Menu
×
Baxter-Patrick James Island
Closed
Phone: (843) 795-6679
West Ashley Library
Closed
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed
Phone: (843) 805-6888
Village Library
Closed
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed
Phone: (843) 889-3300
Otranto Road Library
Closed
Phone: (843) 572-4094
Mt. Pleasant Library
Closed
Phone: (843) 849-6161
McClellanville Library
Closed
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed
Phone: (843) 744-2489
John's Island Library
Closed
Phone: (843) 559-1945
Hurd/St. Andrews Library
Closed
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
Closed
Phone: (843) 869-2355
Dorchester Road Library
Closed
Phone: (843) 552-6466
John L. Dart Library
Closed
Phone: (843) 722-7550
Main Library
2 p.m. – 5 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
Closed
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
Closed
Phone: (843) 805-6909
Today's Hours
Baxter-Patrick James Island
Closed
Phone: (843) 795-6679
West Ashley Library
Closed
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed
Phone: (843) 805-6888
Village Library
Closed
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed
Phone: (843) 889-3300
Otranto Road Library
Closed
Phone: (843) 572-4094
Mt. Pleasant Library
Closed
Phone: (843) 849-6161
McClellanville Library
Closed
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed
Phone: (843) 744-2489
John's Island Library
Closed
Phone: (843) 559-1945
Hurd/St. Andrews Library
Closed
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
Closed
Phone: (843) 869-2355
Dorchester Road Library
Closed
Phone: (843) 552-6466
John L. Dart Library
Closed
Phone: (843) 722-7550
Main Library
2 p.m. – 5 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
Closed
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
Closed
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
tRNA modifications and tRNA-derived small RNAs: new insights of tRNA in human disease.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Wu D;Wu D; Li X; Li X; Khan FA; Khan FA; Yuan C; Yuan C; Pandupuspitasari NS; Pandupuspitasari NS; Huang C; Huang C; Sun F; Sun F; Guan K; Guan K
- Source:
Cell biology and toxicology [Cell Biol Toxicol] 2024 Sep 14; Vol. 40 (1), pp. 76. Date of Electronic Publication: 2024 Sep 14.- Publication Type:
Journal Article; Review- Language:
English - Source:
- Additional Information
- Source: Publisher: Springer Country of Publication: Switzerland NLM ID: 8506639 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-6822 (Electronic) Linking ISSN: 07422091 NLM ISO Abbreviation: Cell Biol Toxicol Subsets: MEDLINE
- Publication Information: Publication: [Cham] : Springer
Original Publication: Princeton, N.J. : Princeton Scientific Publishers, c1984- - Subject Terms:
- Abstract: tRNAs are codon decoders that convert the transcriptome into the proteome. The field of tRNA research is excited by the increasing discovery of specific tRNA modifications that are installed at specific, evolutionarily conserved positions by a set of specialized tRNA-modifying enzymes and the biogenesis of tRNA-derived regulatory fragments (tsRNAs) which exhibit copious activities through multiple mechanisms. Dysregulation of tRNA modification usually has pathological consequences, a phenomenon referred to as "tRNA modopathy". Current evidence suggests that certain tRNA-modifying enzymes and tsRNAs may serve as promising diagnostic biomarkers and therapeutic targets, particularly for chemoresistant cancers. In this review, we discuss the latest discoveries that elucidate the molecular mechanisms underlying the functions of clinically relevant tRNA modifications and tsRNAs, with a focus on malignancies. We also discuss the therapeutic potential of tRNA/tsRNA-based therapies, aiming to provide insights for the development of innovative therapeutic strategies. Further efforts to unravel the complexities inherent in tRNA biology hold the promise of yielding better biomarkers for the diagnosis and prognosis of diseases, thereby advancing the development of precision medicine for health improvement.
(© 2024. The Author(s).) - References: Albers S, Allen EC, Bharti N, Davyt M, Joshi D, Perez-Garcia CG, Santos L, Mukthavaram R, Delgado-Toscano MA, Molina B, Kuakini K, Alayyoubi M, Park KJ, Acharya G, Gonzalez JA, Sagi A, Birket SE, Tearney GJ, Rowe SM, Manfredi C, Hong JS, Tachikawa K, Karmali P, Matsuda D, Sorscher EJ, Chivukula P, Ignatova Z. Engineered tRNAs suppress nonsense mutations in cells and in vivo. Nature. 2023;618(7966):842–8. https://doi.org/10.1038/s41586-023-06133-1 . (PMID: 10.1038/s41586-023-06133-13725867110284701)
Angelova MT, Dimitrova DG, Da Silva B, Marchand V, Jacquier C, Achour C, Brazane M, Goyenvalle C, Bourguignon-Igel V, Shehzada S, Khouider S, Lence T, Guerineau V, Roignant JY, Antoniewski C, Teysset L, Bregeon D, Motorin Y, Schaefer MR, Carré C. tRNA 2’-O-methylation by a duo of TRM7/FTSJ1 proteins modulates small RNA silencing in Drosophila. Nucleic Acids Res. 2020;48(4):2050–72. https://doi.org/10.1093/nar/gkaa002 . (PMID: 10.1093/nar/gkaa002319431057038984)
Balatti V, Rizzotto L, Miller C, Palamarchuk A, Fadda P, Pandolfo R, Rassenti LZ, Hertlein E, Ruppert AS, Lozanski A, Lozanski G, Kipps TJ, Byrd JC, Croce CM, Pekarsky Y. TCL1 targeting miR-3676 is codeleted with tumor protein p53 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2015;112(7):2169–74. https://doi.org/10.1073/pnas.1500010112 . (PMID: 10.1073/pnas.1500010112256464134343115)
Balatti V, Nigita G, Veneziano D, Drusco A, Stein GS, Messier TL, Farina NH, Lian JB, Tomasello L, Liu CG, Palamarchuk A, Hart JR, Bell C, Carosi M, Pescarmona E, Perracchio L, Diodoro M, Russo A, Antenucci A, Visca P, Ciardi A, Harris CC, Vogt PK, Pekarsky Y, Croce CM. tsRNA signatures in cancer. Proc Natl Acad Sci U S A. 2017;114(30):8071–6. https://doi.org/10.1073/pnas.1706908114 . (PMID: 10.1073/pnas.1706908114286963085544330)
Barbieri I, Kouzarides T. Role of RNA modifications in cancer. Nat Rev Cancer. 2020;20(6):303–22. https://doi.org/10.1038/s41568-020-0253-2 . (PMID: 10.1038/s41568-020-0253-232300195)
Baxter-Roshek JL, Petrov AN, Dinman JD. Optimization of ribosome structure and function by rRNA base modification. PLoS ONE. 2007;2(1):e174. https://doi.org/10.1371/journal.pone.0000174 . (PMID: 10.1371/journal.pone.0000174172454501766470)
Behrens A, Rodschinka G, Nedialkova DD. High-resolution quantitative profiling of tRNA abundance and modification status in eukaryotes by mim-tRNAseq. Mol Cell. 2021;81(8):1802-1815.e7. https://doi.org/10.1016/j.molcel.2021.01.028 . (PMID: 10.1016/j.molcel.2021.01.028335810778062790)
Berg MD, Brandl CJ. Transfer RNAs: diversity in form and function. RNA Biol. 2021;18(3):316–39. https://doi.org/10.1080/15476286.2020.1809197 . (PMID: 10.1080/15476286.2020.180919732900285)
Blanco S, Dietmann S, Flores JV, Hussain S, Kutter C, Humphreys P, Lukk M, Lombard P, Treps L, Popis M, Kellner S, Hölter SM, Garrett L, Wurst W, Becker L, Klopstock T, Fuchs H, Gailus-Durner V, Hrabĕ de Angelis M, Káradóttir RT, Helm M, Ule J, Gleeson JG, Odom DT, Frye M. Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders. EMBO J. 2014;33(18):2020–39. https://doi.org/10.15252/embj.201489282 . (PMID: 10.15252/embj.201489282250636734195770)
Blanco S, Bandiera R, Popis M, Hussain S, Lombard P, Aleksic J, Sajini A, Tanna H, Cortés-Garrido R, Gkatza N, Dietmann S, Frye M. Stem cell function and stress response are controlled by protein synthesis. Nature. 2016;534(7607):335–40. https://doi.org/10.1038/nature18282 . (PMID: 10.1038/nature18282273061845040503)
Boccaletto P, Machnicka MA, Purta E, Piatkowski P, Baginski B, Wirecki TK, de Crécy-Lagard V, Ross R, Limbach PA, Kotter A, Helm M, Bujnicki JM. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 2018;46(D1):D303–7. https://doi.org/10.1093/nar/gkx1030 . (PMID: 10.1093/nar/gkx103029106616)
Bönnemann CG, Belluscio BA, Braun S, Morris C, Singh T, Muntoni F. Dystrophin immunity after gene therapy for Duchenne’s muscular dystrophy. N Engl J Med. 2023;388(24):2294–6. https://doi.org/10.1056/NEJMc2212912 . (PMID: 10.1056/NEJMc221291237314712)
Borchardt EK, Martinez NM, Gilbert WV. Regulation and function of RNA pseudouridylation in human cells. Annu Rev Genet. 2020;23(54):309–36. https://doi.org/10.1146/annurev-genet-112618-043830 . (PMID: 10.1146/annurev-genet-112618-043830)
Bordeira-Carriço R, Ferreira D, Mateus DD, Pinheiro H, Pêgo AP, Santos MA, Oliveira C. Rescue of wild-type E-cadherin expression from nonsense-mutated cancer cells by a suppressor-tRNA. Eur J Hum Genet. 2014;22(9):1085–92. https://doi.org/10.1038/ejhg.2013.292 . (PMID: 10.1038/ejhg.2013.292244241224135406)
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492 . (PMID: 10.3322/caac.2149230207593)
Buvoli M, Buvoli A, Leinwand LA. Suppression of nonsense mutations in cell culture and mice by multimerized suppressor tRNA genes. Mol Cell Biol. 2000;20(9):3116–24. https://doi.org/10.1128/MCB.20.9.3116-3124.2000 . (PMID: 10.1128/MCB.20.9.3116-3124.20001075779685606)
Carollo PS, Tutone M, Culletta G, Fiduccia I, Corrao F, Pibiri I, Di Leonardo A, Zizzo MG, Melfi R, Pace A, Almerico AM, Lentini L. Investigating the inhibition of FTSJ1, a tryptophan tRNA-specific 2’-O-Methyltransferase by NV TRIDs, as a mechanism of readthrough in nonsense mutated CFTR. Int J Mol Sci. 2023;24(11):9609. https://doi.org/10.3390/ijms24119609 . (PMID: 10.3390/ijms241196093729856010253411)
Chan PP, Lowe TM. GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res. 2016;44(D1):D184-9. https://doi.org/10.1093/nar/gkv1309 . (PMID: 10.1093/nar/gkv130926673694)
Chan CM, Zhou C, Huang RH. Reconstituting bacterial RNA repair and modification in vitro. Science. 2009;326(5950):247. https://doi.org/10.1126/science.1179480 . (PMID: 10.1126/science.117948019815768)
Chan C, Pham P, Dedon PC, Begley TJ. Lifestyle modifications: coordinating the tRNA epitranscriptome with codon bias to adapt translation during stress responses. Genome Biol. 2018;19(1):228. https://doi.org/10.1186/s13059-018-1611-1 . (PMID: 10.1186/s13059-018-1611-1305872136307160)
Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi J, Feng GH, Peng H, Zhang X, Zhang Y, Qian J, Duan E, Zhai Q, Zhou Q. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science. 2016a;351(6271):397–400. https://doi.org/10.1126/science.aad7977 . (PMID: 10.1126/science.aad797726721680)
Chen Q, Yan W, Duan E. Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications. Nat Rev Genet. 2016b;17(12):733–43. https://doi.org/10.1038/nrg.2016.106 . (PMID: 10.1038/nrg.2016.106276948095441558)
Chen Z, Qi M, Shen B, Luo G, Wu Y, Li J, Lu Z, Zheng Z, Dai Q, Wang H. Transfer RNA demethylase ALKBH3 promotes cancer progression via induction of tRNA-derived small RNAs. Nucleic Acids Res. 2019;47(5):2533–45. https://doi.org/10.1093/nar/gky1250 . (PMID: 10.1093/nar/gky125030541109)
Chen Z, Zhu W, Zhu S, Sun K, Liao J, Liu H, Dai Z, Han H, Ren X, Yang Q, Zheng S, Peng B, Peng S, Kuang M, Lin S. METTL1 promotes hepatocarcinogenesis via m7G tRNA modification-dependent translation control. Clin Transl Med. 2021;11(12):e661. https://doi.org/10.1002/ctm2.661 . (PMID: 10.1002/ctm2.661348980348666584)
Chen B, Jiang W, Huang Y, Zhang J, Yu P, Wu L, Peng H. N7-methylguanosine tRNA modification promotes tumorigenesis and chemoresistance through WNT/β-catenin pathway in nasopharyngeal carcinoma. Oncogene. 2022;41(15):2239–53. https://doi.org/10.1038/s41388-022-02250-9 . (PMID: 10.1038/s41388-022-02250-935217794)
Cheng JX, Wood S, Tang D, Degenstein L, Joachimiak A, Stevens R. Overcoming venetoclax resistance in leukemia with AI-designed RNA epigenetic inhibitors. Blood. 2023;2(142):5738. https://doi.org/10.1182/blood-2023-178258 . (PMID: 10.1182/blood-2023-178258)
Chujo T, Suzuki T. Trmt61B is a methyltransferase responsible for 1-methyladenosine at position 58 of human mitochondrial tRNAs. RNA. 2012;18(12):2269–76. https://doi.org/10.1261/rna.035600.112 . (PMID: 10.1261/rna.035600.112230974283504677)
Chujo T, Tomizawa K. Human transfer RNA modopathies: diseases caused by aberrations in transfer RNA modifications. FEBS J. 2021;288(24):7096–122. https://doi.org/10.1111/febs.15736 . (PMID: 10.1111/febs.15736335132909255597)
Chung IF, Chang SJ, Chen CY, Liu SH, Li CY, Chan CH, Shih CC, Cheng WC. YM500v3: a database for small RNA sequencing in human cancer research. Nucleic Acids Res. 2017;45(D1):D925–31. https://doi.org/10.1093/nar/gkw1084 . (PMID: 10.1093/nar/gkw108427899625)
Ciaglia E, Abate M, Laezza C, Pisanti S, Vitale M, Seneca V, Torelli G, Franceschelli S, Catapano G, Gazzerro P, Bifulco M. Antiglioma effects of N6-isopentenyladenosine, an endogenous isoprenoid end product, through the downregulation of epidermal growth factor receptor. Int J Cancer. 2017;140(4):959–72. https://doi.org/10.1002/ijc.30505 . (PMID: 10.1002/ijc.3050527813087)
Cohn W. Some results of the applications of ion-exchange chromatography to nucleic acid chemistry. J Cell Physiol Suppl. 1951;38(Suppl. 1):21–40. https://doi.org/10.1002/jcp.1030380405 . (PMID: 10.1002/jcp.103038040514861275)
Cosentino C, Toivonen S, Diaz Villamil E, Atta M, Ravanat JL, Demine S, Schiavo AA, Pachera N, Deglasse JP, Jonas JC, Balboa D, Otonkoski T, Pearson ER, Marchetti P, Eizirik DL, Cnop M, Igoillo-Esteve M. Pancreatic β-cell tRNA hypomethylation and fragmentation link TRMT10A deficiency with diabetes. Nucleic Acids Res. 2018;46(19):10302–18. https://doi.org/10.1093/nar/gky839 . (PMID: 10.1093/nar/gky839302477176212784)
Costa B, Li Calzi M, Castellano M, Blanco V, Cuevasanta E, Litvan I, Ivanov P, Witwer K, Cayota A, Tosar JP. Nicked tRNAs are stable reservoirs of tRNA halves in cells and biofluids. Proc Natl Acad Sci U S A. 2023;120(4):e2216330120. https://doi.org/10.1073/pnas.2216330120 . (PMID: 10.1073/pnas.2216330120366524789942843)
Cui Y, Huang Y, Wu X, Zheng M, Xia Y, Fu Z, Ge H, Wang S, Xie H. Hypoxia-induced tRNA-derived fragments, novel regulatory factor for doxorubicin resistance in triple-negative breast cancer. J Cell Physiol. 2019;234(6):8740–51. https://doi.org/10.1002/jcp.27533 . (PMID: 10.1002/jcp.2753330362543)
Cui H, Li H, Wu H, Du F, Xie X, Zeng S, Zhang Z, Dong K, Shang L, Jing C, Li L. A novel 3’tRNA-derived fragment tRF-Val promotes proliferation and inhibits apoptosis by targeting EEF1A1 in gastric cancer. Cell Death Dis. 2022;13(5):471. https://doi.org/10.1038/s41419-022-04930-6 . (PMID: 10.1038/s41419-022-04930-6355850489117658)
Dai Z, Liu H, Liao J, Huang C, Ren X, Zhu W, Zhu S, Peng B, Li S, Lai J, Liang L, Xu L, Peng S, Lin S, Kuang M. N7-Methylguanosine tRNA modification enhances oncogenic mRNA translation and promotes intrahepatic cholangiocarcinoma progression. Mol Cell. 2021;81(16):3339-3355.e8. https://doi.org/10.1016/j.molcel.2021.07.003 . (PMID: 10.1016/j.molcel.2021.07.00334352206)
Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet. 2019;394(10207):1467–80. https://doi.org/10.1016/S0140-6736(19)32319-0 . (PMID: 10.1016/S0140-6736(19)32319-031631858)
Di Fazio A, Schlackow M, Pong SK, Alagia A, Gullerova M. Dicer dependent tRNA derived small RNAs promote nascent RNA silencing. Nucleic Acids Res. 2022;50(3):1734–52. https://doi.org/10.1093/nar/gkac022 . (PMID: 10.1093/nar/gkac022350489908860591)
Fricker R, Brogli R, Luidalepp H, Wyss L, Fasnacht M, Joss O, Zywicki M, Helm M, Schneider A, Cristodero M, Polacek N. A tRNA half modulates translation as stress response in Trypanosoma brucei. Nat Commun. 2019;10(1):118. https://doi.org/10.1038/s41467-018-07949-6 . (PMID: 10.1038/s41467-018-07949-6306310576328589)
Fu BF, Xu CY. Transfer RNA-derived small RNAs: novel regulators and biomarkers of cancers. Front Oncol. 2022;28(12):843598. https://doi.org/10.3389/fonc.2022.843598 . (PMID: 10.3389/fonc.2022.843598)
Fu M, Gu J, Wang M, Zhang J, Chen Y, Jiang P, Zhu T, Zhang X. Emerging roles of tRNA-derived fragments in cancer. Mol Cancer. 2023;22(1):30. https://doi.org/10.1186/s12943-023-01739-5 . (PMID: 10.1186/s12943-023-01739-5367822909926655)
Fujita T, Ito K, Izumi H, Kimura M, Sano M, Nakagomi H, Maeno K, Hama Y, Shingu K, Tsuchiya S, Kohno K, Fujimori M. Increased nuclear localization of transcription factor Y-box binding protein 1 accompanied by up-regulation of P-glycoprotein in breast cancer pretreated with paclitaxel. Clin Cancer Res. 2005;11(24 Pt 1):8837–44. https://doi.org/10.1158/1078-0432.CCR-05-0945 . (PMID: 10.1158/1078-0432.CCR-05-094516361573)
Fukuda H, Chujo T, Wei FY, Shi SL, Hirayama M, Kaitsuka T, Yamamoto T, Oshiumi H, Tomizawa K. Cooperative methylation of human tRNA3Lys at positions A58 and U54 drives the early and late steps of HIV-1 replication. Nucleic Acids Res. 2021;49(20):11855–67. https://doi.org/10.1093/nar/gkab879 . (PMID: 10.1093/nar/gkab879346427528599865)
Gaik M, Kojic M, Wainwright BJ, Glatt S. Elongator and the role of its subcomplexes in human diseases. EMBO Mol Med. 2023;15(2):e16418. https://doi.org/10.15252/emmm.202216418 . (PMID: 10.15252/emmm.20221641836448458)
Galan C, Krykbaeva M, Rando OJ. Early life lessons: the lasting effects of germline epigenetic information on organismal development. Mol Metab. 2020;38:100924. https://doi.org/10.1016/j.molmet.2019.12.004 . (PMID: 10.1016/j.molmet.2019.12.00431974037)
Galvanin A, Vogt LM, Grober A, Freund I, Ayadi L, Bourguignon-Igel V, Bessler L, Jacob D, Eigenbrod T, Marchand V, Dalpke A, Helm M, Motorin Y. Bacterial tRNA 2’-O-methylation is dynamically regulated under stress conditions and modulates innate immune response. Nucleic Acids Res. 2020;48(22):12833–44. https://doi.org/10.1093/nar/gkaa1123 . (PMID: 10.1093/nar/gkaa1123332751317736821)
Gao X, Chen G, Gao C, Zhang DH, Kuan SF, Stabile LP, Liu G, Hu J. MAP4K4 is a novel MAPK/ERK pathway regulator required for lung adenocarcinoma maintenance. Mol Oncol. 2017;11(6):628–39. https://doi.org/10.1002/1878-0261.12055 . (PMID: 10.1002/1878-0261.12055283061895467491)
García-Vílchez R, Añazco-Guenkova AM, Dietmann S, López J, Morón-Calvente V, D’Ambrosi S, Nombela P, Zamacola K, Mendizabal I, García-Longarte S, Zabala-Letona A, Astobiza I, Fernández S, Paniagua A, Miguel-López B, Marchand V, Alonso-López D, Merkel A, García-Tuñón I, Ugalde-Olano A, Loizaga-Iriarte A, Lacasa-Viscasillas I, Unda M, Azkargorta M, Elortza F, Bárcena L, Gonzalez-Lopez M, Aransay AM, Di Domenico T, Sánchez-Martín MA, De Las RJ, Guil S, Motorin Y, Helm M, Pandolfi PP, Carracedo A, Blanco S. METTL1 promotes tumorigenesis through tRNA-derived fragment biogenesis in prostate cancer. Mol Cancer. 2023a;22(1):119. https://doi.org/10.1186/s12943-023-01809-8 . (PMID: 10.1186/s12943-023-01809-83751682510386714)
García-Vílchez R, Añazco-Guenkova AM, López J, Dietmann S, Tomé M, Jimeno S, Azkargorta M, Elortza F, Bárcena L, Gonzalez-Lopez M, Aransay AM, Sánchez-Martín MA, Huertas P, Durán RV, Blanco S. N7-methylguanosine methylation of tRNAs regulates survival to stress in cancer. Oncogene. 2023b. https://doi.org/10.1038/s41388-023-02825-0 . (PMID: 10.1038/s41388-023-02825-03766018210589097)
Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh CL, Zhang X, Golic KG, Jacobsen SE, Bestor TH. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science. 2006;311(5759):395–8. https://doi.org/10.1126/science.1120976 . (PMID: 10.1126/science.112097616424344)
Gonskikh Y, Gerstl M, Kos M, Borth N, Schosserer M, Grillari J, Polacek N. Modulation of mammalian translation by a ribosome-associated tRNA half. RNA Biol. 2020;17(8):1125–36. https://doi.org/10.1080/15476286.2020.1744296 . (PMID: 10.1080/15476286.2020.1744296322235067549673)
Goodarzi H, Liu X, Nguyen HC, Zhang S, Fish L, Tavazoie SF. Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement. Cell. 2015;161(4):790–802. https://doi.org/10.1016/j.cell.2015.02.053 . (PMID: 10.1016/j.cell.2015.02.053259576864457382)
Goodenbour JM, Pan T. Diversity of tRNA genes in eukaryotes. Nucleic Acids Res. 2006;34(21):6137–46. https://doi.org/10.1093/nar/gkl725 . (PMID: 10.1093/nar/gkl725170882921693877)
Green JA, Ansari MY, Ball HC, Haqqi TM. tRNA-derived fragments (tRFs) regulate post-transcriptional gene expression via AGO-dependent mechanism in IL-1β stimulated chondrocytes. Osteoarthritis Cartilage. 2020;28(8):1102–10. https://doi.org/10.1016/j.joca.2020.04.014 . (PMID: 10.1016/j.joca.2020.04.014324078958418333)
Guy MP, Phizicky EM. Conservation of an intricate circuit for crucial modifications of the tRNAPhe anticodon loop in eukaryotes. RNA. 2015;21(1):61–74. https://doi.org/10.1261/rna.047639.114 . (PMID: 10.1261/rna.047639.114254045624274638)
Guzzi N, Cieśla M, Ngoc PCT, Lang S, Arora S, Dimitriou M, Pimková K, Sommarin MNE, Munita R, Lubas M, Lim Y, Okuyama K, Soneji S, Karlsson G, Hansson J, Jönsson G, Lund AH, Sigvardsson M, Hellström-Lindberg E, Hsieh AC, Bellodi C. Pseudouridylation of tRNA-derived fragments steers translational control in stem cells. Cell. 2018;173(5):1204-1216.e26. https://doi.org/10.1016/j.cell.2018.03.008 . (PMID: 10.1016/j.cell.2018.03.00829628141)
Guzzi N, Muthukumar S, Cieśla M, Todisco G, Ngoc PCT, Madej M, Munita R, Fazio S, Ekström S, Mortera-Blanco T, Jansson M, Nannya Y, Cazzola M, Ogawa S, Malcovati L, Hellström-Lindberg E, Dimitriou M, Bellodi C. Pseudouridine-modified tRNA fragments repress aberrant protein synthesis and predict leukaemic progression in myelodysplastic syndrome. Nat Cell Biol. 2022;24(3):299–306. https://doi.org/10.1038/s41556-022-00852-9 . (PMID: 10.1038/s41556-022-00852-9352927848924001)
Haag S, Warda AS, Kretschmer J, Günnigmann MA, Höbartner C, Bohnsack MT. NSUN6 is a human RNA methyltransferase that catalyzes formation of m5C72 in specific tRNAs. RNA. 2015;21(9):1532–43. https://doi.org/10.1261/rna.051524.115 . (PMID: 10.1261/rna.051524.115261601024536315)
Han L, Kon Y, Phizicky EM. Functional importance of Ψ38 and Ψ39 in distinct tRNAs, amplified for tRNAGln(UUG) by unexpected temperature sensitivity of the s2U modification in yeast. RNA. 2015;21(2):188–201. https://doi.org/10.1261/rna.048173.114 . (PMID: 10.1261/rna.048173.114255050244338347)
Han L, Lai H, Yang Y, Hu J, Li Z, Ma B, Xu W, Liu W, Wei W, Li D, Wang Y, Zhai Q, Ji Q, Liao T. A 5’-tRNA halve, tiRNA-Gly promotes cell proliferation and migration via binding to RBM17 and inducing alternative splicing in papillary thyroid cancer. J Exp Clin Cancer Res. 2021;40(1):222. https://doi.org/10.1186/s13046-021-02024-3 . (PMID: 10.1186/s13046-021-02024-3342257738256553)
Han H, Yang C, Ma J, Zhang S, Zheng S, Ling R, Sun K, Guo S, Huang B, Liang Y, Wang L, Chen S, Wang Z, Wei W, Huang Y, Peng H, Jiang YZ, Choe J, Lin S. N7-methylguanosine tRNA modification promotes esophageal squamous cell carcinoma tumorigenesis via the RPTOR/ULK1/autophagy axis. Nat Commun. 2022;13(1):1478. https://doi.org/10.1038/s41467-022-29125-7 . (PMID: 10.1038/s41467-022-29125-7353044698933395)
He Q, Yang L, Gao K, Ding P, Chen Q, Xiong J, Yang W, Song Y, Wang L, Wang Y, Ling L, Wu W, Yan J, Zou P, Chen Y, Zhai R. FTSJ1 regulates tRNA 2’-O-methyladenosine modification and suppresses the malignancy of NSCLC via inhibiting DRAM1 expression. Cell Death Dis. 2020;11(5):348. https://doi.org/10.1038/s41419-020-2525-x . (PMID: 10.1038/s41419-020-2525-x323937907214438)
Hernandez-Alias X, Katanski CD, Zhang W, Assari M, Watkins CP, Schaefer MH, Serrano L, Pan T. Single-read tRNA-seq analysis reveals coordination of tRNA modification and aminoacylation and fragmentation. Nucleic Acids Res. 2023;51(3):e17. https://doi.org/10.1093/nar/gkac1185 . (PMID: 10.1093/nar/gkac118536537222)
Honda S, Loher P, Shigematsu M, Palazzo JP, Suzuki R, Imoto I, Rigoutsos I, Kirino Y. Sex hormone-dependent tRNA halves enhance cell proliferation in breast and prostate cancers. Proc Natl Acad Sci U S A. 2015;112(29):E3816–25. https://doi.org/10.1073/pnas.1510077112 . (PMID: 10.1073/pnas.1510077112261241444517238)
Hu K, Yan TM, Cao KY, Li F, Ma XR, Lai Q, Liu JC, Pan Y, Kou JP, Jiang ZH. A tRNA-derived fragment of ginseng protects heart against ischemia/reperfusion injury via targeting the lncRNA MIAT/VEGFA pathway. Mol Ther Nucleic Acids. 2022;13(29):672–88. https://doi.org/10.1016/j.omtn.2022.08.014 . (PMID: 10.1016/j.omtn.2022.08.014)
Hua H, Kong Q, Zhang H, Wang J, Luo T, Jiang Y. Targeting mTOR for cancer therapy. J Hematol Oncol. 2019;12(1):71. https://doi.org/10.1186/s13045-019-0754-1 . (PMID: 10.1186/s13045-019-0754-1312776926612215)
Huang B, Yang H, Cheng X, Wang D, Fu S, Shen W, Zhang Q, Zhang L, Xue Z, Li Y, Da Y, Yang Q, Li Z, Liu L, Qiao L, Kong Y, Yao Z, Zhao P, Li M, Zhang R. tRF/miR-1280 suppresses stem cell-like cells and metastasis in colorectal cancer. Cancer Res. 2017;77(12):3194–206. https://doi.org/10.1158/0008-5472.CAN-16-3146 . (PMID: 10.1158/0008-5472.CAN-16-314628446464)
Huang ZX, Li J, Xiong QP, Li H, Wang ED, Liu RJ. Position 34 of tRNA is a discriminative element for m5C38 modification by human DNMT2. Nucleic Acids Res. 2021;49(22):13045–61. https://doi.org/10.1093/nar/gkab1148 . (PMID: 10.1093/nar/gkab1148348714558682788)
Huang MH, Peng GX, Mao XL, Wang JT, Zhou JB, Zhang JH, Chen M, Wang ED, Zhou XL. Molecular basis for human mitochondrial tRNA m3C modification by alternatively spliced METTL8. Nucleic Acids Res. 2022;50(7):4012–28. https://doi.org/10.1093/nar/gkac184 . (PMID: 10.1093/nar/gkac184353575049023283)
Huang M, Long J, Yao Z, Zhao Y, Zhao Y, Liao J, Lei K, Xiao H, Dai Z, Peng S, Lin S, Xu L, Kuang M. METTL1-mediated m7G tRNA modification promotes lenvatinib resistance in hepatocellular carcinoma. Cancer Res. 2023;83(1):89–102. https://doi.org/10.1158/0008-5472.CAN-22-0963 . (PMID: 10.1158/0008-5472.CAN-22-096336102722)
Hussain S, Sajini AA, Blanco S, Dietmann S, Lombard P, Sugimoto Y, Paramor M, Gleeson JG, Odom DT, Ule J, Frye M. NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Rep. 2013;4(2):255–61. https://doi.org/10.1016/j.celrep.2013.06.029 . (PMID: 10.1016/j.celrep.2013.06.029238716663730056)
Ignatova VV, Kaiser S, Ho JSY, Bing X, Stolz P, Tan YX, Lee CL, Gay FPH, Lastres PR, Gerlini R, Rathkolb B, Aguilar-Pimentel A, Sanz-Moreno A, Klein-Rodewald T, Calzada-Wack J, Ibragimov E, Valenta M, Lukauskas S, Pavesi A, Marschall S, Leuchtenberger S, Fuchs H, Gailus-Durner V, de Angelis MH, Bultmann S, Rando OJ, Guccione E, Kellner SM, Schneider R. METTL6 is a tRNA m3C methyltransferase that regulates pluripotency and tumor cell growth. Sci Adv. 2020;6(35):eaaz4551. https://doi.org/10.1126/sciadv.aaz4551 . (PMID: 10.1126/sciadv.aaz4551329236177449687)
Ivanov P, Emara MM, Villen J, Gygi SP, Anderson P. Angiogenin-induced tRNA fragments inhibit translation initiation. Mol Cell. 2011;43(4):613–23. https://doi.org/10.1016/j.molcel.2011.06.022 . (PMID: 10.1016/j.molcel.2011.06.022218558003160621)
Ivanov P, O’Day E, Emara MM, Wagner G, Lieberman J, Anderson P. G-quadruplex structures contribute to the neuroprotective effects of angiogenin-induced tRNA fragments. Proc Natl Acad Sci U S A. 2014;111(51):18201–6. https://doi.org/10.1073/pnas.1407361111 . (PMID: 10.1073/pnas.1407361111254043064280610)
Jeltsch A, Ehrenhofer-Murray A, Jurkowski TP, Lyko F, Reuter G, Ankri S, Nellen W, Schaefer M, Helm M. Mechanism and biological role of Dnmt2 in nucleic acid methylation. RNA Biol. 2017;14(9):1108–23. https://doi.org/10.1080/15476286.2016.1191737 . (PMID: 10.1080/15476286.2016.119173727232191)
Jensen LR, Garrett L, Hölter SM, Rathkolb B, Rácz I, Adler T, Prehn C, Hans W, Rozman J, Becker L, Aguilar-Pimentel JA, Puk O, Moreth K, Dopatka M, Walther DJ, von Bohlen Und Halbach V, Rath M, Delatycki M, Bert B, Fink H, Blümlein K, Ralser M, Van Dijck A, Kooy F, Stark Z, Müller S, Scherthan H, Gecz J, Wurst W, Wolf E, Zimmer A, Klingenspor M, Graw J, Klopstock T, Busch D, Adamski J, Fuchs H, Gailus-Durner V, de Angelis MH, von Bohlen Und Halbach O, Ropers HH, Kuss AW. A mouse model for intellectual disability caused by mutations in the X-linked 2’-O-methyltransferase Ftsj1 gene. Biochim Biophys Acta Mol Basis Dis. 2019;1865(9):2083–93. https://doi.org/10.1016/j.bbadis.2018.12.011 . (PMID: 10.1016/j.bbadis.2018.12.01130557699)
Jiang Y, Sun A, Zhao Y, Ying W, Sun H, Yang X, Xing B, Sun W, Ren L, Hu B, Li C, Zhang L, Qin G, Zhang M, Chen N, Zhang M, Huang Y, Zhou J, Zhao Y, Liu M, Zhu X, Qiu Y, Sun Y, Huang C, Yan M, Wang M, Liu W, Tian F, Xu H, Zhou J, Wu Z, Shi T, Zhu W, Qin J, Xie L, Fan J, Qian X, He F, Chinese Human Proteome Project (CNHPP) Consortium. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma. Nature. 2019;567(7747):257–61. https://doi.org/10.1038/s41586-019-0987-8 . (PMID: 10.1038/s41586-019-0987-830814741)
Karijolich J, Yi C, Yu YT. Transcriptome-wide dynamics of RNA pseudouridylation. Nat Rev Mol Cell Biol. 2015;16(10):581–5. https://doi.org/10.1038/nrm4040 . (PMID: 10.1038/nrm4040262856765694666)
Katze JR, Basile B, McCloskey JA. Queuine, a modified base incorporated posttranscriptionally into eukaryotic transfer RNA: wide distribution in nature. Science. 1982;216(4541):55–6. https://doi.org/10.1126/science.7063869 . (PMID: 10.1126/science.70638697063869)
Kawarada L, Suzuki T, Ohira T, Hirata S, Miyauchi K, Suzuki T. ALKBH1 is an RNA dioxygenase responsible for cytoplasmic and mitochondrial tRNA modifications. Nucleic Acids Res. 2017;45(12):7401–15. https://doi.org/10.1093/nar/gkx354 . (PMID: 10.1093/nar/gkx354284723125499545)
Keam SP, Sobala A, Ten Have S, Hutvagner G. tRNA-derived RNA fragments associate with human multisynthetase complex (MSC) and modulate ribosomal protein translation. J Proteome Res. 2017;16(2):413–20. https://doi.org/10.1021/acs.jproteome.6b00267 . (PMID: 10.1021/acs.jproteome.6b0026727936807)
Kelley M, Uhran M, Herbert C, Yoshida G, Watts ER, Limbach PA, Benoit JB. Abundances of transfer RNA modifications and transcriptional levels of tRNA-modifying enzymes are sex-associated in mosquitoes. Insect Biochem Mol Biol. 2022;143:103741. https://doi.org/10.1016/j.ibmb.2022.103741 . (PMID: 10.1016/j.ibmb.2022.103741351814779034435)
Kim HK, Fuchs G, Wang S, Wei W, Zhang Y, Park H, Roy-Chaudhuri B, Li P, Xu J, Chu K, Zhang F, Chua MS, So S, Zhang QC, Sarnow P, Kay MA. A transfer-RNA-derived small RNA regulates ribosome biogenesis. Nature. 2017;552(7683):57–62. https://doi.org/10.1038/nature25005 . (PMID: 10.1038/nature25005291861156066594)
Kim HK, Xu J, Chu K, Park H, Jang H, Li P, Valdmanis PN, Zhang QC, Kay MA. A tRNA-derived small RNA regulates ribosomal protein S28 protein levels after translation initiation in humans and mice. Cell Rep. 2019;29(12):3816-3824.e4. https://doi.org/10.1016/j.celrep.2019.11.062 . (PMID: 10.1016/j.celrep.2019.11.06231851915)
Kiselev AV, Ostapenko OV, Rogozhkina EV, Kholod NS, Seit Nebi AS, Baranov AN, Lesina EA, Ivashchenko TE, Sabetskiĭ VA, Shavlovskiĭ MM, Rechinskiĭ VO, Kiselev LL, Baranov VC. Suppression of nonsense mutations in the Dystrophin gene by a suppressor tRNA gene. Mol Biol (Mosk). 2002;36(1):43–7. (PMID: 10.1023/A:101423822142611862712)
Klassen R, Schaffrath R. Collaboration of tRNA modifications and elongation factor eEF1A in decoding and nonsense suppression. Sci Rep. 2018;8(1):12749. https://doi.org/10.1038/s41598-018-31158-2 . (PMID: 10.1038/s41598-018-31158-2301437416109124)
Kleiber N, Lemus-Diaz N, Stiller C, Heinrichs M, Mai MM, Hackert P, Richter-Dennerlein R, Höbartner C, Bohnsack KE, Bohnsack MT. The RNA methyltransferase METTL8 installs m3C32 in mitochondrial tRNAsThr/Ser(UCN) to optimise tRNA structure and mitochondrial translation. Nat Commun. 2022;13(1):209. https://doi.org/10.1038/s41467-021-27905-1 . (PMID: 10.1038/s41467-021-27905-1350175288752778)
Kuhle B, Chen Q, Schimmel P. tRNA renovatio: rebirth through fragmentation. Mol Cell. 2023;83(22):3953–71. https://doi.org/10.1016/j.molcel.2023.09.016 . (PMID: 10.1016/j.molcel.2023.09.0163780207710841463)
Kumar P, Mudunuri SB, Anaya J, Dutta A. tRFdb: a database for transfer RNA fragments. Nucleic Acids Res. 2015;43(Database issue):D141-5. https://doi.org/10.1093/nar/gku1138 . (PMID: 10.1093/nar/gku113825392422)
Kurth HM, Mochizuki K. 2’-O-methylation stabilizes Piwi-associated small RNAs and ensures DNA elimination in Tetrahymena. RNA. 2009;15(4):675–85. https://doi.org/10.1261/rna.1455509 . (PMID: 10.1261/rna.1455509192401632661841)
La Ferlita A, Alaimo S, Veneziano D, Nigita G, Balatti V, Croce CM, Ferro A, Pulvirenti A. Identification of tRNA-derived ncRNAs in TCGA and NCI-60 panel cell lines and development of the public database tRFexplorer. Database (Oxford). 2019;2019:baz115. https://doi.org/10.1093/database/baz115 . (PMID: 10.1093/database/baz11531735953)
Lek A, Wong B, Keeler A, Blackwood M, Ma K, Huang S, Sylvia K, Batista AR, Artinian R, Kokoski D, Parajuli S, Putra J, Carreon CK, Lidov H, Woodman K, Pajusalu S, Spinazzola JM, Gallagher T, LaRovere J, Balderson D, Black L, Sutton K, Horgan R, Lek M, Flotte T. Death after high-dose rAAV9 Gene therapy in a patient with Duchenne’s muscular dystrophy. N Engl J Med. 2023;389(13):1203–10. https://doi.org/10.1056/NEJMoa2307798 . (PMID: 10.1056/NEJMoa23077983775428511288170)
Lentini JM, Alsaif HS, Faqeih E, Alkuraya FS, Fu D. DALRD3 encodes a protein mutated in epileptic encephalopathy that targets arginine tRNAs for 3-methylcytosine modification. Nat Commun. 2020;11:2510. (PMID: 10.1038/s41467-020-16321-6324278607237682)
Li J, Wang YN, Xu BS, Liu YP, Zhou M, Long T, Li H, Dong H, Nie Y, Chen PR, Wang ED, Liu RJ. Intellectual disability-associated gene ftsj1 is responsible for 2’-O-methylation of specific tRNAs. EMBO Rep. 2020;21(8):e50095. https://doi.org/10.15252/embr.202050095 . (PMID: 10.15252/embr.202050095325581977403668)
Li H, Zhu D, Wu J, Ma Y, Cai C, Chen Y, Qin M, Dai H. New substrates and determinants for tRNA recognition of RNA methyltransferase DNMT2/TRDMT1. RNA Biol. 2021;18(12):2531–45. https://doi.org/10.1080/15476286.2021.1930756 . (PMID: 10.1080/15476286.2021.1930756341109758632113)
Li H, Dong H, Xu B, Xiong QP, Li CT, Yang WQ, Li J, Huang ZX, Zeng QY, Wang ED, Liu RJ. A dual role of human tRNA methyltransferase hTrmt13 in regulating translation and transcription. EMBO J. 2022;41(6):e108544. https://doi.org/10.15252/embj.2021108544 . (PMID: 10.15252/embj.202110854434850409)
Liaqat A, Stiller C, Michel M, Sednev MV, Höbartner C. N6 -isopentenyladenosine in RNA determines the cleavage site of endonuclease deoxyribozymes. Angew Chem Int Ed Engl. 2020;59(42):18627–31. https://doi.org/10.1002/anie.202006218 . (PMID: 10.1002/anie.202006218326816867589339)
Limberis MP, Figueredo J, Calcedo R, Wilson JM. Activation of CFTR-specific T Cells in cystic fibrosis mice following gene transfer. Mol Ther. 2007;15(9):1694–700. https://doi.org/10.1038/sj.mt.6300210 . (PMID: 10.1038/sj.mt.630021017579582)
Lin S, Liu Q, Lelyveld VS, Choe J, Szostak JW, Gregory RI. Mettl1/Wdr4-Mediated m7G tRNA methylome is required for normal mRNA translation and embryonic stem cell self-renewal and differentiation. Mol Cell. 2018;71(2):244-255.e5. https://doi.org/10.1016/j.molcel.2018.06.001 . (PMID: 10.1016/j.molcel.2018.06.001299833206086580)
Liu Y, Santi DV. m5C RNA and m5C DNA methyl transferases use different cysteine residues as catalysts. Proc Natl Acad Sci U S A. 2000;97(15):8263–5. https://doi.org/10.1073/pnas.97.15.8263 . (PMID: 10.1073/pnas.97.15.82631089999626935)
Liu F, Clark W, Luo G, Wang X, Fu Y, Wei J, Wang X, Hao Z, Dai Q, Zheng G, Ma H, Han D, Evans M, Klungland A, Pan T, He C. ALKBH1-mediated tRNA demethylation regulates translation. Cell. 2016;167(3):816-828.e16. https://doi.org/10.1016/j.cell.2016.09.038 . (PMID: 10.1016/j.cell.2016.09.038277459695119773)
Liu Y, Zhou J, Li X, Zhang X, Shi J, Wang X, Li H, Miao S, Chen H, He X, Dong L, Lee GR, Zheng J, Liu RJ, Su B, Ye Y, Flavell RA, Yi C, Wu Y, Li HB. tRNA-m1A modification promotes T cell expansion via efficient MYC protein synthesis. Nat Immunol. 2022;23(10):1433–44. https://doi.org/10.1038/s41590-022-01301-3 . (PMID: 10.1038/s41590-022-01301-336138184)
Liu H, Zeng X, Ren X, Zhang Y, Huang M, Tan L, Dai Z, Lai J, Xie W, Chen Z, Peng S, Xu L, Chen S, Shen S, Kuang M, Lin S. Targeting tumour-intrinsic N7-methylguanosine tRNA modification inhibits MDSC recruitment and improves anti-PD-1 efficacy. Gut. 2023;72(8):1555–67. https://doi.org/10.1136/gutjnl-2022-327230 . (PMID: 10.1136/gutjnl-2022-32723036283801)
Loher P, Telonis AG, Rigoutsos I. MINTmap: fast and exhaustive profiling of nuclear and mitochondrial tRNA fragments from short RNA-seq data. Sci Rep. 2017;21(7):41184. https://doi.org/10.1038/srep41184 . (PMID: 10.1038/srep41184)
Lu S, Wei X, Tao L, Dong D, Hu W, Zhang Q, Tao Y, Yu C, Sun D, Cheng H. A novel tRNA-derived fragment tRF-3022b modulates cell apoptosis and M2 macrophage polarization via binding to cytokines in colorectal cancer. J Hematol Oncol. 2022;15(1):176. https://doi.org/10.1186/s13045-022-01388-z . (PMID: 10.1186/s13045-022-01388-z365271189756499)
Lucas MC, Pryszcz LP, Medina R, Milenkovic I, Camacho N, Marchand V, Motorin Y, Ribas de Pouplana L, Novoa EM. Quantitative analysis of tRNA abundance and modifications by nanopore RNA sequencing. Nat Biotechnol. 2024;42(1):72–86. https://doi.org/10.1038/s41587-023-01743-6 . (PMID: 10.1038/s41587-023-01743-637024678)
Lueck JD, Yoon JS, Perales-Puchalt A, Mackey AL, Infield DT, Behlke MA, Pope MR, Weiner DB, Skach WR, McCray PB Jr, Ahern CA. Engineered transfer RNAs for suppression of premature termination codons. Nat Commun. 2019;10(1):822. https://doi.org/10.1038/s41467-019-08329-4 . (PMID: 10.1038/s41467-019-08329-4307780536379413)
Ma J, Han H, Huang Y, Yang C, Zheng S, Cai T, Bi J, Huang X, Liu R, Huang L, Luo Y, Li W, Lin S. METTL1/WDR4-mediated m7G tRNA modifications and m7G codon usage promote mRNA translation and lung cancer progression. Mol Ther. 2021;29(12):3422–35. https://doi.org/10.1016/j.ymthe.2021.08.005 . (PMID: 10.1016/j.ymthe.2021.08.005343711848636169)
Mao XL, Li ZH, Huang MH, Wang JT, Zhou JB, Li QR, Xu H, Wang XJ, Zhou XL. Mutually exclusive substrate selection strategy by human m3C RNA transferases METTL2A and METTL6. Nucleic Acids Res. 2021;49(14):8309–23. https://doi.org/10.1093/nar/gkab603 . (PMID: 10.1093/nar/gkab603342685578373065)
Martinez G. tRNA-derived small RNAs: new players in genome protection against retrotransposons. RNA Biol. 2018;15(2):170–5. https://doi.org/10.1080/15476286.2017.1403000 . (PMID: 10.1080/15476286.2017.140300029120263)
Martinez G, Choudury SG, Slotkin RK. tRNA-derived small RNAs target transposable element transcripts. Nucleic Acids Res. 2017;45(9):5142–52. https://doi.org/10.1093/nar/gkx103 . (PMID: 10.1093/nar/gkx103283350165605234)
Maute RL, Schneider C, Sumazin P, Holmes A, Califano A, Basso K, Dalla-Favera R. tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proc Natl Acad Sci U S A. 2013;110(4):1404–9. https://doi.org/10.1073/pnas.1206761110 . (PMID: 10.1073/pnas.1206761110232972323557069)
Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature. 2013;501:328–37. https://doi.org/10.1038/nature12624 . (PMID: 10.1038/nature12624240480654521623)
Mendell JR, Campbell K, Rodino-Klapac L, Sahenk Z, Shilling C, Lewis S, Bowles D, Gray S, Li C, Galloway G, Malik V, Coley B, Clark KR, Li J, Xiao X, Samulski J, McPhee SW, Samulski RJ, Walker CM. Dystrophin immunity in Duchenne’s muscular dystrophy. N Engl J Med. 2010;363(15):1429–37. https://doi.org/10.1056/NEJMoa1000228 . (PMID: 10.1056/NEJMoa1000228209255453014106)
Metodiev MD, Spåhr H, Loguercio Polosa P, Meharg C, Becker C, Altmueller J, Habermann B, Larsson NG, Ruzzenente B. NSUN4 is a dual function mitochondrial protein required for both methylation of 12S rRNA and coordination of mitoribosomal assembly. PLoS Genet. 2014;10(2):e1004110. https://doi.org/10.1371/journal.pgen.1004110 . (PMID: 10.1371/journal.pgen.1004110245164003916286)
Miśkiewicz K, Jose LE, Bento-Abreu A, Fislage M, Taes I, Kasprowicz J, Swerts J, Sigrist S, Versées W, Robberecht W, Verstreken P. ELP3 controls active zone morphology by acetylating the ELKS family member Bruchpilot. Neuron. 2011;72(5):776–88. https://doi.org/10.1016/j.neuron.2011.10.010 . (PMID: 10.1016/j.neuron.2011.10.01022153374)
Mleczko AM, Celichowski P, Bąkowska-Żywicka K. Transfer RNA-derived fragments target and regulate ribosome-associated aminoacyl-transfer RNA synthetases. Biochim Biophys Acta Gene Regul Mech. 2018;S1874–9399(17):30380–2. https://doi.org/10.1016/j.bbagrm.2018.06.001 . (PMID: 10.1016/j.bbagrm.2018.06.001)
Mo D, Jiang P, Yang Y, Mao X, Tan X, Tang X, Wei D, Li B, Wang X, Tang L, Yan F. A tRNA fragment, 5’-tiRNAVal, suppresses the Wnt/β-catenin signaling pathway by targeting FZD3 in breast cancer. Cancer Lett. 2019;10(457):60–73. https://doi.org/10.1016/j.canlet.2019.05.007 . (PMID: 10.1016/j.canlet.2019.05.007)
Motorin Y, Lyko F, Helm M. 5-methylcytosine in RNA: detection, enzymatic formation and biological functions. Nucleic Acids Res. 2010;38(5):1415–30. https://doi.org/10.1093/nar/gkp1117 . (PMID: 10.1093/nar/gkp111720007150)
Nagayoshi Y, Chujo T, Hirata S, Nakatsuka H, Chen CW, Takakura M, Miyauchi K, Ikeuchi Y, Carlyle BC, Kitchen RR, Suzuki T, Katsuoka F, Yamamoto M, Goto Y, Tanaka M, Natsume K, Nairn AC, Suzuki T, Tomizawa K, Wei FY. Loss of Ftsj1 perturbs codon-specific translation efficiency in the brain and is associated with X-linked intellectual disability. Sci Adv. 2021;7(13):eabf3072. https://doi.org/10.1126/sciadv.abf3072 . (PMID: 10.1126/sciadv.abf3072337718717997516)
Nai F, Espinoza MPF, Invernizzi, A, Vargas-Rosales PA, Bobileva, O, Herok M, Caflisch A. Small-molecule inhibitors of the m7G-RNA writer METTL1. ACS Bio Med Chem Au. 2023: 0–0. https://doi.org/10.1021/acsbiomedchemau.3c00030 .
Nakano S, Suzuki T, Kawarada L, Iwata H, Asano K, Suzuki T. NSUN3 methylase initiates 5-formylcytidine biogenesis in human mitochondrial tRNA(Met). Nat Chem Biol. 2016;12(7):546–51. https://doi.org/10.1038/nchembio.2099 . (PMID: 10.1038/nchembio.209927214402)
Navarra G, Pagano C, Pacelli R, Crescenzi E, Longobardi E, Gazzerro P, Fiore D, Pastorino O, Pentimalli F, Laezza C, Bifulco M. N6-Isopentenyladenosine enhances the radiosensitivity of glioblastoma cells by inhibiting the homologous recombination repair protein RAD51 expression. Front Oncol. 2020;14(9):1498. https://doi.org/10.3389/fonc.2019.01498 . (PMID: 10.3389/fonc.2019.01498)
Nelson ER, Wardell SE, Jasper JS, Park S, Suchindran S, Howe MK, Carver NJ, Pillai RV, Sullivan PM, Sondhi V, Umetani M, Geradts J, McDonnell DP. 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science. 2013;342(6162):1094–8. https://doi.org/10.1126/science.1241908 . (PMID: 10.1126/science.1241908242883323899689)
Orellana EA, Liu Q, Yankova E, Pirouz M, De Braekeleer E, Zhang W, Lim J, Aspris D, Sendinc E, Garyfallos DA, Gu M, Ali R, Gutierrez A, Mikutis S, Bernardes GJL, Fischer ES, Bradley A, Vassiliou GS, Slack FJ, Tzelepis K, Gregory RI. METTL1-mediated m7G modification of Arg-TCT tRNA drives oncogenic transformation. Mol Cell. 2021;81(16):3323-3338.e14. https://doi.org/10.1016/j.molcel.2021.06.031 . (PMID: 10.1016/j.molcel.2021.06.031343522078380730)
Pagano C, Navarra G, Coppola L, Avilia G, Pastorino O, Della Monica R, Buonaiuto M, Torelli G, Caiazzo P, Bifulco M, Laezza C. N6-isopentenyladenosine induces cell death through necroptosis in human glioblastoma cells. Cell Death Discov. 2022;8(1):173. https://doi.org/10.1038/s41420-022-00974-x . (PMID: 10.1038/s41420-022-00974-x353933928991250)
Pan T. Modifications and functional genomics of human transfer RNA. Cell Res. 2018;28(4):395–404. https://doi.org/10.1038/s41422-018-0013-y . (PMID: 10.1038/s41422-018-0013-y294639005939049)
Panoutsopoulou K, Magkou P, Dreyer T, Dorn J, Obermayr E, Mahner S, van Gorp T, Braicu I, Magdolen V, Zeillinger R, Avgeris M, Scorilas A. tRNA-derived small RNA 3’U-tRFValCAC promotes tumour migration and early progression in ovarian cancer. Eur J Cancer. 2023;180:134–45. https://doi.org/10.1016/j.ejca.2022.11.033 . (PMID: 10.1016/j.ejca.2022.11.03336599181)
Pekarsky Y, Balatti V, Palamarchuk A, Rizzotto L, Veneziano D, Nigita G, Rassenti LZ, Pass HI, Kipps TJ, Liu CG, Croce CM. Dysregulation of a family of short noncoding RNAs, tsRNAs, in human cancer. Proc Natl Acad Sci U S A. 2016;113(18):5071–6. https://doi.org/10.1073/pnas.1604266113 . (PMID: 10.1073/pnas.1604266113270711324983805)
Pereira M, Ribeiro DR, Berg M, Tsai AP, Dong C, Nho K, Kaiser S, Moutinho M, Soares AR. Amyloid pathology reduces ELP3 expression and tRNA modifications leading to impaired proteostasis. Biochim Biophys Acta Mol Basis Dis. 2024;1870(1):166857. https://doi.org/10.1016/j.bbadis.2023.166857 . (PMID: 10.1016/j.bbadis.2023.16685737640114)
Pliatsika V, Loher P, Magee R, Telonis AG, Londin E, Shigematsu M, Kirino Y, Rigoutsos I. MINTbase v2.0: a comprehensive database for tRNA-derived fragments that includes nuclear and mitochondrial fragments from all The Cancer Genome Atlas projects. Nucleic Acids Res. 2018;46(D1):D152–9. https://doi.org/10.1093/nar/gkx1075 . (PMID: 10.1093/nar/gkx107529186503)
Porter JJ, Heil CS, Lueck JD. Therapeutic promise of engineered nonsense suppressor tRNAs. Wiley Interdiscip Rev RNA. 2021;12(4):e1641. https://doi.org/10.1002/wrna.1641 . (PMID: 10.1002/wrna.1641335674698244042)
Rashad S, Han X, Sato K, Mishima E, Abe T, Tominaga T, Niizuma K. The stress specific impact of ALKBH1 on tRNA cleavage and tiRNA generation. RNA Biol. 2020;17(8):1092–103. https://doi.org/10.1080/15476286.2020.1779492 . (PMID: 10.1080/15476286.2020.1779492325212097549645)
Richard P, Kozlowski L, Guillorit H, Garnier P, McKnight NC, Danchin A, Manière X. Queuine, a bacterial-derived hypermodified nucleobase, shows protection in in vitro models of neurodegeneration. PLoS ONE. 2021;16(8):e0253216. https://doi.org/10.1371/journal.pone.0253216 . (PMID: 10.1371/journal.pone.0253216343796278357117)
Ringeard M, Marchand V, Decroly E, Motorin Y, Bennasser Y. FTSJ3 is an RNA 2’-O-methyltransferase recruited by HIV to avoid innate immune sensing. Nature. 2019;565(7740):500–4. https://doi.org/10.1038/s41586-018-0841-4 . (PMID: 10.1038/s41586-018-0841-430626973)
Rojas-Benítez D, Eggers C, Glavic A. Modulation of the proteostasis machinery to overcome stress caused by diminished level of t6A-modified tRNAs in Drosophila. Biomolecules. 2017;7(1):25. https://doi.org/10.3390/biom7010025 . (PMID: 10.3390/biom7010025282723175372737)
Ruggero K, Guffanti A, Corradin A, Sharma VK, De Bellis G, Corti G, Grassi A, Zanovello P, Bronte V, Ciminale V, D’Agostino DM. Small noncoding RNAs in cells transformed by human T-cell leukemia virus type 1: a role for a tRNA fragment as a primer for reverse transcriptase. J Virol. 2014;88(7):3612–22. https://doi.org/10.1128/JVI.02823-13 . (PMID: 10.1128/JVI.02823-13244035823993537)
Sarker G, Sun W, Rosenkranz D, Pelczar P, Opitz L, Efthymiou V, Wolfrum C, Peleg-Raibstein D. Maternal overnutrition programs hedonic and metabolic phenotypes across generations through sperm tsRNAs. Proc Natl Acad Sci U S A. 2019;116(21):10547–56. https://doi.org/10.1073/pnas.1820810116 . (PMID: 10.1073/pnas.1820810116310611126534971)
Scacchetti A, Shields EJ, Trigg NA, Wilusz JE, Conine CC, Bonasio R. A ligation-independent sequencing method reveals tRNA-derived RNAs with blocked 3' termini. bioRxiv [Preprint]. 2023:2023.06.06.543899. https://doi.org/10.1101/2023.06.06.543899 .
Schaefer M, Hagemann S, Hanna K, Lyko F. Azacytidine inhibits RNA methylation at DNMT2 target sites in human cancer cell lines. Cancer Res. 2009;69(20):8127–32. https://doi.org/10.1158/0008-5472.CAN-09-0458 . (PMID: 10.1158/0008-5472.CAN-09-045819808971)
Schaefer M, Pollex T, Hanna K, Tuorto F, Meusburger M, Helm M, Lyko F. RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev. 2010;24(15):1590–5. https://doi.org/10.1101/gad.586710 . (PMID: 10.1101/gad.586710206793932912555)
Schimmel P. The emerging complexity of the tRNA world: mammalian tRNAs beyond protein synthesis. Nat Rev Mol Cell Biol. 2018;19(1):45–58. https://doi.org/10.1038/nrm.2017.77 . (PMID: 10.1038/nrm.2017.7728875994)
Schöller E, Marks J, Marchand V, Bruckmann A, Powell CA, Reichold M, Mutti CD, Dettmer K, Feederle R, Hüttelmaier S, Helm M, Oefner P, Minczuk M, Motorin Y, Hafner M, Meister G. Balancing of mitochondrial translation through METTL8-mediated m3C modification of mitochondrial tRNAs. Mol Cell. 2021;81(23):4810-4825.e12. (PMID: 10.1016/j.molcel.2021.10.0183477413111214777)
Schwickert M, Fischer TR, Zimmermann RA, Hoba SN, Meidner JL, Weber M, Weber M, Stark MM, Koch J, Jung N, Kersten C, Windbergs M, Lyko F, Helm M, Schirmeister T. Discovery of inhibitors of DNA methyltransferase 2, an epitranscriptomic modulator and potential target for cancer treatment. J Med Chem. 2022;65(14):9750–88. https://doi.org/10.1021/acs.jmedchem.2c00388 . (PMID: 10.1021/acs.jmedchem.2c0038835849534)
Schwickert M, Zimmermann RA, Habeck T, Hoba SN, Nidoieva Z, Fischer TR, Stark MM, Kersten C, Lermyte F, Helm M, Schirmeister T. Covalent S-Adenosylhomocysteine-based DNA Methyltransferase 2 inhibitors with a new type of aryl warhead. ACS Med Chem Lett. 2023;14(6):777–87. https://doi.org/10.1021/acsmedchemlett.3c00062 . (PMID: 10.1021/acsmedchemlett.3c000623731285910258905)
Seguin L, Kato S, Franovic A, Camargo MF, Lesperance J, Elliott KC, Yebra M, Mielgo A, Lowy AM, Husain H, Cascone T, Diao L, Wang J, Wistuba II, Heymach JV, Lippman SM, Desgrosellier JS, Anand S, Weis SM, Cheresh DA. An integrin β₃-KRAS-RalB complex drives tumour stemness and resistance to EGFR inhibition. Nat Cell Biol. 2014;16(5):457–68. https://doi.org/10.1038/ncb2953 . (PMID: 10.1038/ncb2953247474414105198)
Selitsky SR, Sethupathy P. tDRmapper: challenges and solutions to mapping, naming, and quantifying tRNA-derived RNAs from human small RNA-sequencing data. BMC Bioinformatics. 2015;4(16):354. https://doi.org/10.1186/s12859-015-0800-0 . (PMID: 10.1186/s12859-015-0800-0)
Selvadurai K, Wang P, Seimetz J, Huang RH. Archaeal Elp3 catalyzes tRNA wobble uridine modification at C5 via a radical mechanism. Nat Chem Biol. 2014;10(10):810–2. https://doi.org/10.1038/nchembio.1610 . (PMID: 10.1038/nchembio.1610251511364479141)
Shafik AM, Zhou H, Lim J, Dickinson B, Jin P. Dysregulated mitochondrial and cytosolic tRNA m1A methylation in Alzheimer’s disease. Hum Mol Genet. 2022;31(10):1673–80. https://doi.org/10.1093/hmg/ddab357 . (PMID: 10.1093/hmg/ddab35734897434)
Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG, Bing XY, Belleannee C, Kucukural A, Serra RW, Sun F, Song L, Carone BR, Ricci EP, Li XZ, Fauquier L, Moore MJ, Sullivan R, Mello CC, Garber M, Rando OJ. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science. 2016;351(6271):391–6. https://doi.org/10.1126/science.aad6780 . (PMID: 10.1126/science.aad678026721685)
Shi J, Ko EA, Sanders KM, Chen Q, Zhou T. SPORTS1.0: a tool for annotating and profiling non-coding RNAs optimized for rRNA- and tRNA-derived small RNAs. Genomics Proteomics Bioinformatics. 2018;16(2):144–51. https://doi.org/10.1016/j.gpb.2018.04.004 . (PMID: 10.1016/j.gpb.2018.04.004297302076112344)
Shi J, Zhang Y, Tan D, Zhang X, Yan M, Zhang Y, Franklin R, Shahbazi M, Mackinlay K, Liu S, Kuhle B, James ER, Zhang L, Qu Y, Zhai Q, Zhao W, Zhao L, Zhou C, Gu W, Murn J, Guo J, Carrell DT, Wang Y, Chen X, Cairns BR, Yang XL, Schimmel P, Zernicka-Goetz M, Cheloufi S, Zhang Y, Zhou T, Chen Q. PANDORA-seq expands the repertoire of regulatory small RNAs by overcoming RNA modifications. Nat Cell Biol. 2021;23(4):424–36. https://doi.org/10.1038/s41556-021-00652-7 . (PMID: 10.1038/s41556-021-00652-7338209738236090)
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30. https://doi.org/10.3322/caac.21590 . (PMID: 10.3322/caac.2159031912902)
Sobala A, Hutvagner G. Small RNAs derived from the 5’ end of tRNA can inhibit protein translation in human cells. RNA Biol. 2013;10(4):553–63. https://doi.org/10.4161/rna.24285 . (PMID: 10.4161/rna.24285235634483710361)
Song J, Zhuang Y, Zhu C, Meng H, Lu B, Xie B, Peng J, Li M, Yi C. Differential roles of human PUS10 in miRNA processing and tRNA pseudouridylation. Nat Chem Biol. 2020;16(2):160–9. https://doi.org/10.1038/s41589-019-0420-5 . (PMID: 10.1038/s41589-019-0420-531819270)
Su Z, Wilson B, Kumar P, Dutta A. Noncanonical roles of tRNAs: tRNA fragments and beyond. Annu Rev Genet. 2020;23(54):47–69. https://doi.org/10.1146/annurev-genet-022620-101840 . (PMID: 10.1146/annurev-genet-022620-101840)
Sun C, Yang F, Zhang Y, Chu J, Wang J, Wang Y, Zhang Y, Li J, Li Y, Fan R, Li W, Huang X, Wu H, Fu Z, Jiang Z, Yin Y. tRNA-derived fragments as novel predictive biomarkers for trastuzumab-resistant breast cancer. Cell Physiol Biochem. 2018;49(2):419–31. https://doi.org/10.1159/000492977 . (PMID: 10.1159/00049297730153663)
Sun H, Zhou X, Bao Y, Xiong G, Cui Y, Zhou H. Involvement of miR-4262 in paclitaxel resistance through the regulation of PTEN in non-small cell lung cancer. Open Biol. 2019;9(7):180227. https://doi.org/10.1098/rsob.180227 . (PMID: 10.1098/rsob.180227313372796685930)
Suzuki T. The expanding world of tRNA modifications and their disease relevance. Nat Rev Mol Cell Biol. 2021;22(6):375–92. https://doi.org/10.1038/s41580-021-00342-0 . (PMID: 10.1038/s41580-021-00342-033658722)
Suzuki T, Yashiro Y, Kikuchi I, Ishigami Y, Saito H, Matsuzawa I, Okada S, Mito M, Iwasaki S, Ma D, Zhao X, Asano K, Lin H, Kirino Y, Sakaguchi Y, Suzuki T. Complete chemical structures of human mitochondrial tRNAs. Nat Commun. 2020;11(1):4269. https://doi.org/10.1038/s41467-020-18068-6 . (PMID: 10.1038/s41467-020-18068-6328598907455718)
Tan H, Yang K, Li Y, Shaw TI, Wang Y, Blanco DB, Wang X, Cho JH, Wang H, Rankin S, Guy C, Peng J, Chi H. Integrative proteomics and phosphoproteomics profiling reveals dynamic signaling networks and bioenergetics pathways underlying T cell activation. Immunity. 2017;46(3):488–503. https://doi.org/10.1016/j.immuni.2017.02.010 . (PMID: 10.1016/j.immuni.2017.02.010282858335466820)
Tao EW, Wang HL, Cheng WY, Liu QQ, Chen YX, Gao QY. A specific tRNA half, 5’tiRNA-His-GTG, responds to hypoxia via the HIF1α/ANG axis and promotes colorectal cancer progression by regulating LATS2. J Exp Clin Cancer Res. 2021;40(1):67. https://doi.org/10.1186/s13046-021-01836-7 . (PMID: 10.1186/s13046-021-01836-7335889137885485)
Tao Y, Felber JG, Zou Z, Njomen E, Remsberg JR, Ogasawara D, Ye C, Melillo B, Schreiber SL, He C, Remillard D, Cravatt BF. Chemical proteomic discovery of isotype-selective covalent inhibitors of the RNA methyltransferase NSUN2. Angew Chem Int Ed Engl. 2023;62(51):e202311924. https://doi.org/10.1002/anie.202311924 . (PMID: 10.1002/anie.2023119243790992210999112)
Trixl L, Lusser A. The dynamic RNA modification 5-methylcytosine and its emerging role as an epitranscriptomic mark. Wiley Interdiscip Rev RNA. 2019;10(1):e1510. https://doi.org/10.1002/wrna.1510 . (PMID: 10.1002/wrna.151030311405)
Trzaska C, Amand S, Bailly C, Leroy C, Marchand V, Duvernois-Berthet E, Saliou JM, Benhabiles H, Werkmeister E, Chassat T, Guilbert R, Hannebique D, Mouray A, Copin MC, Moreau PA, Adriaenssens E, Kulozik A, Westhof E, Tulasne D, Motorin Y, Rebuffat S, Lejeune F. 2,6-Diaminopurine as a highly potent corrector of UGA nonsense mutations. Nat Commun. 2020;11(1):1509. https://doi.org/10.1038/s41467-020-15140-z . (PMID: 10.1038/s41467-020-15140-z321983467083880)
Tuorto F, Liebers R, Musch T, Schaefer M, Hofmann S, Kellner S, Frye M, Helm M, Stoecklin G, Lyko F. RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat Struct Mol Biol. 2012;19(9):900–5. https://doi.org/10.1038/nsmb.2357 . (PMID: 10.1038/nsmb.235722885326)
Tuorto F, Legrand C, Cirzi C, Federico G, Liebers R, Müller M, Ehrenhofer-Murray AE, Dittmar G, Gröne HJ, Lyko F. Queuosine-modified tRNAs confer nutritional control of protein translation. EMBO J. 2018;37(18):e99777. https://doi.org/10.15252/embj.201899777 . (PMID: 10.15252/embj.201899777300934956138434)
van Ingen E, Engbers PAM, Woudenberg T, van der Bent ML, Mei H, Wojta J, Quax PHA, Nossent AY. C/D box snoRNA SNORD113-6 guides 2’-O-methylation and protects against site-specific fragmentation of tRNALeu(TAA) in vascular remodeling. Mol Ther Nucleic Acids. 2022;17(30):162–72. https://doi.org/10.1016/j.omtn.2022.09.011 . (PMID: 10.1016/j.omtn.2022.09.011)
VanKlompenberg MK, Leyden E, Arnason AH, Zhang JT, Stefanski CD, Prosperi JR. APC loss in breast cancer leads to doxorubicin resistance via STAT3 activation. Oncotarget. 2017;8(61):102868–79. https://doi.org/10.18632/oncotarget.22263 . (PMID: 10.18632/oncotarget.22263292625295732695)
Veneziano D, Tomasello L, Balatti V, Palamarchuk A, Rassenti LZ, Kipps TJ, Pekarsky Y, Croce CM. Dysregulation of different classes of tRNA fragments in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2019;116(48):24252–8. https://doi.org/10.1073/pnas.1913695116 . (PMID: 10.1073/pnas.1913695116317230426883801)
Vilardo E, Nachbagauer C, Buzet A, Taschner A, Holzmann J, Rossmanith W. A subcomplex of human mitochondrial RNase P is a bifunctional methyltransferase–extensive moonlighting in mitochondrial tRNA biogenesis. Nucleic Acids Res. 2012;40(22):11583–93. https://doi.org/10.1093/nar/gks910 . (PMID: 10.1093/nar/gks910230426783526285)
Villanueva A. Hepatocellular carcinoma. N Engl J Med. 2019;380:1450–62. (PMID: 10.1056/NEJMra171326330970190)
Vitali P, Kiss T. Cooperative 2’-O-methylation of the wobble cytidine of human elongator tRNAMet(CAT) by a nucleolar and a Cajal body-specific box C/D RNP. Genes Dev. 2019;33(13–14):741–6. https://doi.org/10.1101/gad.326363.119 . (PMID: 10.1101/gad.326363.119311717026601510)
Wang Y, Niu XL, Qu Y, Wu J, Zhu YQ, Sun WJ, Li LZ. Autocrine production of interleukin-6 confers cisplatin and paclitaxel resistance in ovarian cancer cells. Cancer Lett. 2010;295(1):110–23. https://doi.org/10.1016/j.canlet.2010.02.019 . (PMID: 10.1016/j.canlet.2010.02.01920236757)
Wang B, Rong X, Palladino END, Wang J, Fogelman AM, Martín MG, Alrefai WA, Ford DA, Tontonoz P. Phospholipid remodeling and cholesterol availability regulate intestinal stemness and tumorigenesis. Cell Stem Cell. 2018a;22(2):206-220.e4. https://doi.org/10.1016/j.stem.2017.12.017 . (PMID: 10.1016/j.stem.2017.12.017293950555807072)
Wang X, Matuszek Z, Huang Y, Parisien M, Dai Q, Clark W, Schwartz MH, Pan T. Queuosine modification protects cognate tRNAs against ribonuclease cleavage. RNA. 2018b;24(10):1305–13. https://doi.org/10.1261/rna.067033.118 . (PMID: 10.1261/rna.067033.118299705976140461)
Wang Y, Wang J, Li X, Xiong X, Wang J, Zhou Z, Zhu X, Gu Y, Dominissini D, He L, Tian Y, Yi C, Fan Z. N1-methyladenosine methylation in tRNA drives liver tumourigenesis by regulating cholesterol metabolism. Nat Commun. 2021a;12(1):6314. https://doi.org/10.1038/s41467-021-26718-6 . (PMID: 10.1038/s41467-021-26718-6347286288563902)
Wang H, Huang R, Li L, Zhu J, Li Z, Peng C, Zhuang X, Lin H, Shi S, Huang P. CPA-seq reveals small ncRNAs with methylated nucleosides and diverse termini. Cell Discov. 2021b;7(1):25. https://doi.org/10.1038/s41421-021-00265-2 . (PMID: 10.1038/s41421-021-00265-2338675228053708)
Wang Z, Yu P, Zou Y, Ma J, Han H, Wei W, Yang C, Zheng S, Guo S, Wang J, Liu L, Lin S. METTL1/WDR4-mediated tRNA m7G modification and mRNA translation control promote oncogenesis and doxorubicin resistance. Oncogene. 2023;42(23):1900–12. https://doi.org/10.1038/s41388-023-02695-6 . (PMID: 10.1038/s41388-023-02695-637185458)
Wangen JR, Green R. Stop codon context influences genome-wide stimulation of termination codon readthrough by aminoglycosides. Elife. 2020;23(9):e52611. https://doi.org/10.7554/eLife.52611 . (PMID: 10.7554/eLife.52611)
Wong JC, Bryant V, Lamprecht T, Ma J, Walsh M, Schwartz J, Del Pilar AM, Mullighan CG, Loh ML, Ribeiro R, Downing JR, Carroll WL, Davis J, Gold S, Rogers PC, Israels S, Yanofsky R, Shannon K, Klco JM. Germline SAMD9 and SAMD9L mutations are associated with extensive genetic evolution and diverse hematologic outcomes. JCI Insight. 2018;3(14):e121086. (PMID: 10.1172/jci.insight.121086300460036124395)
World Health Organization. Vector-borne disease WHO. 2020.
Wu YY, Wu HC, Wu JE, Huang KY, Yang SC, Chen SX, Tsao CJ, Hsu KF, Chen YL, Hong TM. The dual PI3K/mTOR inhibitor BEZ235 restricts the growth of lung cancer tumors regardless of EGFR status, as a potent accompanist in combined therapeutic regimens. J Exp Clin Cancer Res. 2019;38(1):282. https://doi.org/10.1186/s13046-019-1282-0 . (PMID: 10.1186/s13046-019-1282-0312623256604380)
Wu D, Khan FA, Huo L, Sun F, Huang C. Alternative splicing and MicroRNA: epigenetic mystique in male reproduction. RNA Biol. 2022;19(1):162–75. https://doi.org/10.1080/15476286.2021.2024033 . (PMID: 10.1080/15476286.2021.2024033350671798786336)
Wu Q, Zou S, Liu W, Liang M, Chen Y, Chang J, Liu Y, Yu X. A novel onco-cardiological mouse model of lung cancer-induced cardiac dysfunction and its application in identifying potential roles of tRNA-derived small RNAs. Biomed Pharmacother. 2023;165:115117. https://doi.org/10.1016/j.biopha.2023.115117 . (PMID: 10.1016/j.biopha.2023.11511737406509)
Yamagami R, Sieg JP, Assmann SM, Bevilacqua PC. Genome-wide analysis of the in vivo tRNA structurome reveals RNA structural and modification dynamics under heat stress. Proc Natl Acad Sci U S A. 2022;119(25):e2201237119. https://doi.org/10.1073/pnas.2201237119 . (PMID: 10.1073/pnas.2201237119356965769231505)
Yan J, Gu Y, Jia X, Kang W, Pan S, Tang X, Chen X, Tang G. Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis. Plant Cell. 2012;24(2):415–27. https://doi.org/10.1105/tpc.111.094144 . (PMID: 10.1105/tpc.111.094144223454903315224)
Yan B, Yao J, Liu JY, Li XM, Wang XQ, Li YJ, Tao ZF, Song YC, Chen Q, Jiang Q. lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circ Res. 2015;116(7):1143–56. https://doi.org/10.1161/CIRCRESAHA.116.305510 . (PMID: 10.1161/CIRCRESAHA.116.30551025587098)
Yang T, Low JJA, Woon ECY. A general strategy exploiting m5C duplex-remodelling effect for selective detection of RNA and DNA m5C methyltransferase activity in cells. Nucleic Acids Res. 2020;48(1):e5. https://doi.org/10.1093/nar/gkz1047 . (PMID: 10.1093/nar/gkz104731691820)
Yao D, Sun X, Zhou L, Amanullah M, Pan X, Liu Y, Liang M, Liu P, Lu Y. OncotRF: an online resource for exploration of tRNA-derived fragments in human cancers. RNA Biol. 2020;17(8):1081–91. https://doi.org/10.1080/15476286.2020.1776506 . (PMID: 10.1080/15476286.2020.1776506325973117577240)
Yu M, Lu B, Zhang J, Ding J, Liu P, Lu Y. tRNA-derived RNA fragments in cancer: current status and future perspectives. J Hematol Oncol. 2020;13(1):121. https://doi.org/10.1186/s13045-020-00955-6 . (PMID: 10.1186/s13045-020-00955-6328876417487644)
Zagryadskaya EI, Doyon FR, Steinberg SV. Importance of the reverse Hoogsteen base pair 54–58 for tRNA function. Nucleic Acids Res. 2003;31(14):3946–53. https://doi.org/10.1093/nar/gkg448 . (PMID: 10.1093/nar/gkg44812853610165963)
Zhang Y, Zhang X, Shi J, Tuorto F, Li X, Liu Y, Liebers R, Zhang L, Qu Y, Qian J, Pahima M, Liu Y, Yan M, Cao Z, Lei X, Cao Y, Peng H, Liu S, Wang Y, Zheng H, Woolsey R, Quilici D, Zhai Q, Li L, Zhou T, Yan W, Lyko F, Zhang Y, Zhou Q, Duan E, Chen Q. Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs. Nat Cell Biol. 2018;20(5):535–40. https://doi.org/10.1038/s41556-018-0087-2 . (PMID: 10.1038/s41556-018-0087-2296957865926820)
Zhang Y, Shi J, Rassoulzadegan M, Tuorto F, Chen Q. Sperm RNA code programmes the metabolic health of offspring. Nat Rev Endocrinol. 2019;15(8):489–98. https://doi.org/10.1038/s41574-019-0226-2 . (PMID: 10.1038/s41574-019-0226-2312358026626572)
Zhang Y, Qian H, He J, Gao W. Mechanisms of tRNA-derived fragments and tRNA halves in cancer treatment resistance. Biomark Res. 2020a;15(8):52. https://doi.org/10.1186/s40364-020-00233-0 . (PMID: 10.1186/s40364-020-00233-0)
Zhang W, Xu R, Matuszek Ż, Cai Z, Pan T. Detection and quantification of glycosylated queuosine modified tRNAs by acid denaturing and APB gels. RNA. 2020b;26(9):1291–8. https://doi.org/10.1261/rna.075556.120 . (PMID: 10.1261/rna.075556.120324397177430669)
Zhang Y, Ren L, Sun X, Zhang Z, Liu J, Xin Y, Yu J, Jia Y, Sheng J, Hu GF, Zhao R, He B. Angiogenin mediates paternal inflammation-induced metabolic disorders in offspring through sperm tsRNAs. Nat Commun. 2021;12(1):6673. https://doi.org/10.1038/s41467-021-26909-1 . (PMID: 10.1038/s41467-021-26909-1348452388630171)
Zhang Y, Wang Y, Fan J, Zhu G, Lu L. Aspergillus fumigatus Elongator complex subunit 3 affects hyphal growth, adhesion and virulence through wobble uridine tRNA modification. PLoS Pathog. 2022;18(11):e1010976. https://doi.org/10.1371/journal.ppat.1010976 . (PMID: 10.1371/journal.ppat.1010976363749329704764)
Zhang F, Ji Q, Chaturvedi J, Morales M, Mao Y, Meng X, Dong L, Deng J, Qian SB, Xiang Y. Human SAMD9 is a poxvirus-activatable anticodon nuclease inhibiting codon-specific protein synthesis. Sci Adv. 2023a;9(23):eadh8502. https://doi.org/10.1126/sciadv.adh8502 . (PMID: 10.1126/sciadv.adh85023728544010246899)
Zhang J, Zhang Y, McGrenaghan CJ, Kelly VP, Xia Y, Sun J. Disruption to tRNA modification by queuine contributes to inflammatory Bowel disease. Cell Mol Gastroenterol Hepatol. 2023b;15(6):1371–89. https://doi.org/10.1016/j.jcmgh.2023.02.006 . (PMID: 10.1016/j.jcmgh.2023.02.0063680145010140797)
Zhao X, Xu Z, Wang Z, Wu Z, Gong Y, Zhou L, Xiang Y. RNA silencing of integrin-linked kinase increases the sensitivity of the A549 lung cancer cell line to cisplatin and promotes its apoptosis. Mol Med Rep. 2015;12(1):960–6. https://doi.org/10.3892/mmr.2015.3471 . (PMID: 10.3892/mmr.2015.3471257604374438971)
Zhao P, Xia L, Chen D, Xu W, Guo H, Xu Y, Yan B, Wu X, Li Y, Zhang Y, Zhang X. METTL1 mediated tRNA m7G modification promotes leukaemogenesis of AML via tRNA regulated translational control. Exp Hematol Oncol. 2024;13(1):8. https://doi.org/10.1186/s40164-024-00477-8 . (PMID: 10.1186/s40164-024-00477-83826805110807064)
Zheng LL, Xu WL, Liu S, Sun WJ, Li JH, Wu J, Yang JH, Qu LH. tRF2Cancer: a web server to detect tRNA-derived small RNA fragments (tRFs) and their expression in multiple cancers. Nucleic Acids Res. 2016;44(W1):W185–93. https://doi.org/10.1093/nar/gkw414 . (PMID: 10.1093/nar/gkw414271790314987945)
Zhong J, Li L, Wang Z, Bai H, Gai F, Duan J, Zhao J, Zhuo M, Wang Y, Wang S, Zang W, Wu M, An T, Rao G, Zhu G, Wang J. Potential resistance mechanisms revealed by targeted sequencing from lung adenocarcinoma patients with primary resistance to Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitors (TKIs). J Thorac Oncol. 2017;12(12):1766–78. https://doi.org/10.1016/j.jtho.2017.07.032 . (PMID: 10.1016/j.jtho.2017.07.03228818608)
Zhou L, Cheng X, Connolly BA, Dickman MJ, Hurd PJ, Hornby DP. Zebularine: a novel DNA methylation inhibitor that forms a covalent complex with DNA methyltransferases. J Mol Biol. 2002;321(4):591–9. https://doi.org/10.1016/s0022-2836(02)00676-9 . (PMID: 10.1016/s0022-2836(02)00676-9122067752713825)
Zhou M, Long T, Fang ZP, Zhou XL, Liu RJ, Wang ED. Identification of determinants for tRNA substrate recognition by Escherichia coli C/U34 2’-O-methyltransferase. RNA Biol. 2015;12(8):900–11. https://doi.org/10.1080/15476286.2015.1050576 . (PMID: 10.1080/15476286.2015.1050576261068084615657)
Zhou J, Liu S, Chen Y, Fu Y, Silver AJ, Hill MS, Lee I, Lee YS, Bao X. Identification of two novel functional tRNA-derived fragments induced in response to respiratory syncytial virus infection. J Gen Virol. 2017;98(7):1600–10. https://doi.org/10.1099/jgv.0.000852 . (PMID: 10.1099/jgv.0.000852287080495721923)
Zhou M, He X, Zhang J, Mei C, Zhong B, Ou C. tRNA-derived small RNAs in human cancers: roles, mechanisms, and clinical application. Mol Cancer. 2024;23(1):76. https://doi.org/10.1186/s12943-024-01992-2 . (PMID: 10.1186/s12943-024-01992-23862269411020452)
Zimmermann RA, Fischer TR, Schwickert M, Nidoieva Z, Schirmeister T, Kersten C. Chemical Space Virtual Screening against Hard-to-Drug RNA Methyltransferases DNMT2 and NSUN6. Int J Mol Sci. 2023;24(7):6109. https://doi.org/10.3390/ijms24076109 . (PMID: 10.3390/ijms240761093704708110094593)
Zuo Z, Hu H, Xu Q, Luo X, Peng D, Zhu K, Zhao Q, Xie Y, Ren J. BBCancer: an expression atlas of blood-based biomarkers in the early diagnosis of cancers. Nucleic Acids Res. 2020;48(D1):D789–96. https://doi.org/10.1093/nar/gkz942 . (PMID: 10.1093/nar/gkz94231665503)
Zuo Y, Zhu L, Guo Z, Liu W, Zhang J, Zeng Z, Wu Q, Cheng J, Fu X, Jin Y, Zhao Y, Peng Y. tsRBase: a comprehensive database for expression and function of tsRNAs in multiple species. Nucleic Acids Res. 2021;49(D1):D1038–45. https://doi.org/10.1093/nar/gkaa888 . (PMID: 10.1093/nar/gkaa88833068436) - Grant Information: 22KJB180006 Natural Science Foundation of the Higher Education Institutions of Jiangsu Province; 82371613 National Natural Science Foundation of China; 32302844 National Natural Science Foundation of China; 2021YFC2700200 National Key Research and Development Program of China
- Contributed Indexing: Keywords: Chemoresistance; tRNA modification; tRNA modopathy; tRNA-derived regulatory fragments; tRNA-modifying enzyme
- Accession Number: 9014-25-9 (RNA, Transfer)
0 (RNA, Small Untranslated) - Publication Date: Date Created: 20240914 Date Completed: 20240914 Latest Revision: 20250103
- Publication Date: 20250103
- Accession Number: PMC11401796
- Accession Number: 10.1007/s10565-024-09919-9
- Accession Number: 39276283
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.