Structural Insights into Endostatin-Heparan Sulfate Interactions Using Modeling Approaches.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: MDPI Country of Publication: Switzerland NLM ID: 100964009 Publication Model: Electronic Cited Medium: Internet ISSN: 1420-3049 (Electronic) Linking ISSN: 14203049 NLM ISO Abbreviation: Molecules Subsets: MEDLINE
    • Publication Information:
      Original Publication: Basel, Switzerland : MDPI, c1995-
    • Subject Terms:
    • Abstract:
      Glycosaminoglycans (GAGs) play a key role in a variety of biological processes in the extracellular matrix (ECM) via interactions with their protein targets. Due to their high flexibility, periodicity and electrostatics-driven interactions, GAG-containing complexes are very challenging to characterize both experimentally and in silico. In this study, we, for the first time, systematically analyzed the interactions of endostatin, a proteolytic fragment of collagen XVIII known to be anti-angiogenic and anti-tumoral, with heparin (HP) and representative heparan sulfate (HS) oligosaccharides of various lengths, sequences and sulfation patterns. We first used conventional molecular docking and a docking approach based on a repulsive scaling-replica exchange molecular dynamics technique, as well as unbiased molecular dynamic simulations, to obtain dynamically stable GAG binding poses. Then, the corresponding free energies of binding were calculated and the amino acid residues that contribute the most to GAG binding were identified. We also investigated the potential influence of Zn 2+ on endostatin-HP complexes using computational approaches. These data provide new atomistic details of the molecular mechanism of HP's binding to endostatin, which will contribute to a better understanding of its interplay with proteoglycans at the cell surface and in the extracellular matrix.
    • References:
      Biol Chem. 2021 Apr 21;402(11):1337-1355. (PMID: 33882203)
      Proc Natl Acad Sci U S A. 2017 Dec 26;114(52):13697-13702. (PMID: 29229841)
      J Comput Chem. 2004 Oct;25(13):1605-12. (PMID: 15264254)
      J Chem Theory Comput. 2015 Aug 11;11(8):3696-713. (PMID: 26574453)
      Biomacromolecules. 2014 Aug 11;15(8):3083-92. (PMID: 25029480)
      Bioinformatics. 2014 Oct 15;30(20):2981-2. (PMID: 24996895)
      J Biol Chem. 2010 Oct 29;285(44):33867-74. (PMID: 20729553)
      J Histochem Cytochem. 2021 Feb;69(2):93-104. (PMID: 32757871)
      FEBS Lett. 2007 Jun 26;581(16):3027-32. (PMID: 17544408)
      Glycobiology. 2019 Jan 1;29(1):36-44. (PMID: 30239692)
      Thromb Res. 1992 Nov 1;68(3):247-58. (PMID: 1471071)
      J Biol Chem. 2001 Jun 29;276(26):23742-7. (PMID: 11309399)
      Mol Inform. 2012 Feb;31(2):114-22. (PMID: 27476956)
      J Am Chem Soc. 2010 Sep 29;132(38):13132-4. (PMID: 20809637)
      Am J Physiol Cell Physiol. 2022 Jun 1;322(6):C1271-C1278. (PMID: 35544698)
      Methods Mol Biol. 2023;2619:153-167. (PMID: 36662469)
      Carbohydr Res. 2013 Nov 15;381:133-7. (PMID: 24096273)
      J Comput Chem. 2021 Jun 5;42(15):1040-1053. (PMID: 33768554)
      Int J Biochem Cell Biol. 2007;39(3):586-96. (PMID: 17113336)
      Glycobiology. 2009 Oct;19(10):1103-15. (PMID: 19643843)
      J Mol Graph. 1996 Feb;14(1):33-8, 27-8. (PMID: 8744570)
      Glycobiology. 2016 Aug;26(8):850-861. (PMID: 27496767)
      J Comput Chem. 2022 Sep 15;43(24):1633-1640. (PMID: 35796487)
      EMBO J. 1999 Aug 16;18(16):4414-23. (PMID: 10449407)
      J Comput Chem. 2020 Jun 5;41(15):1436-1447. (PMID: 32149420)
      Adv Drug Deliv Rev. 2016 Feb 1;97:156-73. (PMID: 26518982)
      EMBO J. 1999 Nov 15;18(22):6240-8. (PMID: 10562536)
      J Mol Biol. 2000 Mar 17;297(1):1-6. (PMID: 10704302)
      Oncol Ther. 2018 Jun;6(1):21-43. (PMID: 32700135)
      Biochem J. 1993 Aug 1;293 ( Pt 3):849-58. (PMID: 8352752)
      J Chem Inf Model. 2014 Feb 24;54(2):582-92. (PMID: 24479827)
      J Chem Inf Model. 2021 Jan 25;61(1):455-466. (PMID: 33375794)
      Methods. 2015 Nov 1;89:45-53. (PMID: 25726910)
      JACS Au. 2023 Mar 02;3(3):628-656. (PMID: 37006755)
      Biochem J. 1986 Jul 1;237(1):281-4. (PMID: 3800882)
      Biomolecules. 2021 May 15;11(5):. (PMID: 34063530)
      Glycobiology. 2019 Sep 20;29(10):715-725. (PMID: 31264681)
      Biomolecules. 2020 Dec 11;10(12):. (PMID: 33322545)
      Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10443-8. (PMID: 9724722)
      J Comput Chem. 2015 May 15;36(13):996-1007. (PMID: 25824339)
      Biochem Biophys Res Commun. 1998 Nov 9;252(1):190-4. (PMID: 9813168)
      Biomolecules. 2021 Sep 12;11(9):. (PMID: 34572563)
      J Comput Chem. 2002 Nov 15;23(14):1297-304. (PMID: 12214312)
      Front Pharmacol. 2016 Feb 04;7:11. (PMID: 26869928)
      J Chem Inf Model. 2021 Sep 27;61(9):4475-4485. (PMID: 34494837)
      J Biol Chem. 2004 Jan 23;279(4):2927-36. (PMID: 14585835)
      J Mol Graph Model. 2022 Jun;113:108153. (PMID: 35183977)
      J Comput Chem. 2008 Mar;29(4):622-55. (PMID: 17849372)
      Curr Opin Struct Biol. 2022 Jun;74:102355. (PMID: 35306322)
      Glycobiology. 2017 Jan;27(1):3-49. (PMID: 27558841)
    • Grant Information:
      UMO-2023/49/B/ST4/00041 National Science Center
    • Contributed Indexing:
      Keywords: endostatin; glycosaminoglycans; molecular docking; protein–glycosaminoglycan interactions; repulsive scaling–replica exchange molecular dynamics
    • Accession Number:
      0 (Endostatins)
      9050-30-0 (Heparitin Sulfate)
      9005-49-6 (Heparin)
      0 (Collagen Type XVIII)
      J41CSQ7QDS (Zinc)
      0 (Glycosaminoglycans)
    • Publication Date:
      Date Created: 20240914 Date Completed: 20240914 Latest Revision: 20241105
    • Publication Date:
      20241105
    • Accession Number:
      PMC11397277
    • Accession Number:
      10.3390/molecules29174040
    • Accession Number:
      39274888