control during voluntary static exercise in humans with tetraplegia. J Appl Physiol 97:2077–2082. https://doi.org/10.1152/japplphysiol.00546.2004. (PMID: 10.1152/japplphysiol.00546.2004)
      Yamamoto M, Tajima F, Okawa H et al (1999) Static exercise—induced increase in blood pressure in individuals with cervical spinal cord injury. Arch Phys Med Rehabil 80:288–293. https://doi.org/10.1016/S0003-9993(99)90139-9. (PMID: 10.1016/S0003-9993(99)90139-910084436)
      Takahashi M, Matsukawa K, Nakamoto T et al (1985) (2007) Control of heart rate variability by cardiac parasympathetic nerve activity during voluntary static exercise in humans with tetraplegia. J Appl Physiol 103:1669–1677. https://doi.org/10.1152/japplphysiol.00503.2007. (PMID: 10.1152/japplphysiol.00503.2007)
      Petrofsk JS (2001) Blood pressure and heart rate response to isometric exercise: the effect of spinal cord injury in humans. Eur J Appl Physiol 85:521–526. https://doi.org/10.1007/s004210100489. (PMID: 10.1007/s00421010048911718279)
      Funderburk CF, Hipskind SG, Welton RC, Lind AR (1974) Development of and recovery from fatigue induced by static effort at various tensions. J Appl Physiol 37:392–396. https://doi.org/10.1152/jappl.1974.37.3.392. (PMID: 10.1152/jappl.1974.37.3.3924412783)
      Seals DR (1985) Enoka RM (1989) Sympathetic activation is associated with increases in EMG during fatiguing exercise. J Appl Physiol 66:88–95. https://doi.org/10.1152/jappl.1989.66.1.88. (PMID: 10.1152/jappl.1989.66.1.88)
    • Grant Information:
      R01HL1170371 Foundation for the National Institutes of Health; R21AR074054 Foundation for the National Institutes of Health
    • Contributed Indexing:
      Keywords: Autonomic dysfunction; Isometric handgrip exercise; Spinal cord injury; Tilt test; Valsalva’s maneuver
    • Publication Date:
      Date Created: 20240919 Date Completed: 20241107 Latest Revision: 20241107
    • Publication Date:
      20241114
    • Accession Number:
      10.1007/s10286-024-01060-1
    • Accession Number:
      39300002