The systemic herbicide glyphosate affects the sporulation dynamics of Rhizophagus species more severely than mechanical defoliation or the contact herbicide diquat.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 100955036 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1890 (Electronic) Linking ISSN: 09406360 NLM ISO Abbreviation: Mycorrhiza Subsets: MEDLINE
    • Publication Information:
      Original Publication: Berlin : Springer-Verlag, 1991-
    • Subject Terms:
    • Abstract:
      Arbuscular mycorrhizal fungi (AMF) are totally dependent on a suitable host plant for their carbon resources. Here, we investigated under in vitro conditions, the impact of defoliation practices, i.e., mechanical defoliation or chemical defoliation with a contact herbicide (Reglone®, containing the active ingredient diquat) or systemic herbicide (RoundUp®, containing the active ingredient glyphosate), on the dynamics of spore production of Rhizophagus irregularis and Rhizophagus intraradices associated with Solanum tuberosum and/or Medicago truncatula. Glyphosate affected the spore production rate more rapidly and severely than diquat or mechanical defoliation. We hypothesize that this effect was related to disruption of the C metabolism in the whole plant combined with a possible direct effect of glyphosate on the fungus within the roots and/or perhaps in soil via the release of this active ingredient from decaying roots. No glyphosate could be detected in the roots due to technical constraints, while its release from the roots in the medium corresponded to 0.11% of the active ingredient applied to the leaves. The three defoliation practices strongly affected root colonization, compared to the non-defoliated plants. However, the amount of glyphosate released into the medium did not affect spore germination and germ tube growth. These results suggest that the effects of defoliation on the dynamics of spore production are mainly indirect via an impact on the plant, and that the effect is faster and more marked with the glyphosate-formulation, possibly via a direct effect on the fungus in the roots and more unlikely on spore germination.
      Competing Interests: Declarations. Statements and Declarations: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Competing interests: The authors declare no competing interests.
      (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Ambrosino ML, Busso CA, Cabello MN et al (2020) Total and structure colonization by arbuscular mycorrhizal fungi in native, perennial grasses of different forage quality exposed to defoliation. J King Saud Univ - Sci 32:377–383. https://doi.org/10.1016/j.jksus.2018.06.001. (PMID: 10.1016/j.jksus.2018.06.001)
      Araújo ASF, Monteiro RTR, Abarkeli RB (2003) Effect of glyphosate on the microbial activity of two Brazilian soils. Chemosphere 52:799–804. https://doi.org/10.1016/S0045-6535(03)00266-2. (PMID: 10.1016/S0045-6535(03)00266-212757780)
      Authority (EFSA) EFS (2015) Conclusion on the peer review of the pesticide risk assessment of the active substance glyphosate. EFSA J 13:4302. https://doi.org/10.2903/j.efsa.2015.4302. (PMID: 10.2903/j.efsa.2015.4302)
      Bago B, Pfeffer PE, Abubaker J et al (2003) Carbon Export from Arbuscular Mycorrhizal Roots Involves the Translocation of Carbohydrate as well as Lipid. Plant Physiol 131:1496–1507. https://doi.org/10.1104/pp.102.007765. (PMID: 10.1104/pp.102.00776512644699166909)
      Bai SH, Ogbourne SM (2016) Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination. Environ Sci Pollut Res 23:18988–19001. https://doi.org/10.1007/s11356-016-7425-3. (PMID: 10.1007/s11356-016-7425-3)
      Barros RE, Mendes Reis M, Tuffi Santos LD et al (2022) Light availability in the cultivation environment and the action of glyphosate on Digitaria insularis: physiological aspects and herbicide root exudation. J Environ Sci Health B 57:597–607. https://doi.org/10.1080/03601234.2022.2088198. (PMID: 10.1080/03601234.2022.208819835726612)
      Barto EK, Rillig MC (2010) Does herbivory really suppress mycorrhiza? A meta-analysis. J Ecol 98:745–753. https://doi.org/10.1111/j.1365-2745.2010.01658.x. (PMID: 10.1111/j.1365-2745.2010.01658.x)
      Bécard G, Kosuta S, Tamasloukht M et al (2004) Partner communication in the arbuscular mycorrhizal interaction. Can J Bot 82:1186–1197. https://doi.org/10.1139/b04-087. (PMID: 10.1139/b04-087)
      Bento CPM, Yang X, Gort G et al (2016) Persistence of glyphosate and aminomethylphosphonic acid in loess soil under different combinations of temperature, soil moisture and light/darkness. Sci Total Environ 572:301–311. https://doi.org/10.1016/j.scitotenv.2016.07.215. (PMID: 10.1016/j.scitotenv.2016.07.21527505263)
      Botero-Coy AM, Ibáñez M, Sancho JV, Hernández F (2013) Improvements in the analytical methodology for the residue determination of the herbicide glyphosate in soils by liquid chromatography coupled to mass spectrometry. J Chromatogr A 1292:132–141. https://doi.org/10.1016/j.chroma.2012.12.007. (PMID: 10.1016/j.chroma.2012.12.00723332301)
      Carlisle SM, Trevors JT (1988) Glyphosate in the environment. Water Air Soil Pollut 39:409–420. https://doi.org/10.1007/BF00279485. (PMID: 10.1007/BF00279485)
      Coupland D, Caseley JC (1979) Presence of 14 C activity in root exudates and guttation fluid from Agropryron Repens treated with 14 C-labelled glyphosate. New Phytol 83:17–22. https://doi.org/10.1111/j.1469-8137.1979.tb00721.x. (PMID: 10.1111/j.1469-8137.1979.tb00721.x)
      Coupland D, Peabody DV (1981) Absorption, Translocation, and Exudation of Glyphosate, Fosamine, and Amitrole in Field Horsetail (Equisetum arvense). Weed Sci 29:556–560. https://doi.org/10.1017/S0043174500063724. (PMID: 10.1017/S0043174500063724)
      Declerck S, Strullu DG, Plenchette C (1996) In vitro mass-production of the arbuscular mycorrhizal fungus, Glomus versiforme, associated with Ri T-DNA transformed carrot roots. Mycol Res 100:1237–1242. https://doi.org/10.1016/S0953-7562(96)80186-9. (PMID: 10.1016/S0953-7562(96)80186-9)
      Declerck S, Strullu DG, Plenchette C (1998) Monoxenic culture of the intraradical forms of Glomus sp. isolated from a tropical ecosystem: a proposed methodology for germplasm collection. Mycologia 90:579–585. https://doi.org/10.1080/00275514.1998.12026946. (PMID: 10.1080/00275514.1998.12026946)
      Declerck S, D’or D, Cranenbrouck S, Boulengé LE (2001) Modelling the sporulation dynamics of arbuscular mycorrhizal fungi in monoxenic culture. Mycorrhiza 11:225–230. https://doi.org/10.1007/s005720100124. (PMID: 10.1007/s005720100124)
      Declerck S, D’Or D, Bivort C, de Souza FA (2004) Development of extraradical mycelium of Scutellospora reticulata under root-organ culture: spore production and function of auxiliary cells. Mycol Res 108:84–92. https://doi.org/10.1017/S0953756203008761. (PMID: 10.1017/S095375620300876115035509)
      Dill GM, Sammons RD, Feng PCC, et al (2010) Glyphosate: Discovery, Development, Applications, and Properties. In: Nandula VK (ed) Glyphosate Resistance in Crops and Weeds, 1st edn. Wiley, pp 1–33.
      Dodge AD, Harris N (1970) The mode of action of paraquat and diquat. Biochem J 118:43P-44P. (PMID: 10.1042/bj1180043P54721701179226)
      dos Malty J, S, Siqueira JO, Moreira FM de S, (2006) Effects of glyphosate on soybean symbiotic microorganisms, in culture media and in greenhouse. Pesqui Agropecuária Bras 41:285–291. https://doi.org/10.1590/S0100-204X2006000200013. (PMID: 10.1590/S0100-204X2006000200013)
      Douglas AE (2008) Conflict, cheats and the persistence of symbioses. New Phytol 177:849–858. https://doi.org/10.1111/j.1469-8137.2007.02326.x. (PMID: 10.1111/j.1469-8137.2007.02326.x18275492)
      Druille M, Cabello MN, Omacini M, Golluscio RA (2013a) Glyphosate reduces spore viability and root colonization of arbuscular mycorrhizal fungi. Appl Soil Ecol 64:99–103. https://doi.org/10.1016/j.apsoil.2012.10.007. (PMID: 10.1016/j.apsoil.2012.10.007)
      Druille M, Omacini M, Golluscio RA, Cabello MN (2013b) Arbuscular mycorrhizal fungi are directly and indirectly affected by glyphosate application. Appl Soil Ecol 72:143–149. https://doi.org/10.1016/j.apsoil.2013.06.011. (PMID: 10.1016/j.apsoil.2013.06.011)
      Druille M, García-Parisi PA, Golluscio RA et al (2016) Repeated annual glyphosate applications may impair beneficial soil microorganisms in temperate grassland. Agric Ecosyst Environ 230:184–190. https://doi.org/10.1016/j.agee.2016.06.011. (PMID: 10.1016/j.agee.2016.06.011)
      Duke SO (2021) Glyphosate: Uses Other Than in Glyphosate-Resistant Crops, Mode of Action, Degradation in Plants, and Effects on Non-target Plants and Agricultural Microbes. In: Knaak JB (ed) Reviews of Environmental Contamination and Toxicology, vol 255. Glyphosate. Springer International Publishing, Cham, pp 1–65.
      Eker S, Ozturk L, Yazici A et al (2006) Foliar-Applied Glyphosate Substantially Reduced Uptake and Transport of Iron and Manganese in Sunflower (Helianthus annuus L.) Plants. J Agric Food Chem 54:10019–10025. https://doi.org/10.1021/jf0625196. (PMID: 10.1021/jf062519617177536)
      El Omari B, El Ghachtouli N (2021) Arbuscular mycorrhizal fungi-weeds interaction in cropping and unmanaged ecosystems: a review. Symbiosis 83:279–292. https://doi.org/10.1007/s13199-021-00753-9. (PMID: 10.1007/s13199-021-00753-9)
      Gehring CA, Whitham TG (1994) Interactions between aboveground herbivores and the mycorrhizal mutualists of plants. Trends Ecol Evol 9:251–255. https://doi.org/10.1016/0169-5347(94)90290-9. (PMID: 10.1016/0169-5347(94)90290-921236843)
      Gil-Cardeza ML, Calonne-Salmon M, Gómez E, Declerck S (2017) Short-term chromium (VI) exposure increases phosphorus uptake by the extraradical mycelium of the arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833. Chemosphere 187:27–34. https://doi.org/10.1016/j.chemosphere.2017.08.079. (PMID: 10.1016/j.chemosphere.2017.08.07928829949)
      Giovannetti M, Turrini A, Strani P, et al (2006) Mycorrhizal fungi in ecotoxicological studies: soil impact of fungicides, insecticides and herbicides.
      Giovannini L, Palla M, Agnolucci M et al (2020) Arbuscular Mycorrhizal Fungi and Associated Microbiota as Plant Biostimulants: Research Strategies for the Selection of the Best Performing Inocula. Agronomy 10:106. https://doi.org/10.3390/agronomy10010106. (PMID: 10.3390/agronomy10010106)
      Gomes MP, Smedbol E, Chalifour A et al (2014) Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: an overview. J Exp Bot 65:4691–4703. https://doi.org/10.1093/jxb/eru269. (PMID: 10.1093/jxb/eru26925039071)
      Hage-Ahmed K, Rosner K, Steinkellner S (2019) Arbuscular mycorrhizal fungi and their response to pesticides. Pest Manag Sci 75:583–590. https://doi.org/10.1002/ps.5220. (PMID: 10.1002/ps.522030255557)
      Hawkins H-J, Cargill RIM, Van Nuland ME et al (2023) Mycorrhizal mycelium as a global carbon pool. Curr Biol 33:R560–R573. https://doi.org/10.1016/j.cub.2023.02.027. (PMID: 10.1016/j.cub.2023.02.02737279689)
      Helander M, Saloniemi I, Saikkonen K (2012) Glyphosate in northern ecosystems. Trends Plant Sci 17:569–574. https://doi.org/10.1016/j.tplants.2012.05.008. (PMID: 10.1016/j.tplants.2012.05.00822677798)
      Helander M, Saloniemi I, Omacini M et al (2018) Glyphosate decreases mycorrhizal colonization and affects plant-soil feedback. Sci Total Environ 642:285–291. https://doi.org/10.1016/j.scitotenv.2018.05.377. (PMID: 10.1016/j.scitotenv.2018.05.37729902626)
      IJdo M, Schtickzelle N, Cranenbrouck S, Declerck S, (2010) Do arbuscular mycorrhizal fungi with contrasting life-history strategies differ in their responses to repeated defoliation? FEMS Microbiol Ecol 72:114–122. https://doi.org/10.1111/j.1574-6941.2009.00829.x. (PMID: 10.1111/j.1574-6941.2009.00829.x20459515)
      Kaczyński P, Łozowicka B (2015) Liquid chromatographic determination of glyphosate and aminomethylphosphonic acid residues in rapeseed with MS/MS detection or derivatization/fluorescence detection. Open Chem 13:. https://doi.org/10.1515/chem-2015-0107.
      Kanissery R, Gairhe B, Kadyampakeni D et al (2019) Glyphosate: Its Environmental Persistence and Impact on Crop Health and Nutrition. Plants 8:499. https://doi.org/10.3390/plants8110499. (PMID: 10.3390/plants8110499317661486918143)
      Karpouzas DG, Papadopoulou E, Ipsilantis I et al (2014) Effects of nicosulfuron on the abundance and diversity of arbuscular mycorrhizal fungi used as indicators of pesticide soil microbial toxicity. Ecol Indic 39:44–53. https://doi.org/10.1016/j.ecolind.2013.12.004. (PMID: 10.1016/j.ecolind.2013.12.004)
      Kiers ET, van der Heijden MGA (2006) Mutualistic Stability in the Arbuscular Mycorrhizal Symbiosis: Exploring Hypotheses of Evolutionary Cooperation. Ecology 87:1627–1636. https://doi.org/10.1890/0012-9658(2006)87[1627:MSITAM]2.0.CO;2. (PMID: 10.1890/0012-9658(2006)87[1627:MSITAM]2.0.CO;216922314)
      Klironomos JN, McCune J, Moutoglis P (2004) Species of arbuscular mycorrhizal fungi affect mycorrhizal responses to simulated herbivory. Appl Soil Ecol 26:133–141. https://doi.org/10.1016/j.apsoil.2003.11.001. (PMID: 10.1016/j.apsoil.2003.11.001)
      Koskinen WC, Marek LJ, Hall KE (2016) Analysis of glyphosate and aminomethylphosphonic acid in water, plant materials and soil: Analysis of glyphosate and AMPA in water, plant materials and soil. Pest Manag Sci 72:423–432. https://doi.org/10.1002/ps.4172. (PMID: 10.1002/ps.417226454260)
      Krzyśko-Lupicka T, Strof W, Kubś K et al (1997) The ability of soil-borne fungi to degrade organophosphonate carbon-to-phosphorus bonds. Appl Microbiol Biotechnol 48:549–552. https://doi.org/10.1007/s002530051095. (PMID: 10.1007/s0025300510959390463)
      Kusakabe R, Taniguchi T, Goomaral A et al (2018) Arbuscular mycorrhizal fungal communities under gradients of grazing in Mongolian grasslands of different aridity. Mycorrhiza 28:621–634. https://doi.org/10.1007/s00572-018-0855-7. (PMID: 10.1007/s00572-018-0855-730043258)
      Laitinen P, Rämö S, Siimes K (2007) Glyphosate translocation from plants to soil – does this constitute a significant proportion of residues in soil? Plant Soil 300:51–60. https://doi.org/10.1007/s11104-007-9387-1. (PMID: 10.1007/s11104-007-9387-1)
      Laitinen P, Rämö S, Nikunen U et al (2009) Glyphosate and phosphorus leaching and residues in boreal sandy soil. Plant Soil 323:267–283. https://doi.org/10.1007/s11104-009-9935-y. (PMID: 10.1007/s11104-009-9935-y)
      Li X, Miao W, Gong C et al (2013) Effects of prometryn and acetochlor on arbuscular mycorrhizal fungi and symbiotic system. Lett Appl Microbiol 57:122–128. https://doi.org/10.1111/lam.12084. (PMID: 10.1111/lam.1208423593967)
      Liao Y, Berthion J-M, Colet I et al (2018) Validation and application of analytical method for glyphosate and glufosinate in foods by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1549:31–38. https://doi.org/10.1016/j.chroma.2018.03.036. (PMID: 10.1016/j.chroma.2018.03.03629588098)
      Marek LJ, Koskinen WC (2014) Simplified analysis of glyphosate and aminomethylphosphonic acid in water, vegetation and soil by liquid chromatography–tandem mass spectrometry. Pest Manag Sci 70:1158–1164. https://doi.org/10.1002/ps.3684. (PMID: 10.1002/ps.368424254420)
      Masiunas JB, Weller SC (1988) Glyphosate Activity in Potato (Solanum tuberosum) Under Different Temperature Regimes and Light Levels. Weed Sci 36:137–140. https://doi.org/10.1017/S0043174500074610. (PMID: 10.1017/S0043174500074610)
      McGonigle TP, Miller MH, Evans DG et al (1990) A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. New Phytol 115:495–501. https://doi.org/10.1111/j.1469-8137.1990.tb00476.x. (PMID: 10.1111/j.1469-8137.1990.tb00476.x33874272)
      Morjan WE, Pedigo LP, Lewis LC (2002) Fungicidal Effects of Glyphosate and Glyphosate Formulations on Four Species of Entomopathogenic Fungi. Environ Entomol 31:1206–1212. https://doi.org/10.1603/0046-225X-31.6.1206. (PMID: 10.1603/0046-225X-31.6.1206)
      Murashige T, Skoog F (1962) A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x. (PMID: 10.1111/j.1399-3054.1962.tb08052.x)
      Neumann G, Kohls S, Richter E, et al (2006) Relevance of glyphosate transfer to non-target plants via the rhizosphere. J Plant Dis Prot 20:.
      Newman EI (1966) A Method of Estimating the Total Length of Root in a Sample. J Appl Ecol 3:139–145. https://doi.org/10.2307/2401670. (PMID: 10.2307/2401670)
      Pasaribu A, Mohamad RB, Awang Y et al (2011) Growth and development of symbiotic Arbuscular mycorrhizal fungi, Glomus mossea (Nicol. and Gerd.), in alachlor and glyphosate treated soils. Afr J Biotechnol 10:11520–11526. https://doi.org/10.5897/AJB11.1200. (PMID: 10.5897/AJB11.1200)
      Le Pioufle O, Declerck S (2018) Reducing Water Availability Impacts the Development of the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis MUCL 41833 and Its Ability to Take Up and Transport Phosphorus Under in Vitro Conditions. Front Microbiol 9:. https://doi.org/10.3389/fmicb.2018.01254.
      Reddy KN, Rimando AM, Duke SO (2004) Aminomethylphosphonic acid, a metabolite of glyphosate, causes injury in glyphosate-treated, glyphosate-resistant soybean. J Agric Food Chem 52:5139–5143. https://doi.org/10.1021/jf049605v. (PMID: 10.1021/jf049605v15291487)
      Reglone - SYNGENTA Herbicides (n.d.)  https://agrobaseapp.com/belgium-french/pesticide/reglone-18 . Accessed 18 Oct 2023.
      Rodriguez-Morelos VH, Calonne-Salmon M, Bremhorst V, et al (2021) Fungicides With Contrasting Mode of Action Differentially Affect Hyphal Healing Mechanism in Gigaspora sp. and Rhizophagus irregularis. Front Plant Sci 12:642094. https://doi.org/10.3389/fpls.2021.642094.
      Salingros E (2020) Validation of a method for direct determination of glyphosate and AMPA in sugar beet root using hydrophilic interaction liquid chromatography and tandem mass spectrometry.
      Saravesi K, Ruotsalainen AL, Cahill JF (2014) Contrasting impacts of defoliation on root colonization by arbuscular mycorrhizal and dark septate endophytic fungi of Medicago sativa. Mycorrhiza 24:239–245. https://doi.org/10.1007/s00572-013-0536-5. (PMID: 10.1007/s00572-013-0536-524197419)
      Sesin V, Davy CM, Stevens KJ et al (2021) Glyphosate Toxicity to Native Nontarget Macrophytes Following Three Different Routes of Incidental Exposure. Integr Environ Assess Manag 17:597–613. https://doi.org/10.1002/ieam.4350. (PMID: 10.1002/ieam.435032979014)
      Shaner D (2006) An overview of glyphosate mode of action: Why is it such a great herbicide. North Cent Weed Sci Soc Proc 94:.
      Sheng M, Hamel C, Fernandez MR (2012) Cropping practices modulate the impact of glyphosate on arbuscular mycorrhizal fungi and rhizosphere bacteria in agroecosystems of the semiarid prairie. Can J Microbiol 58:990–1001. https://doi.org/10.1139/w2012-080. (PMID: 10.1139/w2012-08022827807)
      Singh S, Kumar V, Datta S et al (2020) Glyphosate uptake, translocation, resistance emergence in crops, analytical monitoring, toxicity and degradation: a review. Environ Chem Lett 18:663–702. https://doi.org/10.1007/s10311-020-00969-z. (PMID: 10.1007/s10311-020-00969-z)
      Siqueira JO, Safir GR, Nair MG (1991) Stimulation of vesicular-arbuscular mycorrhiza formation and growth of white clover by flavonoid compounds. New Phytol 118:87–93. https://doi.org/10.1111/j.1469-8137.1991.tb00568.x. (PMID: 10.1111/j.1469-8137.1991.tb00568.x)
      Smid D, Hiller LK (1981) Phytotoxicity and Translocation of Glyphosate in the Potato (Solanum tuberosum) Prior to Tuber Initiation. Weed Sci 29:218–223. https://doi.org/10.1017/S004317450006183X. (PMID: 10.1017/S004317450006183X)
      Smith TF, Noack AJ, Cosh SM (1981) The effect of some herbicides on vesicular-arbuscular endophyte abundance in the soil and on infection of host roots. Pestic Sci 12:91–97. https://doi.org/10.1002/ps.2780120114. (PMID: 10.1002/ps.2780120114)
      Sprankle P, Meggitt WF, Penner D (1975) Adsorption, Mobility, and Microbial Degradation of Glyphosate in the Soil. Weed Sci 23:229–234. https://doi.org/10.1017/S0043174500052929. (PMID: 10.1017/S0043174500052929)
      St-Arnaud M, Hamel C, Vimard B et al (1996) Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol Res 100:328–332. https://doi.org/10.1016/S0953-7562(96)80164-X. (PMID: 10.1016/S0953-7562(96)80164-X)
      Sviridov AV, Shushkova TV, Ermakova IT et al (2015) Microbial degradation of glyphosate herbicides (Review). Appl Biochem Microbiol 51:188–195. https://doi.org/10.1134/S0003683815020209. (PMID: 10.1134/S0003683815020209)
      Tall T, Puigbò P (2020) The Glyphosate Target Enzyme 5-Enolpyruvyl Shikimate 3-Phosphate Synthase (EPSPS) Contains Several EPSPS-Associated Domains in Fungi. Proceedings 76:6. https://doi.org/10.3390/IECGE-07146.
      Tawaraya K, Shiozawa S, Ueda K et al (2012) Leaf herbivory by Spodoptera litura increases arbuscular mycorrhizal colonization in roots of soybean. Soil Sci Plant Nutr 58:445–449. https://doi.org/10.1080/00380768.2012.704520. (PMID: 10.1080/00380768.2012.704520)
      Tong M, Gao W, Jiao W et al (2017) Uptake, Translocation, Metabolism, and Distribution of Glyphosate in Nontarget Tea Plant (Camellia sinensis L.). J Agric Food Chem 65:7638–7646. https://doi.org/10.1021/acs.jafc.7b02474. (PMID: 10.1021/acs.jafc.7b0247428795804)
      Tucker BV, Pack DE, Ospenson JN (1967) Adsorption of bipyridylium herbicides in soil. J Agric Food Chem 15:1005–1008. https://doi.org/10.1021/jf60154a017. (PMID: 10.1021/jf60154a017)
      Tzin V, Galili G, Aharoni A (2012) Shikimate Pathway and Aromatic Amino Acid Biosynthesis. In: Encyclopedia of Life Sciences. John Wiley & Sons, Ltd.
      van der Heyde M, Bennett JA, Pither J, Hart M (2017) Longterm effects of grazing on arbuscular mycorrhizal fungi. Agric Ecosyst Environ 243:27–33. https://doi.org/10.1016/j.agee.2017.04.003. (PMID: 10.1016/j.agee.2017.04.003)
      Wakelin AM, Lorraine-Colwill DF, Preston C (2004) Glyphosate resistance in four different populations of Lolium rigidum is associated with reduced translocation of glyphosate to meristematic zones. Weed Res 44:453–459. https://doi.org/10.1111/j.1365-3180.2004.00421.x. (PMID: 10.1111/j.1365-3180.2004.00421.x)
      Wan MT, Rahe JE, Watts RG (1998) A new technique for determining the sublethal toxicity of pesticides to the vesicular-arbuscular mycorrhizal fungus Glomus intraradices. Environ Toxicol Chem 17:1421–1428. https://doi.org/10.1002/etc.5620170728. (PMID: 10.1002/etc.5620170728)
      Wipf D, Krajinski F, van Tuinen D et al (2019) Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. New Phytol 223:1127–1142. https://doi.org/10.1111/nph.15775. (PMID: 10.1111/nph.1577530843207)
      Woodburn AT (2000) Glyphosate: production, pricing and use worldwide. Pest Manag Sci 56:309–312. https://doi.org/10.1002/(SICI)1526-4998(200004)56:4%3c309::AID-PS143%3e3.0.CO;2-C. (PMID: 10.1002/(SICI)1526-4998(200004)56:4<309::AID-PS143>3.0.CO;2-C)
      Yamato M (2004) Morphological types of arbuscular mycorrhizal fungi in roots of weeds on vacant land. Mycorrhiza 14:127–131. https://doi.org/10.1007/s00572-003-0246-5. (PMID: 10.1007/s00572-003-0246-512774218)
      Yang X, Chen J, Shen Y et al (2020) Global negative effects of livestock grazing on arbuscular mycorrhizas: A meta-analysis. Sci Total Environ 708:134553. https://doi.org/10.1016/j.scitotenv.2019.134553. (PMID: 10.1016/j.scitotenv.2019.13455331791795)
      Zaller JG, Heigl F, Ruess L, Grabmaier A (2014) Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem. Sci Rep 4:5634. https://doi.org/10.1038/srep05634. (PMID: 10.1038/srep05634250057134087917)
      Zweig G, Shavit N, Avron M (1965) Diquat (1,1′-ethylene-2,2′-dipyridylium dibromide) in photoreactions of isolated chloroplasts. Biochim Biophys Acta BBA - Biophys Photosynth 109:332–346. https://doi.org/10.1016/0926-6585(65)90161-5. (PMID: 10.1016/0926-6585(65)90161-5)
    • Grant Information:
      18/23-095 Action de Recherche Concerté; D31-1246 Direction Générale Opérationnelle Agriculture, Ressources Naturelles et Environnement du Service Public de Wallonie
    • Contributed Indexing:
      Keywords: Medicago truncatula; Solanum tuberosum; Arbuscular mycorrhizal fungi; Defoliant; Germ tube length; Root colonization
    • Accession Number:
      4632WW1X5A (Glyphosate)
      TE7660XO1C (Glycine)
      0 (Herbicides)
    • Publication Date:
      Date Created: 20240911 Date Completed: 20241128 Latest Revision: 20241128
    • Publication Date:
      20241202
    • Accession Number:
      10.1007/s00572-024-01166-4
    • Accession Number:
      39259245