Low-tech innovation: biomimetic solid-contact potentiometric sensor for nanomolar-level atrazine detection.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: Switzerland NLM ID: 8511078 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1348-2246 (Electronic) Linking ISSN: 09106340 NLM ISO Abbreviation: Anal Sci Subsets: PubMed not MEDLINE; MEDLINE
    • Publication Information:
      Publication: 2022- : [Cham] : Springer
      Original Publication: Tokyo : The Society, [1985-
    • Abstract:
      Despite the fact that there are already a number of solid-contact-based ion-selective electrodes designed for atrazine detection, our ground-breaking contribution lies in introducing the first-ever atrazine potentioselectrode, enabling the ultra-sensitive detection of atrazine at nanomolar levels. Solid-contact ion-selective electrodes can offer advantages, such as improved stability, reproducibility, sensitivity, and selectivity compared to their liquid-contact counterparts. Here, a biomimetic potentiometric sensor for Atrazine was developed using economic, light weight, and flexible carbon cloth as solid-contact material. Our methodology entails the synthesis of a molecularly imprinted polymer (MIP) through straightforward precipitation polymerization, showcasing a streamlined and efficient method for creating highly specific molecular recognition elements. The validation of template removal is confirmed via meticulous analysis employing EDX and FTIR techniques, ensuring the efficacy of our methodology. The resulting sensing membrane are casted by dispersing the MIP in 2-nitrophenyl octyl ether plasticizer and embedding it within a PVC matrix containing sodium tetraphenyl borate as a lipophilic additive. The developed sensor responds to atrazine in the pH range of 2.8-3.3 over a wide concentration range of 1 × 10 -8  M to 1 × 10 -5  M & 1 × 10 -5  M to 1 × 10 -1  M with respective slopes of 29.2 mv & 58.7 mV and a limit of detection of 1 × 10 -9  M. An impressive feature of this sensor lies in its swift response time, registering a rapid reaction within a mere 10 s. Emphasize the sensor's commendable attributes of reproducibility, selectivity, and sensitivity underscoring its successful application in field monitoring.
      Competing Interests: Declarations. Conflict of interest: There are no conflicts to declare.
      (© 2024. The Author(s), under exclusive licence to The Japan Society for Analytical Chemistry.)
    • References:
      F. Pereira, J.L. de O. de Albuquerque, V. Moschini-Carlos, L.F. Fraceto, An overview of the potential impacts of atrazine in aquatic environments: perspectives for tailored solutions based on nanotechnology. Sci. Total Environ. 700, 134868 (2020). https://doi.org/10.1016/j.scitotenv.2019.134868.
      X. Fan, F. Song, Bioremediation of atrazine: recent advances and promises. J. Soils Sediments 14, 1727–1737 (2014). https://doi.org/10.1007/s11368-014-0921-5. (PMID: 10.1007/s11368-014-0921-5)
      S.C. Stradtman, J.L. Freeman, Mechanisms of neurotoxicity associated with exposure to the herbicide atrazine. Toxics. 9, 207 (2021). https://doi.org/10.3390/toxics9090207. (PMID: 10.3390/toxics9090207345643588473009)
      S. Das, H. Sakr, I. Al-Huseini, R. Jetti, S. Al-Qasmi, R. Sugavasi, S.R. Sirasanagandla, Atrazine toxicity: the possible role of natural products for effective treatment. Plants. 12, 2278 (2023). https://doi.org/10.3390/plants12122278. (PMID: 10.3390/plants121222783737590310301673)
      P. Supraja, S. Tripathy, S.R. Krishna Vanjari, V. Singh, S.G. Singh, Electrospun tin (IV) oxide nanofiber based electrochemical sensor for ultra-sensitive and selective detection of atrazine in water at trace levels. Biosens. Bioelectron. 141, 111441 (2019). https://doi.org/10.1016/j.bios.2019.111441. (PMID: 10.1016/j.bios.2019.11144131229795)
      K.H. Chan, W. Chu, Modeling the reaction kinetics of Fenton’s process on the removal of atrazine. Chemosphere 51, 305–311 (2003). https://doi.org/10.1016/S0045-6535(02)00812-3. (PMID: 10.1016/S0045-6535(02)00812-312604082)
      J.M. Montiel-León, S. Vo Duy, G. Munoz, M.F. Bouchard, M. Amyot, S. Sauvé, Quality survey and spatiotemporal variations of atrazine and desethylatrazine in drinking water in Quebec, Canada. Sci. Total Environ. 671, 578–585 (2019). https://doi.org/10.1016/j.scitotenv.2019.03.228. (PMID: 10.1016/j.scitotenv.2019.03.22830933813)
      W. Tappe, J. Groeneweg, B. Jantsch, Diffuse atrazine pollution in German aquifers. Biodegradation 13, 3–10 (2002). https://doi.org/10.1023/A:1016325527709. (PMID: 10.1023/A:101632552770912222953)
      S. Singh, V. Kumar, A. Chauhan, S. Datta, A.B. Wani, N. Singh, J. Singh, Toxicity, degradation and analysis of the herbicide atrazine. Environ. Chem. Lett. 16, 211–237 (2018). https://doi.org/10.1007/s10311-017-0665-8. (PMID: 10.1007/s10311-017-0665-8)
      E.D. Miensah, J.R. Fianko, S. Adu-Kumi, E.D. Miensah, J.R. Fianko, S. Adu-Kumi, Assessment of lindane and atrazine residues in maize produced in Ghana using Gas chrOmatography-Electron Capture Detector (GC-ECD) and Gas Chromatography-Mass Spectrometry (GC-MS). J. Environ. Prot. (Irvine,. Calif) 6, 1105–1117 (2015). https://doi.org/10.4236/JEP.2015.610097. (PMID: 10.4236/JEP.2015.610097)
      H. Qiu, C. Luo, M. Sun, F. Lu, L. Fan, X. Li, A novel chemiluminescence sensor for determination of quercetin based on molecularly imprinted polymeric microspheres. Food Chem. 134, 469–473 (2012). https://doi.org/10.1016/j.foodchem.2012.02.102. (PMID: 10.1016/j.foodchem.2012.02.102)
      G. D’Agostino, G. Alberti, R. Biesuz, M. Pesavento, Potentiometric sensor for atrazine based on a molecular imprinted membrane. Biosens. Bioelectron. 22, 145–152 (2006). https://doi.org/10.1016/j.bios.2006.05.014. (PMID: 10.1016/j.bios.2006.05.01416815698)
      K. Prasad, K.P. Prathish, J.M. Gladis, G.R.K. Naidu, T.P. Rao, Molecularly imprinted polymer (biomimetic) based potentiometric sensor for atrazine. Sensors Actuators B. Chem. 123, 65–70 (2007). https://doi.org/10.1016/j.snb.2006.07.022. (PMID: 10.1016/j.snb.2006.07.022)
      B. Gao, H. Liu, K. Cui, Sensors and Actuators B : Chemical Preparation and molecule-recognition characteristics of grafting type molecule-Imprinted membrane and potentiometric sensor for atrazine. Sensors Actuators B. Chem. 254, 1048–1056 (2018). https://doi.org/10.1016/j.snb.2017.07.089. (PMID: 10.1016/j.snb.2017.07.089)
      L.B.O. Dos Santos, G. Abate, J.C. Masini, Determination of atrazine using square wave voltammetry with the Hanging Mercury Drop Electrode (HMDE). Talanta 62, 667–674 (2004). https://doi.org/10.1016/j.talanta.2003.08.034. (PMID: 10.1016/j.talanta.2003.08.03418969346)
      D. De Souza, R.A. De Toledo, H.B. Suffredini, L.H. Mazo, S.A.S. Machado, Characterization and use of copper solid amalgam electrode for electroanalytical determination of triazines-based herbicides. Electroanalysis 18, 605–612 (2006). https://doi.org/10.1002/elan.200503441. (PMID: 10.1002/elan.200503441)
      Y. Lattach, F. Garnier, S. Remita, Influence of chemical and structural properties of functionalized polythiophene-based layers on electrochemical sensing of atrazine. ChemPhysChem 13, 281–290 (2012). https://doi.org/10.1002/cphc.201100599. (PMID: 10.1002/cphc.20110059922086719)
      Ľ Švorc, M. Rievaj, D. Bustin, Green electrochemical sensor for environmental monitoring of pesticides: Determination of atrazine in river waters using a boron-doped diamond electrode. Sensors Actuators B. Chem. 181, 294–300 (2013). https://doi.org/10.1016/j.snb.2013.02.036. (PMID: 10.1016/j.snb.2013.02.036)
      G. Bia, L. Borgnino, P.I. Ortiz, V. Pfaffen, Multivariate optimization of square wave voltammetry using bismuth film electrode to determine atrazine. Sensors Actuators B. Chem. 203, 396–405 (2014). https://doi.org/10.1016/j.snb.2014.07.003. (PMID: 10.1016/j.snb.2014.07.003)
      M. Jović, Y. Zhu, A. Lesch, A. Bondarenko, F. Cortés-Salazar, F. Gumy, H.H. Girault, Inkjet-printed microtiter plates for portable electrochemical immunoassays. J. Electroanal. Chem. 786, 69–76 (2017). https://doi.org/10.1016/j.jelechem.2016.12.051. (PMID: 10.1016/j.jelechem.2016.12.051)
      M.L. Yola, N. Atar, Electrochemical detection of atrazine by platinum nanoparticles/carbon nitride nanotubes with molecularly imprinted polymer. Ind. Eng. Chem. Res. 56, 7631–7639 (2017). https://doi.org/10.1021/acs.iecr.7b01379. (PMID: 10.1021/acs.iecr.7b01379)
      A.L. Ahmad, N.F.C. Lah, S.C. Low, Configuration of molecular imprinted polymer for electrochemical atrazine detection. J. Polym. Res. (2018). https://doi.org/10.1007/s10965-018-1595-2. (PMID: 10.1007/s10965-018-1595-2)
      P. Supraja, S. Tripathy, S.R. Krishna Vanjari, V. Singh, S.G. Singh, Label free, electrochemical detection of atrazine using electrospun Mn2O3 nanofibers: towards ultra-sensitive small molecule detection. Sensors Actuators B. Chem. 285, 317–325 (2019). https://doi.org/10.1016/j.snb.2019.01.060. (PMID: 10.1016/j.snb.2019.01.060)
      L. Durai, B. Sushmee, Highly selective trace level detection of Atrazine in human blood samples using lead-free double perovskite Al2NiCoO5 modified electrode via differential pulse voltammetry. Sensors Actuators B. Chem. 325, 128792 (2020). https://doi.org/10.1016/j.snb.2020.128792. (PMID: 10.1016/j.snb.2020.128792)
      P. Supraja, V. Singh, S.R.K. Vanjari, S. Govind Singh, Electrospun CNT embedded ZnO nanofiber based biosensor for electrochemical detection of Atrazine: a step closure to single molecule detection. Microsyst. Nanoeng. (2020). https://doi.org/10.1038/s41378-019-0115-9. (PMID: 10.1038/s41378-019-0115-9345676188433164)
      E.L. Apostolova, A.G. Dobrikova, G.D. Rashkov, K.G. Dankov, R.S. Vladkova, A.N. Misra, Prolonged sensitivity of immobilized thylakoid membranes in cross-linked matrix to atrazine. Sensors Actuators B. Chem. 156, 140–146 (2011). https://doi.org/10.1016/j.snb.2011.04.002. (PMID: 10.1016/j.snb.2011.04.002)
      E. Valera, J. Ramón-Azcón, Á. Rodríguez, L.M. Castañer, F.J. Sánchez, M.P. Marco, Impedimetric immunosensor for atrazine detection using interdigitated μ-electrodes (IDμE’s). Sensors Actuators B. Chem. 125, 526–537 (2007). https://doi.org/10.1016/j.snb.2007.02.048. (PMID: 10.1016/j.snb.2007.02.048)
      T.R. Soreta, M. Gojeh, Y. Moses, Y. Yakubu, N. Bahago, Voltermetric and amperometric behaviour of polyaniline modified carbon paste electrode for the analysis of atrazine. IOSR J. Appl. Chem. 8, 19–25 (2015). https://doi.org/10.9790/5736-081011925. (PMID: 10.9790/5736-081011925)
      K. Grennan, G. Strachan, A.J. Porter, A.J. Killard, M.R. Smyth, Atrazine analysis using an amperometric immunosensor based on single-chain antibody fragments and regeneration-free multi-calibrant measurement. Anal. Chim. Acta 500, 287–298 (2003). https://doi.org/10.1016/S0003-2670(03)00942-5. (PMID: 10.1016/S0003-2670(03)00942-5)
      R. Shoji, T. Takeuchi, I. Kubo, Atrazine sensor based on molecularly imprinted polymer-modified gold electrode. Anal. Chem. 75, 4882–4886 (2003). https://doi.org/10.1021/ac020795n. (PMID: 10.1021/ac020795n14674467)
      A.P.M. Udayan, Electrochemical detection of herbicide atrazine using porous MnO 2 -NiO nanocatalyst. Mater. Sci. Eng. B 290, 116302 (2023). https://doi.org/10.1016/j.mseb.2023.116302. (PMID: 10.1016/j.mseb.2023.116302)
      T.A. Sergeyeva, S.A. Piletsky, A.A. Brovko, E.A. Slinchenko, L.M. Sergeeva, A.V. El’skaya, Selective recognition of atrazine by molecularly imprinted polymer membranes. Development of conductometric sensor for herbicides detection. Anal. Chim. Acta. 392, 105–111 (1999). https://doi.org/10.1016/S0003-2670(99)00225-1. (PMID: 10.1016/S0003-2670(99)00225-1)
      S.A. Piletsky, E.V. Piletskaya, A.V. Elgersma, K. Yano, I. Karube, Y.P. Parhometz, A.V. El’Skaya, Atrazine sensing by molecularly imprinted membranes. Biosens. Bioelectron. 10, 959–964 (1995). https://doi.org/10.1016/0956-5663(95)99233-B. (PMID: 10.1016/0956-5663(95)99233-B)
      T.A. Sergeyeva, S.A. Piletsky, A.A. Brovko, E.A. Slinchenko, L.M. Sergeeva, T.L. Panasyuk, A.V. El’skaya, Conductimetric sensor for atrazine detection based on molecularly imprinted polymer membranes. Analyst. 124, 331–334 (1999). https://doi.org/10.1039/a808484j. (PMID: 10.1039/a808484j)
      S.P. Pogorelova, T. Bourenko, A.B. Kharitonov, I. Willner, Selective sensing of triazine herbicides in imprinted membranes using ion-sensitive field-effect transistors and microgravimetric quartz crystal microbalance measurements. Analyst 127, 1484–1491 (2002). https://doi.org/10.1039/b204491a. (PMID: 10.1039/b204491a12475039)
      H.A. Deveci, M. Mavioğlu Kaya, i. Kaya, B. Bankoğlu Yola, N. Atar, M.L. Yola, Bisphenol A Imprinted electrochemical sensor based on graphene quantum dots with boron functionalized g-C3N4 in food samples, Biosensors. 13, (2023). https://doi.org/10.3390/bios13070725 .
      N.Ç. Rehman, N. Özdemir, H. Boyacıoğlu, M.L. Yola, A novel molecularly imprinted electrochemical sensor based on graphitic carbon nitride nanosheets decorated bovine serum albumin@MnO2 nanocomposite for zearalenone detection. J. Food Compos. Anal. 125, 105857 (2024). https://doi.org/10.1016/j.jfca.2023.105857. (PMID: 10.1016/j.jfca.2023.105857)
      B.B. Yola, G. Kotan, O. Akyıldırım, N. Atar, M.L. Yola, Electrochemical determination of fenitrothion pesticide based on ultrathin manganese oxide nanowires/molybdenum titanium carbide MXene ionic nanocomposite and molecularly imprinting polymer. Microchim. Acta 191, 230 (2024). https://doi.org/10.1007/s00604-024-06320-5. (PMID: 10.1007/s00604-024-06320-5)
      N. Çapar, B.B. Yola, İ Polat, S. Bekerecioğlu, N. Atar, M.L. Yola, A zearalenone detection based on molecularly imprinted surface plasmon resonance sensor including sulfur-doped g-C3N4/Bi2S3 nanocomposite. Microchem. J. 193, 109141 (2023). https://doi.org/10.1016/j.microc.2023.109141. (PMID: 10.1016/j.microc.2023.109141)
      Ş.Y. Akıcı, B. Bankoğlu Yola, B. Karslıoğlu, İ. Polat, N. Atar, M.L. Yola, Fenpicoxamid-imprinted surface plasmon resonance (spr) sensor based on sulfur-doped graphitic carbon nitride and its application to rice samples, Micromachines. 15, (2024) 1–11. https://doi.org/10.3390/mi15010006.
      N. Özdemir, B. Karslıoğlu, B. Bankoğlu Yola, N. Atar, M.L. Yola, a novel molecularly imprinted quartz crystal microbalance sensor based on erbium molybdate incorporating sulfur-doped graphitic carbon nitride for dimethoate determination in apple juice samples, Foods. 13, (2024) 810. 10.3390/foods13050810.
      B. Demir, S. Bekerecioğlu, İ Polat, B.B. Yola, M.L. Yola, A nivalenol imprinted quartz crystal microbalance sensor based on sulphur-incorporating cobalt ferrite and its application to rice samples. Anal. Methods 16, 1215–1224 (2024). https://doi.org/10.1039/D4AY00008K. (PMID: 10.1039/D4AY00008K38314668)
      R.N. Liang, D.A. Song, R.M. Zhang, W. Qin, Potentiometrie sensing of neutral species based on a uniform-sized molecularly imprinted polymer as a receptor. Angew. Chemie Int. Ed. 49, 2556–2559 (2010). https://doi.org/10.1002/anie.200906720. (PMID: 10.1002/anie.200906720)
      J. Hu, A. Stein, P. Bühlmann, Rational design of all-solid-state ion-selective electrodes and reference electrodes, TrAC. Trends Anal. Chem. 76, 102–114 (2016). https://doi.org/10.1016/j.trac.2015.11.004. (PMID: 10.1016/j.trac.2015.11.004)
      U. Mattinen, S. Rabiej, A. Lewenstam, J. Bobacka, Impedance study of the ion-to-electron transduction process for carbon cloth as solid-contact material in potentiometric ion sensors. Electrochim. Acta 56, 10683–10687 (2011). https://doi.org/10.1016/j.electacta.2011.07.082. (PMID: 10.1016/j.electacta.2011.07.082)
      J. Cincy, T.E. Milja, K.P. Prathish, Fabrication of a flexible carbon cloth based solid contact iodide selective electrode. Anal. Methods 9, 2947–2956 (2017). https://doi.org/10.1039/C7AY00733G. (PMID: 10.1039/C7AY00733G)
      R.M. Roland, S.A. Bhawani, M.N.M. Ibrahim, R. Wahi, Synthesis and characterizations of molecularly imprinted polymer of atrazine: removal of atrazine from aqueous samples. ChemistrySelect. (2024). https://doi.org/10.1002/slct.202303679. (PMID: 10.1002/slct.202303679)
      T. Prasada Rao, R. Kala, Potentiometric transducer based biomimetic sensors for priority envirotoxic markers-an overview. Talanta. 76, 485–496 (2008). https://doi.org/10.1016/j.talanta.2008.03.044. (PMID: 10.1016/j.talanta.2008.03.04418585311)
      R.M. Roland, S.A. Bhawani, M. Nasir, M. Ibrahim, Synthesis of molecularly imprinted polymer for the removal of cyanazine from aqueous samples. Chem. Biol. Technol. Agric. (2023). https://doi.org/10.1186/s40538-023-00462-z. (PMID: 10.1186/s40538-023-00462-z)
      S.S.M. Hassan, A.H. Kamel, A.E.E. Amr, H.M. Hashem, Imprinted polymeric beads-based screen-printed potentiometric platforms modified with multi-walled carbon nanotubes ( MWCNTs ) for selective recognition of fluoxetine. Nanomaterials 10, 572 (2020). (PMID: 10.3390/nano10030572322452877153386)
      J.C. Yang, H.K. Shin, S.W. Hong, J.Y. Park, Lithographically patterned molecularly imprinted polymer for gravimetric detection of trace atrazine. Sensors Actuators B. Chem. 216, 476–481 (2015). https://doi.org/10.1016/j.snb.2015.04.079. (PMID: 10.1016/j.snb.2015.04.079)
      X. Li, Y. Wang, Q. Sun, B. Xu, Y. Yu, X. Wang, Molecularly imprinted solid phase extraction in a syringe filter for determination of triazine herbicides in Radix Paeoniae Alba by ultra-fast liquid chromatography. Talanta 148, 539–547 (2016). https://doi.org/10.1016/j.talanta.2015.11.027. (PMID: 10.1016/j.talanta.2015.11.02726653483)
      J. Matsui, H. Kubo, T. Takeuchi, Design and preparation of molecularly imprinted atrazine-receptor polymers: investigation of functional monomers and solvents. Anal. Sci. 14, 699–702 (1998). https://doi.org/10.2116/analsci.14.699. (PMID: 10.2116/analsci.14.699)
      P. Bühlmann, L.D. Chen, Ion-selective electrodes with ionophore-doped sensing membranes. Supramol. Chem. (2012). https://doi.org/10.1002/9780470661345.smc097. (PMID: 10.1002/9780470661345.smc097)
      K.P. Prathish, K. Prasad, T.P. Rao, M.V.S. Suryanarayana, Molecularly imprinted polymer-based potentiometric sensor for degradation product of chemical warfare agents. Part I. Methylphosphonic acid. Talanta. 71, 1976–1980 (2007). https://doi.org/10.1016/j.talanta.2006.09.002. (PMID: 10.1016/j.talanta.2006.09.00219071551)
      A. Konopka, T. Sokalski, A. Lewenstam, M. Maj-Zurawska, The influence of the conditioning procedure on potentiometric characteristics of solid contact calcium-selective electrodes in nanomolar concentration solutions. Electroanalysis 18, 2232–2242 (2006). https://doi.org/10.1002/elan.200603652. (PMID: 10.1002/elan.200603652)
      M. Rich, L. Mendecki, S.T. Mensah, E. Blanco-Martinez, S. Armas, P. Calvo-Marzal, A. Radu, K.Y. Chumbimuni-Torres, Circumventing traditional conditioning protocols in polymer membrane-based ion-selective electrodes. Anal. Chem. 88, 8404–8408 (2016). https://doi.org/10.1021/acs.analchem.6b01542. (PMID: 10.1021/acs.analchem.6b0154227523089)
      M.M. Barsan, R.C. Carvalho, Y. Zhong, X. Sun, C.M.A. Brett, Carbon nanotube modified carbon cloth electrodes: characterisation and application as biosensors. Electrochim. Acta 85, 203–209 (2012). https://doi.org/10.1016/j.electacta.2012.08.048. (PMID: 10.1016/j.electacta.2012.08.048)
      Chris C Rundle, A Beginners Guide to Ion-Selective Electrode Measurement, www.nico2000.net.
      C. Luo, M. Liu, Y. Mo, J. Qu, Y. Feng, Thickness-shear mode acoustic sensor for atrazine using molecularly imprinted polymer as recognition element. Anal. Chim. Acta 428, 143–148 (2001). https://doi.org/10.1016/S0003-2670(00)01216-2. (PMID: 10.1016/S0003-2670(00)01216-2)
      X. Li, Y. He, F. Zhao, W. Zhang, Z. Ye, Molecularly imprinted polymer-based sensors for atrazine detection by electropolymerization of o-phenylenediamine. RSC Adv. 5, 56534–56540 (2015). https://doi.org/10.1039/c5ra09556e. (PMID: 10.1039/c5ra09556e)
      R. Liu, G. Guan, S. Wang, Z. Zhang, Core-shell nanostructured molecular imprinting fluorescent chemosensor for selective detection of atrazine herbicide. Analyst 136, 184–190 (2011). https://doi.org/10.1039/c0an00447b. (PMID: 10.1039/c0an00447b20886153)
    • Contributed Indexing:
      Keywords: Atrazine; Biomimetic; Molecularly imprinted polymer; Potentioselectrode; Precipitation polymerization
    • Publication Date:
      Date Created: 20240916 Latest Revision: 20241125
    • Publication Date:
      20241202
    • Accession Number:
      10.1007/s44211-024-00664-x
    • Accession Number:
      39283472