Beyond weight loss: the potential of glucagon-like peptide-1 receptor agonists for treating heart failure with preserved ejection fraction.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Kluwer Academic Publishers Country of Publication: United States NLM ID: 9612481 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-7322 (Electronic) Linking ISSN: 13824147 NLM ISO Abbreviation: Heart Fail Rev Subsets: MEDLINE
    • Publication Information:
      Original Publication: Norwell, MA : Kluwer Academic Publishers, c1996-
    • Subject Terms:
    • Abstract:
      Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome with various phenotypes, and obesity is one of the most common and clinically relevant phenotypes of HFpEF. Obesity contributes to HFpEF through multiple mechanisms, including sodium retention, neurohormonal dysregulation, altered energy substrate metabolism, expansion of visceral adipose tissue, and low-grade systemic inflammation. Glucagon-like peptide-1 (GLP-1) is a hormone in the incretin family. It is produced by specialized cells called neuroendocrine L cells located in the distal ileum and colon. GLP-1 reduces blood glucose levels by promoting glucose-dependent insulin secretion from pancreatic β cells, suppressing glucagon release from pancreatic α cells, and blocking hepatic gluconeogenesis. Recent evidence suggests that GLP-1 receptor agonists (GLP-1 RAs) can significantly improve physical activity limitations and exercise capacity in obese patients with HFpEF. The possible cardioprotective mechanisms of GLP-1 RAs include reducing epicardial fat tissue thickness, preventing activation of the renin-angiotensin-aldosterone system, improving myocardial energy metabolism, reducing systemic inflammation and cardiac oxidative stress, and delaying the progression of atherosclerosis. This review examines the impact of obesity on the underlying mechanisms of HFpEF, summarizes the trial data on cardiovascular outcomes of GLP-1 RAs in patients with type 2 diabetes mellitus, and highlights the potential cardioprotective mechanisms of GLP-1 RAs to give a pathophysiological and clinical rationale for using GLP-1 RAs in obese HFpEF patients.
      Competing Interests: Declarations. Ethical standards: The manuscript does not contain clinical studies or patient data. Consent for publication: All authors gave their consent for publication. Competing interests: The authors declare no competing interests.
      (© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
    • References:
      McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O et al (2023) 2023 Focused update of the 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 44(37):3627–3639. (PMID: 3762266610.1093/eurheartj/ehad195)
      Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, Deswal A, Drazner MH, Dunlay SM, Evers LR et al (2022) 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 145(18):e895–e1032. (PMID: 35363499)
      Bozkurt B, Coats AJS, Tsutsui H, Abdelhamid CM, Adamopoulos S, Albert N, Anker SD, Atherton J, Böhm M, Butler J et al (2021) Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure: Endorsed by the Canadian Heart Failure Society, Heart Failure Association of India, Cardiac Society of Australia and New Zealand, and Chinese Heart Failure Association. Eur J Heart Fail 23(3):352–380. (PMID: 3360500010.1002/ejhf.2115)
      Pinto YM (2023) Heart failure with preserved ejection fraction-a metabolic disease? N Engl J Med 389(12):1145–1146. (PMID: 3762267610.1056/NEJMe2309294)
      Omote K, Verbrugge FH, Borlaug BA (2022) Heart failure with preserved ejection fraction: mechanisms and treatment strategies. Annu Rev Med 73:321–337. (PMID: 3437944510.1146/annurev-med-042220-022745)
      Kittleson MM, Panjrath GS, Amancherla K, Davis LL, Deswal A, Dixon DL, Januzzi JL, Yancy CW (2023) 2023 ACC expert consensus decision pathway on management of heart failure with preserved ejection fraction: a report of the American College of Cardiology solution set oversight committee. J Am Coll Cardiol 81(18):1835–1878. (PMID: 3713759310.1016/j.jacc.2023.03.393)
      eBioMedicine: Obesity and heart failure with preserved ejection fraction (HFprEF): the whole body question. EBioMedicine 2023, 97:104874.
      Borlaug BA, Jensen MD, Kitzman DW, Lam CSP, Obokata M, Rider OJ (2023) Obesity and heart failure with preserved ejection fraction: new insights and pathophysiological targets. Cardiovasc Res 118(18):3434–3450. (PMID: 3588031710.1093/cvr/cvac120)
      Dhore-Patil A, Thannoun T, Samson R, Le Jemtel TH (2021) Diabetes mellitus and heart failure with preserved ejection fraction: role of obesity. Front Physiol 12:785879. (PMID: 3524204410.3389/fphys.2021.785879)
      Martens P, Mathieu C, Vanassche T (2023) The use of glucagon-like-peptide-1 receptor agonist in the cardiology practice. Acta Cardiol 78(5):552–564. (PMID: 3557529410.1080/00015385.2022.2076307)
      Mahapatra MK, Karuppasamy M, Sahoo BM (2022) Semaglutide, a glucagon like peptide-1 receptor agonist with cardiovascular benefits for management of type 2 diabetes. Rev Endocr Metab Disord 23(3):521–539. (PMID: 34993760873633110.1007/s11154-021-09699-1)
      Kosiborod MN, Petrie MC, Borlaug BA, Butler J, Davies MJ, Hovingh GK, Kitzman DW, Møller DV, Treppendahl MB, Verma S et al (2024) Semaglutide in patients with obesity-related heart failure and type 2 diabetes. N Engl J Med 390(15):1394–1407. (PMID: 3858723310.1056/NEJMoa2313917)
      Daou D, Gillette TG, Hill JA, (2023): Inflammatory mechanisms in heart failure with preserved ejection fraction. Physiology (Bethesda), 38(5):0.
      Prausmüller S, Weidenhammer A, Heitzinger G, Spinka G, Goliasch G, Arfsten H, Abdel Mawgoud R, Gabler C, Strunk G, Hengstenberg C et al (2023) Obesity in heart failure with preserved ejection fraction with and without diabetes: risk factor or innocent bystander? Eur J Prev Cardiol 30(12):1247–1254. (PMID: 3721059610.1093/eurjpc/zwad140)
      Jung M-H, Shin M-S (2023) Obesity-related heart failure with preserved ejection fraction: diagnostic and therapeutic challenges. Korean J Intern Med 38(2):157–166. (PMID: 36740840999310810.3904/kjim.2022.271)
      He J, Yang W, Wu W, Sun X, Li S, Yin G, Zhuang B, Xu J, Zhou D, Zhang Y et al (2023) Clinical features, myocardial strain and tissue characteristics of heart failure with preserved ejection fraction in patients with obesity: a prospective cohort study. EClinicalMedicine 55:101723. (PMID: 3638603410.1016/j.eclinm.2022.101723)
      Clemenza F, Citarrella R, Patti A, Rizzo M (2022) Obesity and HFpEF. J Clin Med 11(13):3858. (PMID: 35807143926738410.3390/jcm11133858)
      Koutroumpakis E, Kaur R, Taegtmeyer H, Deswal A (2021) Obesity and heart failure with preserved ejection fraction. Heart Fail Clin 17(3):345–356. (PMID: 3405196710.1016/j.hfc.2021.02.003)
      Harada T, Obokata M (2020) Obesity-related heart failure with preserved ejection fraction: pathophysiology, diagnosis, and potential therapies. Heart Fail Clin 16(3):357–368. (PMID: 3250375810.1016/j.hfc.2020.02.004)
      Preda A, Carbone F, Tirandi A, Montecucco F, Liberale L (2023) Obesity phenotypes and cardiovascular risk: from pathophysiology to clinical management. Rev Endocr Metab Disord 24(5):901–919. (PMID: 373587281049270510.1007/s11154-023-09813-5)
      Ayton SL, Gulsin GS, McCann GP, Moss AJ (2022) Epicardial adipose tissue in obesity-related cardiac dysfunction. Heart (British Cardiac Society) 108(5):339–344. (PMID: 33985985)
      Chin JF, Aga YS, Abou Kamar S, Kroon D, Snelder SM, van de Poll SWE, Kardys I, Brugts JJ, de Boer RA, van Dalen BM (2023) Association between epicardial adipose tissue and cardiac dysfunction in subjects with severe obesity. Eur J Heart Fail 25(11):1936–1943. (PMID: 3764219510.1002/ejhf.3011)
      Salvatore T, Galiero R, Caturano A, Vetrano E, Rinaldi L, Coviello F, Di Martino A, Albanese G, Colantuoni S, Medicamento G et al (2022) Dysregulated epicardial adipose tissue as a risk factor and potential therapeutic target of heart failure with preserved ejection fraction in diabetes. Biomolecules 12(2):176. (PMID: 35204677896167210.3390/biom12020176)
      Shi Y-J, Dong G-J, Guo M (2023) Targeting epicardial adipose tissue: a potential therapeutic strategy for heart failure with preserved ejection fraction with type 2 diabetes mellitus. World J Diabetes 14(6):724–740. (PMID: 373836011029407010.4239/wjd.v14.i6.724)
      van Woerden G, van Veldhuisen DJ, Westenbrink BD, de Boer RA, Rienstra M, Gorter TM (2022) Connecting epicardial adipose tissue and heart failure with preserved ejection fraction: mechanisms, management and modern perspectives. Eur J Heart Fail 24(12):2238–2250. (PMID: 3639451210.1002/ejhf.2741)
      Borlaug BA (2020) Evaluation and management of heart failure with preserved ejection fraction. Nat Rev Cardiol 17(9):559–573. (PMID: 3223133310.1038/s41569-020-0363-2)
      Pieske B, Tschöpe C, de Boer RA, Fraser AG, Anker SD, Donal E, Edelmann F, Fu M, Guazzi M, Lam CSP et al (2019) How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur Heart J 40(40):3297–3317. (PMID: 3150445210.1093/eurheartj/ehz641)
      Verbrugge FH, Omote K, Reddy YNV, Sorimachi H, Obokata M, Borlaug BA (2022) Heart failure with preserved ejection fraction in patients with normal natriuretic peptide levels is associated with increased morbidity and mortality. Eur Heart J 43(20):1941–1951. (PMID: 35139159964991310.1093/eurheartj/ehab911)
      Obokata M, Reddy YNV, Melenovsky V, Sorimachi H, Jarolim P, Borlaug BA (2022) Uncoupling between intravascular and distending pressures leads to underestimation of circulatory congestion in obesity. Eur J Heart Fail 24(2):353–361. (PMID: 3475542910.1002/ejhf.2377)
      Lee VYJ, Houston L, Perkovic A, Barraclough JY, Sweeting A, Yu J, Fletcher RA, Arnott C (2024) The effect of weight loss through lifestyle interventions in patients with heart failure with preserved ejection fraction-a systematic review and meta-analysis of randomised controlled trials. Heart Lung Circ 33(2):197–208. (PMID: 3832088110.1016/j.hlc.2023.11.022)
      Mikhalkova D, Holman SR, Jiang H, Saghir M, Novak E, Coggan AR, O’Connor R, Bashir A, Jamal A, Ory DS et al (2018) Bariatric surgery-induced cardiac and lipidomic changes in obesity-related heart failure with preserved ejection fraction. Obesity (Silver Spring) 26(2):284–290. (PMID: 2924339610.1002/oby.22038)
      Packer M, Kitzman DW (2018) Obesity-related heart failure with a preserved ejection fraction: the mechanistic rationale for combining inhibitors of aldosterone, neprilysin, and sodium-glucose cotransporter-2. JACC Heart Fail 6(8):633–639. (PMID: 2952532710.1016/j.jchf.2018.01.009)
      Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B, Clausell N, Desai AS, Diaz R, Fleg JL et al (2014) Spironolactone for heart failure with preserved ejection fraction. N Engl J Med 370(15):1383–1392. (PMID: 2471668010.1056/NEJMoa1313731)
      Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M, Brunner-La Rocca H-P, Choi D-J, Chopra V, Chuquiure-Valenzuela E et al (2021) Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med 385(16):1451–1461. (PMID: 3444918910.1056/NEJMoa2107038)
      Nassif ME, Windsor SL, Borlaug BA, Kitzman DW, Shah SJ, Tang F, Khariton Y, Malik AO, Khumri T, Umpierrez G et al (2021) The SGLT2 inhibitor dapagliflozin in heart failure with preserved ejection fraction: a multicenter randomized trial. Nat Med 27(11):1954–1960. (PMID: 34711976860472510.1038/s41591-021-01536-x)
      Alexiadou K, Hartley A, Tan TMM, Khamis R (2024) The cardiovascular effects of GLP-1 receptor agonists beyond obesity and type 2 diabetes: an anti-atherosclerotic action. Trends Cardiovasc Med. https://doi.org/10.1016/j.tcm.2024.03.003. (PMID: 10.1016/j.tcm.2024.03.00338555029)
      Capone F, Nambiar N, Schiattarella GG (2024) Beyond weight loss: the emerging role of incretin-based treatments in cardiometabolic HFpEF. Curr Opin Cardiol 39(3):148–153. (PMID: 3829418710.1097/HCO.0000000000001117)
      Cimino G, Vaduganathan M, Lombardi CM, Pagnesi M, Vizzardi E, Tomasoni D, Adamo M, Metra M, Inciardi RM (2024) Obesity, heart failure with preserved ejection fraction, and the role of glucagon-like peptide-1 receptor agonists. ESC Heart Failure 11(2):649–661. (PMID: 3809350610.1002/ehf2.14560)
      Jalil JE, Gabrielli L, Ocaranza MP, MacNab P, Fernández R, Grassi B, Jofré P, Verdejo H, Acevedo M, Cordova S et al (2024) New mechanisms to prevent heart failure with preserved ejection fraction using glucagon-like peptide-1 receptor agonism (GLP-1 RA) in metabolic syndrome and in type 2 diabetes: a review. Int J Mol Sci 25(8):4407. (PMID: 386739911104992110.3390/ijms25084407)
      Ussher JR, Drucker DJ (2023) Glucagon-like peptide 1 receptor agonists: cardiovascular benefits and mechanisms of action. Nat Rev Cardiol 20(7):463–474. (PMID: 3697778210.1038/s41569-023-00849-3)
      Avogaro A, Azzolina D, Gregori D, De Kreutzenberg S, Fadini GP, Mannucci E (2022) The effect of GLP-1 receptor agonists on N-terminal pro-brain natriuretic peptide. A scoping review and metanalysis. Int J Cardiol 357:123–127. (PMID: 3530603310.1016/j.ijcard.2022.03.032)
      Holman RR, Bethel MA, Mentz RJ, Thompson VP, Lokhnygina Y, Buse JB, Chan JC, Choi J, Gustavson SM, Iqbal N et al (2017) Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med 377(13):1228–1239. (PMID: 28910237979240910.1056/NEJMoa1612917)
      Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JFE, Nauck MA, Nissen SE, Pocock S, Poulter NR, Ravn LS et al (2016) Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 375(4):311–322. (PMID: 27295427498528810.1056/NEJMoa1603827)
      Lincoff AM, Brown-Frandsen K, Colhoun HM, Deanfield J, Emerson SS, Esbjerg S, Hardt-Lindberg S, Hovingh GK, Kahn SE, Kushner RF et al (2023) Semaglutide and cardiovascular outcomes in obesity without diabetes. N Engl J Med 389(24):2221–2232. (PMID: 3795213110.1056/NEJMoa2307563)
      Sattar N, Lee MMY, Kristensen SL, Branch KRH, Del Prato S, Khurmi NS, Lam CSP, Lopes RD, McMurray JJV, Pratley RE et al (2021) Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol 9(10):653–662. (PMID: 3442508310.1016/S2213-8587(21)00203-5)
      Hernandez AF, Green JB, Janmohamed S, D’Agostino RB, Granger CB, Jones NP, Leiter LA, Rosenberg AE, Sigmon KN, Somerville MC et al (2018) Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet (London, England) 392(10157):1519–1529. (PMID: 3029101310.1016/S0140-6736(18)32261-X)
      Lam CSP, Ramasundarahettige C, Branch KRH, Sattar N, Rosenstock J, Pratley R, Del Prato S, Lopes RD, Niemoeller E, Khurmi NS et al (2022) Efpeglenatide and clinical outcomes with and without concomitant sodium-glucose cotransporter-2 inhibition use in type 2 diabetes: exploratory analysis of the AMPLITUDE-O trial. Circulation 145(8):565–574. (PMID: 3477578110.1161/CIRCULATIONAHA.121.057934)
      Kreiner FF, Hovingh GKK, von Scholten BJ (2022) The potential of glucagon-like peptide-1 receptor agonists in heart failure. Front Physiol 13:983961. (PMID: 36203939953130910.3389/fphys.2022.983961)
      Giugliano D, Scappaticcio L, Longo M, Caruso P, Maiorino MI, Bellastella G, Ceriello A, Chiodini P, Esposito K (2021) GLP-1 receptor agonists and cardiorenal outcomes in type 2 diabetes: an updated meta-analysis of eight CVOTs. Cardiovasc Diabetol 20(1):189. (PMID: 34526024844243810.1186/s12933-021-01366-8)
      Kristensen SL, Rørth R, Jhund PS, Docherty KF, Sattar N, Preiss D, Køber L, Petrie MC, McMurray JJV (2019) Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol 7(10):776–785. (PMID: 3142206210.1016/S2213-8587(19)30249-9)
      Kosiborod MN, Abildstrøm SZ, Borlaug BA, Butler J, Rasmussen S, Davies M, Hovingh GK, Kitzman DW, Lindegaard ML, Møller DV et al (2023) Semaglutide in patients with heart failure with preserved ejection fraction and obesity. N Engl J Med 389(12):1069–1084. (PMID: 3762268110.1056/NEJMoa2306963)
      Borlaug BA, Kitzman DW, Davies MJ, Rasmussen S, Barros E, Butler J, Einfeldt MN, Hovingh GK, Møller DV, Petrie MC et al (2023) Semaglutide in HFpEF across obesity class and by body weight reduction: a prespecified analysis of the STEP-HFpEF trial. Nat Med 29(9):2358–2365. (PMID: 376351571050407610.1038/s41591-023-02526-x)
      Butler J, Shah SJ, Petrie MC, Borlaug BA, Abildstrøm SZ, Davies MJ, Hovingh GK, Kitzman DW, Møller DV, Verma S et al (2024) Semaglutide versus placebo in people with obesity-related heart failure with preserved ejection fraction: a pooled analysis of the STEP-HFpEF and STEP-HFpEF DM randomised trials. Lancet (London, England) 403(10437):1635–1648. (PMID: 3859922110.1016/S0140-6736(24)00469-0)
      Shah SJ, Sharma K, Borlaug BA, Butler J, Davies M, Kitzman DW, Petrie MC, Verma S, Patel S, Chinnakondepalli KM et al (2024) Semaglutide and diuretic use in obesity-related heart failure with preserved ejection fraction: a pooled analysis of the STEP-HFpEF and STEP-HFpEF-DM trials. Eur Heart J. https://doi.org/10.1093/eurheartj/ehae322. (PMID: 10.1093/eurheartj/ehae3223956801611400859)
      Lau D (2024) In HFpEF with obesity, semaglutide improved health status and weight loss at 52 wk, regardless of initial health status. Ann Intern Med 177(5):JC56. (PMID: 3871008310.7326/J24-0025)
      Gallo G, Volpe M (2024) Potential mechanisms of the protective effects of the cardiometabolic drugs type-2 sodium-glucose transporter inhibitors and glucagon-like peptide-1 receptor agonists in heart failure. Int J Mol Sci 25(5):2484. (PMID: 384737321093171810.3390/ijms25052484)
      Margulies KB, Hernandez AF, Redfield MM, Givertz MM, Oliveira GH, Cole R, Mann DL, Whellan DJ, Kiernan MS, Felker GM et al (2016) Effects of liraglutide on clinical stability among patients with advanced heart failure and reduced ejection fraction: a randomized clinical trial. JAMA 316(5):500–508. (PMID: 27483064502152510.1001/jama.2016.10260)
      Jorsal A, Kistorp C, Holmager P, Tougaard RS, Nielsen R, Hänselmann A, Nilsson B, Møller JE, Hjort J, Rasmussen J et al (2017) Effect of liraglutide, a glucagon-like peptide-1 analogue, on left ventricular function in stable chronic heart failure patients with and without diabetes (LIVE)-a multicentre, double-blind, randomised, placebo-controlled trial. Eur J Heart Fail 19(1):69–77. (PMID: 2779080910.1002/ejhf.657)
      Lepore JJ, Olson E, Demopoulos L, Haws T, Fang Z, Barbour AM, Fossler M, Davila-Roman VG, Russell SD, Gropler RJ (2016) Effects of the novel long-acting GLP-1 agonist, albiglutide, on cardiac function, cardiac metabolism, and exercise capacity in patients with chronic heart failure and reduced ejection fraction. JACC Heart Fail 4(7):559–566. (PMID: 2703912510.1016/j.jchf.2016.01.008)
      Pyke C, Heller RS, Kirk RK, Ørskov C, Reedtz-Runge S, Kaastrup P, Hvelplund A, Bardram L, Calatayud D, Knudsen LB (2014) GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody. Endocrinology 155(4):1280–1290. (PMID: 2446774610.1210/en.2013-1934)
      Packer M (2018) Will long-acting glucagon-like peptide-1 analogues recapitulate our agonizing experience with cyclic AMP-dependent positive inotropic agents in heart failure? Eur J Heart Fail 20(4):627–629. (PMID: 2908259810.1002/ejhf.1047)
      Ibrahim NE, Gaggin HK, Turchin A, Patel HK, Song Y, Trebnick A, Doros G, Maya JF, Cannon CP, Januzzi JL (2019) Heart rate, beta-blocker use, and outcomes of heart failure with reduced ejection fraction. Eur Heart J Cardiovasc Pharmacother 5(1):3–11. (PMID: 2949003210.1093/ehjcvp/pvy011)
      Yuasa N, Obokata M, Harada T, Kagami K, Sorimachi H, Saito Y, Naito A, Kato T, Wada N, Ishii H (2024) Characterization and prognostic importance of chronotropic incompetence in heart failure with preserved ejection fraction. J Cardiol 83(2):113–120. (PMID: 3741931010.1016/j.jjcc.2023.06.014)
      Magrì D, Gallo G, Piepoli M, Salvioni E, Mapelli M, Vignati C, Fiori E, Muthukkattil ML, Corrà U, Metra M et al (2024) What about chronotropic incompetence in heart failure with mildly reduced ejection fraction? Clinical and prognostic implications from the Metabolic Exercise combined with Cardiac and Kidney Indexes score dataset. Eur J Prev Cardiol 31(2):263–271. (PMID: 3789003310.1093/eurjpc/zwad338)
      Kagami K, Obokata M, Harada T, Kato T, Wada N, Adachi T, Ishii H (2022) Diastolic filling time, chronotropic response, and exercise capacity in heart failure and preserved ejection fraction with sinus rhythm. J Am Heart Assoc 11(13):e026009. (PMID: 35766289933339310.1161/JAHA.121.026009)
      Mesquita T, Zhang R, Cho JH, Zhang R, Lin Y-N, Sanchez L, Goldhaber JI, Yu JK, Liang JA, Liu W et al (2022) Mechanisms of sinoatrial node dysfunction in heart failure with preserved ejection fraction. Circulation 145(1):45–60. (PMID: 3490569610.1161/CIRCULATIONAHA.121.054976)
      Sarma S, Stoller D, Hendrix J, Howden E, Lawley J, Livingston S, Adams-Huet B, Holmes C, Goldstein DS, Levine BD (2020) Mechanisms of chronotropic incompetence in heart failure with preserved ejection fraction. Circ Heart Fail 13(3):e006331. (PMID: 32164435734728510.1161/CIRCHEARTFAILURE.119.006331)
      Infeld M, Wahlberg K, Cicero J, Plante TB, Meagher S, Novelli A, Habel N, Krishnan AM, Silverman DN, LeWinter MM et al (2023) Effect of personalized accelerated pacing on quality of life, physical activity, and atrial fibrillation in patients with preclinical and overt heart failure with preserved ejection fraction: the myPACE Randomized Clinical Trial. JAMA Cardiology 8(3):213–221. (PMID: 36723919999640210.1001/jamacardio.2022.5320)
      Reddy YNV, Koepp KE, Carter R, Win S, Jain CC, Olson TP, Johnson BD, Rea R, Redfield MM, Borlaug BA (2023) Rate-adaptive atrial pacing for heart failure with preserved ejection fraction: the RAPID-HF Randomized Clinical Trial. JAMA 329(10):801–809. (PMID: 36871285998683910.1001/jama.2023.0675)
      Palau P, Seller J, Domínguez E, Sastre C, Ramón JM, de La Espriella R, Santas E, Miñana G, Bodí V, Sanchis J et al (2021) Effect of β-blocker withdrawal on functional capacity in heart failure and preserved ejection fraction. J Am Coll Cardiol 78(21):2042–2056. (PMID: 3479468510.1016/j.jacc.2021.08.073)
      Ferreira JP, Sharma A, Butler J, Packer M, Zannad F, Vasques-Nóvoa F, Leite-Moreira A, Neves JS (2023) Glucagon-like peptide-1 receptor agonists across the spectrum of heart failure. J Clin Endocrinol Metab 109(1):4–9. (PMID: 3740973310.1210/clinem/dgad398)
      Neves JS, Vasques-Nóvoa F, Borges-Canha M, Leite AR, Sharma A, Carvalho D, Packer M, Zannad F, Leite-Moreira A, Ferreira JP (2023) Risk of adverse events with liraglutide in heart failure with reduced ejection fraction: a post hoc analysis of the FIGHT trial. Diabetes Obes Metab 25(1):189–197. (PMID: 3608252210.1111/dom.14862)
      Cho D-H, Park S-M (2024) Epicardial adipose tissue and heart failure, friend or foe? Diabetes Metab J 48(3):373–384. (PMID: 383108801114039610.4093/dmj.2023.0190)
      He S, Zhao L, Zhang J, Yang X, Zhu H (2024) Identification of molecular signatures in epicardial adipose tissue in heart failure with preserved ejection fraction. ESC Heart Failure. https://doi.org/10.1002/ehf2.14748. (PMID: 10.1002/ehf2.147483914374111424339)
      Rossi VA, Gruebler M, Monzo L, Galluzzo A, Beltrami M (2023) The different pathways of epicardial adipose tissue across the heart failure phenotypes: from pathophysiology to therapeutic target. Int J Mol Sci 24(7):6838. (PMID: 370478101009529810.3390/ijms24076838)
      Pugliese NR, Paneni F, Mazzola M, De Biase N, Del Punta L, Gargani L, Mengozzi A, Virdis A, Nesti L, Taddei S et al (2021) Impact of epicardial adipose tissue on cardiovascular haemodynamics, metabolic profile, and prognosis in heart failure. Eur J Heart Fail 23(11):1858–1871. (PMID: 3442701610.1002/ejhf.2337)
      Liu J, Yu Q, Li Z, Zhou Y, Liu Z, You L, Tao L, Dong Q, Zuo Z, Gao L, Zhang D (2023) Epicardial adipose tissue density is a better predictor of cardiometabolic risk in HFpEF patients: a prospective cohort study. Cardiovasc Diabetol 22(1):45. (PMID: 36870978998586410.1186/s12933-023-01778-8)
      Greulich S, de Wiza DH, Preilowski S, Ding Z, Mueller H, Langin D, Jaquet K, Ouwens DM, Eckel J (2011) Secretory products of guinea pig epicardial fat induce insulin resistance and impair primary adult rat cardiomyocyte function. J Cell Mol Med 15(11):2399–2410. (PMID: 21143387382295110.1111/j.1582-4934.2010.01232.x)
      Gorter TM, van Woerden G, Rienstra M, Dickinson MG, Hummel YM, Voors AA, Hoendermis ES, van Veldhuisen DJ (2020) Epicardial adipose tissue and invasive hemodynamics in heart failure with preserved ejection fraction. JACC Heart Fail 8(8):667–676. (PMID: 3265344410.1016/j.jchf.2020.06.003)
      Koepp KE, Obokata M, Reddy YNV, Olson TP, Borlaug BA (2020) Hemodynamic and functional impact of epicardial adipose tissue in heart failure with preserved ejection fraction. JACC Heart Fail 8(8):657–666. (PMID: 32653449739587810.1016/j.jchf.2020.04.016)
      Iacobellis G, Mohseni M, Bianco SD, Banga PK (2017) Liraglutide causes large and rapid epicardial fat reduction. Obesity (Silver Spring) 25(2):311–316. (PMID: 2812450610.1002/oby.21718)
      Iacobellis G, Villasante Fricke AC (2020) Effects of semaglutide versus dulaglutide on epicardial fat thickness in subjects with type 2 diabetes and obesity. J Endocr Soc 4(4):bvz042. (PMID: 32190806706983710.1210/jendso/bvz042)
      Iacobellis G, Basilico S, Malavazos AE (2022) Targeting epicardial fat in obesity and diabetes pharmacotherapy. Handb Exp Pharmacol 274:93–108. (PMID: 3515613810.1007/164_2021_577)
      Maryam, Varghese TP, B T (2024) Unraveling the complex pathophysiology of heart failure: insights into the role of renin-angiotensin-aldosterone system (RAAS) and sympathetic nervous system (SNS). Curr Probl Cardiol, 49(4):102411.
      Pugliese NR, Masi S, Taddei S (2020) The renin-angiotensin-aldosterone system: a crossroad from arterial hypertension to heart failure. Heart Fail Rev 25(1):31–42. (PMID: 3151214910.1007/s10741-019-09855-5)
      Martin N, Manoharan K, Thomas J, Davies C, Lumbers RT (2018) Beta-blockers and inhibitors of the renin-angiotensin aldosterone system for chronic heart failure with preserved ejection fraction. Cochrane Database Syst Rev 6(6):CD012721. (PMID: 29952095)
      Odajima S, Tanaka H, Fujimoto W, Kuroda K, Yamashita S, Imanishi J, Iwasaki M, Todoroki T, Okuda M, Hayashi T et al (2022) Efficacy of Renin-angiotensin-aldosterone-system inhibitors for heart failure with preserved ejection fraction and left ventricular hypertrophy-from the KUNIUMI Registry Acute Cohort. J Cardiol 79(6):703–710. (PMID: 3492423510.1016/j.jjcc.2021.12.002)
      Fukuta H, Goto T, Wakami K, Kamiya T, Ohte N (2021) Effect of renin-angiotensin system inhibition on cardiac structure and function and exercise capacity in heart failure with preserved ejection fraction: a meta-analysis of randomized controlled trials. Heart Fail Rev 26(6):1477–1484. (PMID: 3256202110.1007/s10741-020-09969-1)
      Bhullar SK, Dhalla NS (2022) Angiotensin II-induced signal transduction mechanisms for cardiac hypertrophy. Cells 11(21):3336. (PMID: 36359731965734210.3390/cells11213336)
      Skov J, Dejgaard A, Frøkiær J, Holst JJ, Jonassen T, Rittig S, Christiansen JS (2013) Glucagon-like peptide-1 (GLP-1): effect on kidney hemodynamics and renin-angiotensin-aldosterone system in healthy men. J Clin Endocrinol Metab 98(4):E664–E671. (PMID: 2346365610.1210/jc.2012-3855)
      Withaar C, Meems LMG, Markousis-Mavrogenis G, Boogerd CJ, Silljé HHW, Schouten EM, Dokter MM, Voors AA, Westenbrink BD, Lam CSP, de Boer RA (2021) The effects of liraglutide and dapagliflozin on cardiac function and structure in a multi-hit mouse model of heart failure with preserved ejection fraction. Cardiovasc Res 117(9):2108–2124. (PMID: 3287100910.1093/cvr/cvaa256)
      Aimo A, Vergaro G, Passino C, Clerico A (2021) Evaluation of pathophysiological relationships between renin-angiotensin and ACE-ACE2 systems in cardiovascular disorders: from theory to routine clinical practice in patients with heart failure. Crit Rev Clin Lab Sci 58(8):530–545. (PMID: 3419625410.1080/10408363.2021.1942782)
      Zheng R-H, Bai X-J, Zhang W-W, Wang J, Bai F, Yan C-P, James EA, Bose HS, Wang N-P, Zhao Z-Q (2019) Liraglutide attenuates cardiac remodeling and improves heart function after abdominal aortic constriction through blocking angiotensin II type 1 receptor in rats. Drug Des Devel Ther 13:2745–2757. (PMID: 31496651669004810.2147/DDDT.S213910)
      Martins FL, Bailey MA, Girardi ACC (2020) Endogenous activation of glucagon-like peptide-1 receptor contributes to blood pressure control: role of proximal tubule Na+/H+ exchanger isoform 3, renal angiotensin II, and insulin sensitivity. Hypertension 76(3):839–848. (PMID: 3275546710.1161/HYPERTENSIONAHA.120.14868)
      Mendis B, Simpson E, MacDonald I, Mansell P (2012) Investigation of the haemodynamic effects of exenatide in healthy male subjects. Br J Clin Pharmacol 74(3):437–444. (PMID: 22320349347734510.1111/j.1365-2125.2012.04214.x)
      Chaudhuri A, Ghanim H, Makdissi A, Green K, Abuaysheh S, Batra M (2017) D Kuhadiya N, Dandona P: Exenatide induces an increase in vasodilatory and a decrease in vasoconstrictive mediators. Diabetes Obes Metab 19(5):729–733. (PMID: 2789176910.1111/dom.12835)
      Lopaschuk GD, Karwi QG, Tian R, Wende AR, Abel ED (2021) Cardiac energy metabolism in heart failure. Circ Res 128(10):1487–1513. (PMID: 33983836813675010.1161/CIRCRESAHA.121.318241)
      Hahn VS, Petucci C, Kim M-S, Bedi KC, Wang H, Mishra S, Koleini N, Yoo EJ, Margulies KB, Arany Z et al (2023) Myocardial metabolomics of human heart failure with preserved ejection fraction. Circulation 147(15):1147–1161. (PMID: 368560441105924210.1161/CIRCULATIONAHA.122.061846)
      Capone F, Sotomayor-Flores C, Bode D, Wang R, Rodolico D, Strocchi S, Schiattarella GG (2023) Cardiac metabolism in HFpEF: from fuel to signalling. Cardiovasc Res 118(18):3556–3575. (PMID: 3650436810.1093/cvr/cvac166)
      Fillmore N, Levasseur JL, Fukushima A, Wagg CS, Wang W, Dyck JRB, Lopaschuk GD (2018) Uncoupling of glycolysis from glucose oxidation accompanies the development of heart failure with preserved ejection fraction. Mol Med 24(1):3. (PMID: 30134787601688410.1186/s10020-018-0005-x)
      Zhang Z, Sun M, Jiang W, Yu L, Zhang C, Ma H (2024) Myocardial metabolic reprogramming in HFpEF. J Cardiovasc Transl Res 17(1):121–132. (PMID: 3765098810.1007/s12265-023-10433-2)
      Mahmod M, Pal N, Rayner J, Holloway C, Raman B, Dass S, Levelt E, Ariga R, Ferreira V, Banerjee R et al (2018) The interplay between metabolic alterations, diastolic strain rate and exercise capacity in mild heart failure with preserved ejection fraction: a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 20(1):88. (PMID: 30580760630476410.1186/s12968-018-0511-6)
      Schiattarella GG, Altamirano F, Tong D, French KM, Villalobos E, Kim SY, Luo X, Jiang N, May HI, Wang ZV et al (2019) Nitrosative stress drives heart failure with preserved ejection fraction. Nature 568(7752):351–356. (PMID: 30971818663595710.1038/s41586-019-1100-z)
      Deng Y, Xie M, Li Q, Xu X, Ou W, Zhang Y, Xiao H, Yu H, Zheng Y, Liang Y et al (2021) Targeting mitochondria-inflammation circuit by β-hydroxybutyrate mitigates HFpEF. Circ Res 128(2):232–245. (PMID: 3317657810.1161/CIRCRESAHA.120.317933)
      Valero-Muñoz M, Saw EL, Hekman RM, Blum BC, Hourani Z, Granzier H, Emili A, Sam F (2022) Proteomic and phosphoproteomic profiling in heart failure with preserved ejection fraction (HFpEF). Frontiers In Cardiovascular Medicine 9:966968. (PMID: 36093146945273410.3389/fcvm.2022.966968)
      Gibb AA, Murray EK, Eaton DM, Huynh AT, Tomar D, Garbincius JF, Kolmetzky DW, Berretta RM, Wallner M, Houser SR, Elrod JW (2021) Molecular signature of HFpEF: systems biology in a cardiac-centric large animal model. JACC Basic Transl Sci 6(8):650–672. (PMID: 34466752838556710.1016/j.jacbts.2021.07.004)
      Olsen MB, Gregersen I, Sandanger Ø, Yang K, Sokolova M, Halvorsen BE, Gullestad L, Broch K, Aukrust P, Louwe MC (2022) Targeting the inflammasome in cardiovascular disease. JACC Basic Transl Sci 7(1):84–98. (PMID: 3512821210.1016/j.jacbts.2021.08.006)
      Cheng X, Zhao H, Wen X, Li G, Guo S, Zhang D (2023) NLRP3-inflammasome inhibition by MCC950 attenuates cardiac and pulmonary artery remodelling in heart failure with preserved ejection fraction. Life Sci 333:122185. (PMID: 3785871310.1016/j.lfs.2023.122185)
      Horton JL, Davidson MT, Kurishima C, Vega RB, Powers JC, Matsuura TR, Petucci C, Lewandowski ED, Crawford PA, Muoio DM et al (2019) The failing heart utilizes 3-hydroxybutyrate as a metabolic stress defense. JCI Insight 4(4):e124079. (PMID: 30668551647841910.1172/jci.insight.124079)
      Aoi W, Naito Y, Yoshikawa T (2014) Potential role of oxidative protein modification in energy metabolism in exercise. Subcell Biochem 77:175–187. (PMID: 2437492810.1007/978-94-007-7920-4_15)
      Al Batran R, Almutairi M, Ussher JR (2018) Glucagon-like peptide-1 receptor mediated control of cardiac energy metabolism. Peptides 100:94–100. (PMID: 2941283810.1016/j.peptides.2017.12.005)
      Kumar AA, Kelly DP, Chirinos JA (2019) Mitochondrial dysfunction in heart failure with preserved ejection fraction. Circulation 139(11):1435–1450. (PMID: 30856000641407710.1161/CIRCULATIONAHA.118.036259)
      Chang G, Zhang D, Liu J, Zhang P, Ye L, Lu K, Duan Q, Zheng A, Qin S (2014) Exenatide protects against hypoxia/reoxygenation-induced apoptosis by improving mitochondrial function in H9c2 cells. Exp Biol Med (Maywood) 239(4):414–422. (PMID: 2458609910.1177/1535370214522177)
      Yang F, Wang X, Qi J, Zhang K, Jiang Y, Feng B, Lv T, Yang L, Yang Q, Zhao M et al (2022) Glucagon-like peptide 1 receptor activation inhibits microglial pyroptosis via promoting mitophagy to alleviate depression-like behaviors in diabetic mice. Nutrients 15(1):38. (PMID: 36615696982483410.3390/nu15010038)
      Yang G, Lei Y, Inoue A, Piao L, Hu L, Jiang H, Sasaki T, Wu H, Xu W, Yu C et al (2017) Exenatide mitigated diet-induced vascular aging and atherosclerotic plaque growth in ApoE-deficient mice under chronic stress. Atherosclerosis 264:1. (PMID: 2873420310.1016/j.atherosclerosis.2017.07.014)
      Xiong X, Lu W, Qin X, Luo Q, Zhou W (2020) Downregulation of the GLP-1/CREB/adiponectin pathway is partially responsible for diabetes-induced dysregulated vascular tone and VSMC dysfunction. Biomedicine Pharmacotherapy = Biomedecine Pharmacotherapie 127:110218. (PMID: 3255984910.1016/j.biopha.2020.110218)
      Paulus WJ, Zile MR (2021) From systemic inflammation to myocardial fibrosis: the heart failure with preserved ejection fraction paradigm revisited. Circ Res 128(10):1451–1467. (PMID: 33983831835179610.1161/CIRCRESAHA.121.318159)
      Triposkiadis F, Xanthopoulos A, Starling RC, Iliodromitis E (2022) Obesity, inflammation, and heart failure: links and misconceptions. Heart Fail Rev 27(2):407–418. (PMID: 3382938810.1007/s10741-021-10103-y)
      Wenzl FA, Ambrosini S, Mohammed SA, Kraler S, Lüscher TF, Costantino S, Paneni F (2021) Inflammation in metabolic cardiomyopathy. Front In Cardiovasc Med 8:742178. (PMID: 10.3389/fcvm.2021.742178)
      Patel RB, Colangelo LA, Reiner AP, Gross MD, Jacobs DR, Launer LJ, Lima JAC, Lloyd-Jones DM, Shah SJ (2020) Cellular adhesion molecules in young adulthood and cardiac function in later life. J Am Coll Cardiol 75(17):2156–2165. (PMID: 32194198730161110.1016/j.jacc.2020.02.060)
      Van Tassell BW, Arena R, Biondi-Zoccai G, Canada JM, Oddi C, Abouzaki NA, Jahangiri A, Falcao RA, Kontos MC, Shah KB et al (2014) Effects of interleukin-1 blockade with anakinra on aerobic exercise capacity in patients with heart failure and preserved ejection fraction (from the D-HART pilot study). Am J Cardiol 113(2):321–327. (PMID: 2426276210.1016/j.amjcard.2013.08.047)
      Zhang B, Pan C, Feng C, Yan C, Yu Y, Chen Z, Guo C, Wang X (2022) Role of mitochondrial reactive oxygen species in homeostasis regulation. Redox Rep 27(1):45–52. (PMID: 35213291889053210.1080/13510002.2022.2046423)
      Simmonds SJ, Cuijpers I, Heymans S, Jones EAV (2020) Cellular and molecular differences between HFpEF and HFrEF: a step ahead in an improved pathological understanding. Cells 9(1):242. (PMID: 31963679701682610.3390/cells9010242)
      Andrabi SM, Sharma NS, Karan A, Shahriar SMS, Cordon B, Ma B, Xie J (2023) Nitric oxide: physiological functions, delivery, and biomedical applications. Adv Sci (Weinh) 10(30):e2303259. (PMID: 3763270810.1002/advs.202303259)
      Stroik D, Gregorich ZR, Raza F, Ge Y, Guo W (2024) Titin: roles in cardiac function and diseases. Front Physiol 15:1385821. (PMID: 386605371104009910.3389/fphys.2024.1385821)
      Liu X, Wang Y, Zhang X, Zhang X, Guo J, Zhou J, Chai Y, Ma Z-L (2019) MicroRNA-296-5p promotes healing of diabetic wound by targeting sodium-glucose transporter 2 (SGLT2). Diabetes Metab Res Rev 35(2):e3104. (PMID: 3046797010.1002/dmrr.3104)
      Sandsdal RM, Juhl CR, Jensen SBK, Lundgren JR, Janus C, Blond MB, Rosenkilde M, Bogh AF, Gliemann L, Jensen J-EB et al (2023) Combination of exercise and GLP-1 receptor agonist treatment reduces severity of metabolic syndrome, abdominal obesity, and inflammation: a randomized controlled trial. Cardiovasc Diabetol 22(1):41. (PMID: 36841762996042510.1186/s12933-023-01765-z)
      Li Q, Tuo X, Li B, Deng Z, Qiu Y, Xie H (2020) Semaglutide attenuates excessive exercise-induced myocardial injury through inhibiting oxidative stress and inflammation in rats. Life Sci 250:117531. (PMID: 3215169110.1016/j.lfs.2020.117531)
      Zheng W, Pan H, Wei L, Gao F, Lin X (2019) Dulaglutide mitigates inflammatory response in fibroblast-like synoviocytes. Int Immunopharmacol 74:105649. (PMID: 3118545010.1016/j.intimp.2019.05.034)
      Bray JJH, Foster-Davies H, Salem A, Hoole AL, Obaid DR, Halcox JPJ, Stephens JW (2021) Glucagon-like peptide-1 receptor agonists improve biomarkers of inflammation and oxidative stress: a systematic review and meta-analysis of randomised controlled trials. Diabetes Obes Metab 23(8):1806–1822. (PMID: 3383063710.1111/dom.14399)
      Liu J, Aylor KW, Liu Z (2023) Liraglutide and exercise synergistically attenuate vascular inflammation and enhance metabolic insulin action in early diet-induced obesity. Diabetes 72(7):918–931. (PMID: 370743961028123510.2337/db22-0745)
      Ying W, Meiyan S, Wen C, Kaizu X, Meifang W, Liming L (2023) Liraglutide ameliorates oxidized LDL-induced endothelial dysfunction by GLP-1R-dependent downregulation of LOX-1-mediated oxidative stress and inflammation. Redox Rep 28(1):2218684. (PMID: 372783491024946010.1080/13510002.2023.2218684)
      Durak A, Turan B (2023) Liraglutide provides cardioprotection through the recovery of mitochondrial dysfunction and oxidative stress in aging hearts. J Physiol Biochem 79(2):297–311. (PMID: 3651581110.1007/s13105-022-00939-9)
      Mangmool S, Hemplueksa P, Parichatikanond W, Chattipakorn N (2015) Epac is required for GLP-1R-mediated inhibition of oxidative stress and apoptosis in cardiomyocytes. Mol Endocrinol 29(4):583–596. (PMID: 25719403541474510.1210/me.2014-1346)
      Aladin AI, Soliman EZ, Kitzman DW, Dardari Z, Rasool SH, Yeboah J, Budoff MJ, Psaty BM, Ouyang P, Polak JF et al (2021) Comparison of the relation of carotid intima-media thickness with incident heart failure with reduced versus preserved ejection fraction (from the Multi-Ethnic Study of Atherosclerosis [MESA]). Am J Cardiol 148:102–109. (PMID: 33667446811313310.1016/j.amjcard.2021.02.020)
      Adamo L, Yu J, Rocha-Resende C, Javaheri A, Head RD, Mann DL (2020) Proteomic signatures of heart failure in relation to left ventricular ejection fraction. J Am Coll Cardiol 76(17):1982–1994. (PMID: 33092734758480710.1016/j.jacc.2020.08.061)
      He X, Dong B, Liang W, Wu Y, Chen Y, Dong Y, He J, Liu C (2022) Ischemic risk in patients with heart failure with preserved ejection fraction: a post hoc analysis of the TOPCAT data. Atherosclerosis 344:1–6. (PMID: 3510178310.1016/j.atherosclerosis.2022.01.013)
      Maeda H, Sugiyama S, Jinnouchi H, Matsuzawa Y, Fujisue K, Hirata Y, Kurokawa H, Ohba K, Matsubara J, Nozaki T et al (2016) Advanced peripheral microvascular endothelial dysfunction and polyvascular disease in patients with high cardiovascular risk. J Cardiol 67(5):455–462. (PMID: 2634375210.1016/j.jjcc.2015.07.003)
      Fujisue K, Tokitsu T, Yamamoto E, Sueta D, Takae M, Nishihara T, Oike F, Usuku H, Ito M, Motozato K et al (2019) Prognostic significance of polyvascular disease in heart failure with preserved left ventricular ejection fraction. Medicine (Baltimore) 98(28):e15959. (PMID: 3130539010.1097/MD.0000000000015959)
      Verma S, McGuire DK, Bain SC, Bhatt DL, Leiter LA, Mazer CD, Monk Fries T, Pratley RE, Rasmussen S, Vrazic H et al (2020) Effects of glucagon-like peptide-1 receptor agonists liraglutide and semaglutide on cardiovascular and renal outcomes across body mass index categories in type 2 diabetes: Results of the LEADER and SUSTAIN 6 trials. Diabetes Obes Metab 22(12):2487–2492. (PMID: 32744418775440610.1111/dom.14160)
      Sun L, Yuan Y, Li Y, Rao X (2023) Effect of liraglutide on atherosclerosis in patients with impaired glucose tolerance: A double-blind, randomized controlled clinical trial. Exp Ther Med 25(6):249. (PMID: 371538861016092210.3892/etm.2023.11948)
      Bruen R, Curley S, Kajani S, Lynch G, O’Reilly ME, Dillon ET, Brennan EP, Barry M, Sheehan S, McGillicuddy FC, Belton O (2019) Liraglutide attenuates preestablished atherosclerosis in apolipoprotein E-deficient mice via regulation of immune cell phenotypes and proinflammatory mediators. J Pharmacol Exp Ther 370(3):447–458. (PMID: 3127021610.1124/jpet.119.258343)
      Lu C, Xie T, Guo X, Wu D, Li S, Li X, Lu Y, Wang X (2019) Glucagon-like peptide-1 receptor agonist exendin-4 mitigates lipopolysaccharide-induced inflammatory responses in RAW264.7 macrophages. Int Immunopharmacol 77:105969. (PMID: 3168543610.1016/j.intimp.2019.105969)
      Gaspari T, Liu H, Welungoda I, Hu Y, Widdop RE, Knudsen LB, Simpson RW, Dear AE (2011) A GLP-1 receptor agonist liraglutide inhibits endothelial cell dysfunction and vascular adhesion molecule expression in an ApoE-/- mouse model. Diab Vasc Dis Res 8(2):117–124. (PMID: 2156206310.1177/1479164111404257)
      Yue W, Li Y, Ou D, Yang Q (2019) The GLP-1 receptor agonist liraglutide protects against oxidized LDL-induced endothelial inflammation and dysfunction via KLF2. IUBMB Life 71(9):1347–1354. (PMID: 3096947910.1002/iub.2046)
      Park B, Bakbak E, Teoh H, Krishnaraj A, Dennis F, Quan A, Rotstein OD, Butler J, Hess DA, Verma S (2024) GLP-1 receptor agonists and atherosclerosis protection: the vascular endothelium takes center stage. Am J Physiol Heart Circ Physiol 326(5):H1159–H1176. (PMID: 3842686510.1152/ajpheart.00574.2023)
      Chang W, Zhu F, Zheng H, Zhou Z, Miao P, Zhao L, Mao Z (2019) Glucagon-like peptide-1 receptor agonist dulaglutide prevents ox-LDL-induced adhesion of monocytes to human endothelial cells: an implication in the treatment of atherosclerosis. Mol Immunol 116:73–79. (PMID: 3163007810.1016/j.molimm.2019.09.021)
      Cañas CA, Cañas F, Izquierdo JH, Echeverri A-F, Mejía M, Bonilla-Abadía F, Tobón GJ (2014) Efficacy and safety of anti-interleukin 6 receptor monoclonal antibody (tocilizumab) in Colombian patients with Takayasu arteritis. J Clin Rheumatol 20(3):125–129. (PMID: 2466255110.1097/RHU.0000000000000098)
      Reddy YNV, Lewis GD, Shah SJ, Obokata M, Abou-Ezzedine OF, Fudim M, Sun J-L, Chakraborty H, McNulty S, LeWinter MM et al (2019) Characterization of the obese phenotype of heart failure with preserved ejection fraction: a RELAX trial ancillary study. Mayo Clin Proc 94(7):1199–1209. (PMID: 3127256810.1016/j.mayocp.2018.11.037)
      Pfeffer MA, Claggett B, Diaz R, Dickstein K, Gerstein HC, Køber LV, Lawson FC, Ping L, Wei X, Lewis EF et al (2015) Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med 373(23):2247–2257. (PMID: 2663014310.1056/NEJMoa1509225)
      Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, Lingvay I, Rosenstock J, Seufert J, Warren ML et al (2016) Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 375(19):1834–1844. (PMID: 2763318610.1056/NEJMoa1607141)
      Gerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshmanan M, Pais P, Probstfield J, Riesmeyer JS, Riddle MC, Rydén L et al (2019) Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet (London, England) 394(10193):121–130. (PMID: 3118951110.1016/S0140-6736(19)31149-3)
      Gerstein HC, Lee S-F, Paré G, Bethel MA, Colhoun HM, Hoover A, Lakshmanan M, Lin Y, Pirro V, Qian H-R et al (2023) Biomarker changes associated with both dulaglutide and cardiovascular events in the REWIND randomized controlled trial: a nested case-control post hoc analysis. Diabetes Care 46(5):1046–1051. (PMID: 3689783410.2337/dc22-2397)
      Husain M, Birkenfeld AL, Donsmark M, Dungan K, Eliaschewitz FG, Franco DR, Jeppesen OK, Lingvay I, Mosenzon O, Pedersen SD et al (2019) Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 381(9):841–851. (PMID: 3118515710.1056/NEJMoa1901118)
      Gerstein HC, Sattar N, Rosenstock J, Ramasundarahettige C, Pratley R, Lopes RD, Lam CSP, Khurmi NS, Heenan L, Del Prato S et al (2021) Cardiovascular and renal outcomes with efpeglenatide in type 2 diabetes. N Engl J Med 385(10):896–907. (PMID: 3421502510.1056/NEJMoa2108269)
      Ni X-Y, Feng X-J, Wang Z-H, Zhang Y, Little PJ, Cao Y, Xu S-W, Tang L-Q, Weng J-P (2024) Empagliflozin and liraglutide ameliorate HFpEF in mice via augmenting the Erbb4 signaling pathway. Acta Pharmacol Sin 45:1–4. (PMID: 10.1038/s41401-024-01265-0)
      Ma Y-L, Kong C-Y, Guo Z, Wang M-Y, Wang P, Liu F-Y, Yang D, Yang Z, Tang Q-Z (2024) Semaglutide ameliorates cardiac remodeling in male mice by optimizing energy substrate utilization through the Creb5/NR4a1 axis. Nat Commun 15(1):4757. (PMID: 388345641115040610.1038/s41467-024-48970-2)
      He W, Wei J, Liu X, Zhang Z, Huang R, Jiang Z (2024) Semaglutide ameliorates pressure overload-induced cardiac hypertrophy by improving cardiac mitophagy to suppress the activation of NLRP3 inflammasome. Sci Rep 14(1):11824. (PMID: 387829461111655310.1038/s41598-024-62465-6)
      Wang J, Guo R, Ma X, Wang Y, Zhang Q, Zheng N, Zhang J, Li C (2023) Liraglutide inhibits AngII-induced cardiac fibroblast proliferation and ECM deposition through regulating miR-21/PTEN/PI3K pathway. Cell Tissue Bank 24(1):125–137. (PMID: 3579298710.1007/s10561-022-10021-9)
      Withaar C, Meems LMG, Nollet EE, Schouten EM, Schroeder MA, Knudsen LB, Niss K, Madsen CT, Hoegl A, Mazzoni G et al (2023) The cardioprotective effects of semaglutide exceed those of dietary weight loss in mice with HFpEF. JACC Basic Transl Sci 8(10):1298–1314. (PMID: 380946871071417610.1016/j.jacbts.2023.05.012)
      Xie S, Zhang M, Shi W, Xing Y, Huang Y, Fang W-X, Liu S-Q, Chen M-Y, Zhang T, Chen S et al (2022) Long-term activation of glucagon-like peptide-1 receptor by dulaglutide prevents diabetic heart failure and metabolic remodeling in type 2 diabetes. J Am Heart Assoc 11(19):e026728. (PMID: 36172969967369010.1161/JAHA.122.026728)
      Wang J, Fan S, Xiong Q, Niu Y, Zhang X, Qin J, Shi Y, Zhang L (2021) Glucagon-like peptide-1 attenuates cardiac hypertrophy via the AngII/AT1R/ACE2 and AMPK/mTOR/p70S6K pathways. Acta Biochim Biophys Sin (Shanghai) 53(9):1189–1197. (PMID: 3435737610.1093/abbs/gmab099)
      Zhang L, Tian J, Diao S, Zhang G, Xiao M, Chang D (2020) GLP-1 receptor agonist liraglutide protects cardiomyocytes from IL-1β-induced metabolic disturbance and mitochondrial dysfunction. Chem Biol Interact 332:109252. (PMID: 3289850410.1016/j.cbi.2020.109252)
      Ma G, Liu Y, Wang Y, Wen Z, Li X, Zhai H, Miao L, Luo J (2020) Liraglutide reduces hyperglycemia-induced cardiomyocyte death through activating glucagon-like peptide 1 receptor and targeting AMPK pathway. J Recept Signal Transduct Res 40(2):133–140. (PMID: 3201366710.1080/10799893.2020.1719517)
      Fu Z, Mui D, Zhu H, Zhang Y (2020) Exenatide inhibits NF-κB and attenuates ER stress in diabetic cardiomyocyte models. Aging 12(9):8640–8651. (PMID: 32392536724403410.18632/aging.103181)
      Chen J, Xu S, Zhou W, Wu L, Wang L, Li W (2020) Exendin-4 reduces ventricular arrhythmia activity and calcium sparks-mediated sarcoplasmic reticulum Ca leak in rats with heart failure. Int Heart J 61(1):145–152. (PMID: 3195614810.1536/ihj.19-327)
      Wei H, Bu R, Yang Q, Jia J, Li T, Wang Q, Chen Y (2019) Exendin-4 protects against hyperglycemia-induced cardiomyocyte pyroptosis via the AMPK-TXNIP pathway. J Diabetes Res 2019:8905917. (PMID: 31886288692592710.1155/2019/8905917)
      Yu W, Zha W, Ren J (2018) Exendin-4 and liraglutide attenuate glucose toxicity-induced cardiac injury through mTOR/ULK1-dependent autophagy. Oxid Med Cell Longev 2018:5396806. (PMID: 29849901593298310.1155/2018/5396806)
      Zhao S-M, Gao H-L, Wang Y-L, Xu Q, Guo C-Y (2017) Attenuation of high glucose-induced rat cardiomyocyte apoptosis by exendin-4 via intervention of HO-1/Nrf-2 and the PI3K/AKT signaling pathway. Chin J Physiol 60(2):89–96. (PMID: 2846460210.4077/CJP.2017.BAF434)
      Chen J, Wang D, Wang F, Shi S, Chen Y, Yang B, Tang Y, Huang C (2017) Exendin-4 inhibits structural remodeling and improves Ca2+ homeostasis in rats with heart failure via the GLP-1 receptor through the eNOS/cGMP/PKG pathway. Peptides 90:69–77. (PMID: 2824225710.1016/j.peptides.2017.02.008)
      XiaoTian L, QiNan W, XiaGuang G, WuQuan D, Bing C, ZiWen L (2016) Exenatide activates the APPL1-AMPK-PPARα axis to prevent diabetic cardiomyocyte apoptosis. J Diabetes Res 2016:4219735. (PMID: 2675981310.1155/2016/4219735)
      Zhang L-H, Pang X-F, Bai F, Wang N-P, Shah AI, McKallip RJ, Li X-W, Wang X, Zhao Z-Q (2015) Preservation of glucagon-like peptide-1 level attenuates angiotensin II-induced tissue fibrosis by altering AT1/AT 2 receptor expression and angiotensin-converting enzyme 2 activity in rat heart. Cardiovasc Drugs Ther 29(3):243–255. (PMID: 2599483010.1007/s10557-015-6592-7)
      Wu XM, Ou QY, Zhao W, Liu J, Zhang H (2014) The GLP-1 analogue liraglutide protects cardiomyocytes from high glucose-induced apoptosis by activating the Epac-1/Akt pathway. Exp Clin Endocrinol Diabetes 122(10):608–614. (PMID: 2514099710.1055/s-0034-1384584)
      Younce CW, Burmeister MA, Ayala JE (2013) Exendin-4 attenuates high glucose-induced cardiomyocyte apoptosis via inhibition of endoplasmic reticulum stress and activation of SERCA2a. Am J Physiol Cell Physiol 304(6):C508–C518. (PMID: 2330277710.1152/ajpcell.00248.2012)
    • Contributed Indexing:
      Keywords: Cardiovascular outcome trials (CVOTs); Epicardial adipose tissue (EAT); Glucagon-like peptide-1 receptor agonists (GLP-1 RAs); Heart failure with preserved ejection fraction (HFpEF); Obesity; Systemic inflammation
    • Accession Number:
      0 (Glucagon-Like Peptide-1 Receptor)
      89750-14-1 (Glucagon-Like Peptide 1)
      0 (Incretins)
      0 (Glucagon-Like Peptide-1 Receptor Agonists)
    • Publication Date:
      Date Created: 20240913 Date Completed: 20241214 Latest Revision: 20241214
    • Publication Date:
      20241215
    • Accession Number:
      10.1007/s10741-024-10438-2
    • Accession Number:
      39269643