Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Pinewood nematode induced changes in the assembly process of gallery microbiomes benefit its vector beetle's development.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Source:
Publisher: ASM Press Country of Publication: United States NLM ID: 101634614 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2165-0497 (Electronic) Linking ISSN: 21650497 NLM ISO Abbreviation: Microbiol Spectr Subsets: MEDLINE
- Publication Information:
Original Publication: Washington, DC : ASM Press, 2013-
- Subject Terms:
- Abstract:
Microbiomes play crucial roles in insect adaptation, especially under stress such as pathogen invasion. Yet, how beneficial microbiomes assemble remains unclear. The wood-boring beetle Monochamus alternatus , a major pest and vector of the pine wilt disease (PWD) nematode, offers a unique model. We conducted controlled experiments using amplicon sequencing (16S rRNA and ITS) within galleries where beetles and microbes interact. PWD significantly altered bacterial and fungal communities, suggesting distinct assembly processes. Deterministic factors like priority effects, host selection, and microbial interactions shaped microbiome composition, distinguishing healthy from PWN-infected galleries. Actinobacteria, Firmicutes, and Ophiostomataceae emerged as potentially beneficial, aiding beetle's development and pathogen resistance. This study unveils how nematode-induced changes in gallery microbiomes influence beetle's development, shedding light on microbiome assembly amid insect-pathogen interactions. Insights gleaned enhance understanding of PWD spread and suggest novel management strategies via microbiome manipulation.IMPORTANCEThis study explores the assembly process of gallery microbiomes associated with a wood-boring beetles, Monochamus alternatus , a vector of the pine wilt disease (PWD). By conducting controlled comparison experiments and employing amplicon approaches, the study reveals significant changes in taxonomic composition and functional adaptation of bacterial and fungal communities induced by PWD. It identifies deterministic processes, including priority effects, host selection, and microbial interactions, as major drivers in microbiome assembly. Additionally, the study highlights the presence of potentially beneficial microbes such as Actinobacteria, Firmicutes, and Ophiostomataceae, which could enhance beetle development and resistance to pathogens. These findings shed light on the intricate interplay among insects, microbiomes, and pathogens, contributing to a deeper understanding of PWD prevalence and suggesting innovative management strategies through microbiome manipulation.
Competing Interests: The authors declare no conflict of interest.
- References:
Curr Opin Biotechnol. 2014 Jun;27:55-64. (PMID: 24863897)
Nat Commun. 2020 Sep 18;11(1):4717. (PMID: 32948774)
ISME J. 2011 Aug;5(8):1323-31. (PMID: 21368904)
PLoS Biol. 2016 Jan 20;14(1):e1002352. (PMID: 26788878)
BMC Genomics. 2020 May 1;21(1):337. (PMID: 32357836)
Microb Ecol. 2023 Jul;86(1):521-535. (PMID: 35927588)
Biol Rev Camb Philos Soc. 2016 Feb;91(1):70-85. (PMID: 25424353)
J Nematol. 1987 Jan;19(1):51-7. (PMID: 19290106)
Trends Microbiol. 2009 Dec;17(12):529-35. (PMID: 19853457)
J Chem Ecol. 2013 Jul;39(7):989-1002. (PMID: 23846183)
Annu Rev Entomol. 2017 Jan 31;62:285-303. (PMID: 27860522)
Oecologia. 2003 Aug;136(4):489-98. (PMID: 12836009)
iScience. 2023 Apr 19;26(5):106680. (PMID: 37182102)
Front Microbiol. 2022 Apr 01;13:832081. (PMID: 35432258)
Annu Rev Entomol. 2020 Jan 7;65:431-455. (PMID: 31610133)
Microbiome. 2020 Feb 1;8(1):11. (PMID: 32007096)
ISME J. 2023 Nov;17(11):1798-1807. (PMID: 37660231)
Environ Microbiome. 2022 Sep 9;17(1):47. (PMID: 36085246)
Trends Microbiol. 2019 Aug;27(8):662-669. (PMID: 31000488)
Annu Rev Phytopathol. 2013;51:61-83. (PMID: 23663004)
Annu Rev Anim Biosci. 2022 Feb 15;10:203-226. (PMID: 35167316)
Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6359-64. (PMID: 24733936)
Nat Commun. 2020 Dec 17;11(1):6406. (PMID: 33335105)
Environ Microbiol Rep. 2015 Feb;7(1):51-63. (PMID: 25139220)
Nat Commun. 2021 Aug 26;12(1):5141. (PMID: 34446709)
Science. 2015 Nov 6;350(6261):663-6. (PMID: 26542567)
J Anim Ecol. 2018 Mar;87(2):414-427. (PMID: 28682460)
Microb Ecol. 2021 Apr;81(3):807-817. (PMID: 33051738)
Nat Methods. 2016 Jul;13(7):581-3. (PMID: 27214047)
Trends Parasitol. 2014 Jun;30(6):299-308. (PMID: 24810363)
Ecol Evol. 2019 Dec 02;10(3):1703-1721. (PMID: 32076545)
Insects. 2020 Jun 17;11(6):. (PMID: 32560536)
Plants (Basel). 2022 Oct 26;11(21):. (PMID: 36365304)
Nucleic Acids Res. 2023 Jul 5;51(W1):W310-W318. (PMID: 37166960)
Proc Natl Acad Sci U S A. 2010 Aug 31;107(35):15345-50. (PMID: 20705897)
Bioinformatics. 2014 Aug 1;30(15):2114-20. (PMID: 24695404)
Microbiologyopen. 2017 Apr;6(2):. (PMID: 27785885)
Ecology. 2013 Dec;94(12):2817-26. (PMID: 24597227)
Microb Ecol. 2015 May;69(4):723-32. (PMID: 25117532)
Nat Rev Microbiol. 2018 Oct;16(10):647-655. (PMID: 29691482)
Nat Methods. 2019 Jul;16(7):627-632. (PMID: 31182859)
Nat Commun. 2019 Mar 19;10(1):1254. (PMID: 30890706)
Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6. (PMID: 23193283)
mBio. 2013 Mar 05;4(2):. (PMID: 23462114)
Science. 2019 Aug 30;365(6456):851. (PMID: 31467202)
Appl Microbiol Biotechnol. 2019 Apr;103(8):3327-3340. (PMID: 30847542)
Annu Rev Entomol. 2015 Jan 7;60:17-34. (PMID: 25341109)
Bioinformatics. 2010 Jan 1;26(1):139-40. (PMID: 19910308)
Microbiol Spectr. 2022 Aug 31;10(4):e0078322. (PMID: 35758726)
Philos Trans R Soc Lond B Biol Sci. 2024 May 6;379(1901):20230071. (PMID: 38497257)
Nat Prod Rep. 2018 May 25;35(5):386-397. (PMID: 29565067)
J Chem Ecol. 2014 Jan;40(1):1-20. (PMID: 24337719)
ISME J. 2021 Apr;15(4):1098-1107. (PMID: 33580209)
J Chem Ecol. 2020 Aug;46(8):793-807. (PMID: 32537721)
Nat Rev Microbiol. 2012 May 14;10(7):497-506. (PMID: 22580365)
ISME J. 2023 Jan;17(1):1-11. (PMID: 36127432)
Genome Biol. 2011 Jun 24;12(6):R60. (PMID: 21702898)
Nat Rev Microbiol. 2022 Feb;20(2):109-121. (PMID: 34453137)
Curr Opin Microbiol. 2011 Feb;14(1):106-14. (PMID: 21215684)
ISME J. 2016 Jan;10(1):265-8. (PMID: 26023875)
Insect Sci. 2024 Feb;31(1):225-235. (PMID: 37221982)
Trends Plant Sci. 2020 Aug;25(8):733-743. (PMID: 32345569)
ISME J. 2016 Mar;10(3):655-64. (PMID: 26296066)
ISME J. 2013 May;7(5):937-48. (PMID: 23254515)
Proc Natl Acad Sci U S A. 2019 Aug 20;116(34):16892-16898. (PMID: 31391302)
Environ Microbiol. 2006 Apr;8(4):732-40. (PMID: 16584484)
Microbiome. 2021 Sep 15;9(1):187. (PMID: 34526096)
Nat Biotechnol. 2019 Aug;37(8):852-857. (PMID: 31341288)
ISME J. 2013 Nov;7(11):2069-79. (PMID: 23739053)
- Grant Information:
32070486 MOST | National Natural Science Foundation of China (NSFC); 32088102 MOST | National Natural Science Foundation of China (NSFC); 2021YFC2600100 Ministry of Science and Technology of the People's Republic of China (MOST)
- Contributed Indexing:
Keywords: Monochamus alternatus; beneficial microbiota; gallery; microbial assembly; pinewood nematode
- Accession Number:
0 (RNA, Ribosomal, 16S)
- Publication Date:
Date Created: 20240911 Date Completed: 20241004 Latest Revision: 20241005
- Publication Date:
20241005
- Accession Number:
PMC11448173
- Accession Number:
10.1128/spectrum.01412-24
- Accession Number:
39258937
No Comments.