Recent approaches in the application of antimicrobial peptides in food preservation.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: Germany NLM ID: 9012472 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-0972 (Electronic) Linking ISSN: 09593993 NLM ISO Abbreviation: World J Microbiol Biotechnol Subsets: MEDLINE
    • Publication Information:
      Publication: 2005- : Berlin : Springer
      Original Publication: Oxford, OX, UK : Published by Rapid Communications of Oxford Ltd in association with UNESCO and in collaboration with the International Union of Microbiological Societies, c1990-
    • Subject Terms:
    • Abstract:
      Antimicrobial peptides (AMPs) are small peptides existing in nature as an important part of the innate immune system in various organisms. Notably, the AMPs exhibit inhibitory effects against a wide spectrum of pathogens, showcasing potential applications in different fields such as food, agriculture, medicine. This review explores the application of AMPs in the food industry, emphasizing their crucial role in enhancing the safety and shelf life of food and how they offer a viable substitute for chemical preservatives with their biocompatible and natural attributes. It provides an overview of the recent advancements, ranging from conventional approaches of using natural AMPs derived from bacteria or other sources to the biocomputational design and usage of synthetic AMPs for food preservation. Recent innovations such as structural modifications of AMPs to improve safety and suitability as food preservatives have been discussed. Furthermore, the active packaging and creative fabrication strategies such as nano-formulation, biopolymeric peptides and casting films, for optimizing the efficacy and stability of these peptides in food systems are summarized. The overall focus is on the spectrum of applications, with special attention to potential challenges in the usage of AMPs in the food industry and strategies for their mitigation.
      (© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)
    • References:
      Agrawal P, Raghava GPS (2018) Prediction of antimicrobial potential of a chemically modified peptide from its tertiary structure. Front Microbiol 9:418508. https://doi.org/10.3389/fmicb.2018.02551. (PMID: 10.3389/fmicb.2018.02551)
      Agrillo B, Balestrieri M, Gogliettino M, Palmieri G, Moretta R, Proroga YT, Rea I, Cornacchia A, Capuano F, Smaldone G, De Stefano L (2019) Functionalized polymeric materials with bio-derived antimicrobial peptides for “active” packaging. Int J Mol Sci 20(3):601. https://doi.org/10.3390/ijms20030601. (PMID: 10.3390/ijms20030601307040806387462)
      Aguilera-Puga MD, Cancelarich NL, Marani MM, de la Fuente-Nunez C, Plisson F (2023) Accelerating the discovery and design of antimicrobial peptides with artificial intelligence. Computational drug discovery and design, New York. Springer, NY, pp 329–352.
      Agyei D, Tsopmo A, Udenigwe CC (2018) Bioinformatics and peptidomics approaches to the discovery and analysis of food-derived bioactive peptides. Anal Bioanal Chem 410:3463–3472. https://doi.org/10.1007/s00216-018-0974-1. (PMID: 10.1007/s00216-018-0974-129516135)
      Al-sahlany STG, Altemimi AB, Al-Manhel AJ, Niamah AK, Lakhssassi N, Ibrahim SA (2020) Purification of bioactive peptide with antimicrobial properties produced by Saccharomyces cerevisiae. Food 9:324–325. https://doi.org/10.3390/foods9030324. (PMID: 10.3390/foods9030324)
      Arulrajah B, Muhialdin BJ, Qoms MS, Zarei M, Hussin ASM, Hasan H, Saari N (2021) Production of cationic antifungal peptides from kenaf seed protein as natural bio preservatives to prolong the shelf-life of tomato puree. Int J Food Microbiol 359:109418. https://doi.org/10.1016/j.ijfoodmicro.2021.109418. (PMID: 10.1016/j.ijfoodmicro.2021.10941834607033)
      Baindara P, Mandal SM (2022) Plant-derived antimicrobial peptides: novel preservatives for the food industry. Foods 11(16):2415. https://doi.org/10.3390/foods11162415. (PMID: 10.3390/foods11162415360104159407122)
      Baranwal J, Barse B, Fais A, Delogu GL, Kumar A (2022) Biopolymer: a sustainable material for food and medical applications. Polymers 14(5):983. https://doi.org/10.3390/polym14050983. (PMID: 10.3390/polym14050983352678038912672)
      Bi J, Tian C, Jiang J, Zhang GL, Hao H, Hou HM (2020) Antibacterial activity and potential application in food packaging of peptides derived from turbot viscera hydrolysate. J Agric Food Chem 68(37):9968–9977. https://doi.org/10.1021/acs.jafc.0c03146. (PMID: 10.1021/acs.jafc.0c0314632841003)
      Bitencourt NV, Righetto GM, Camargo ILBC, de Godoy MO, Guido RVC, Oliva G, Santos-Filho NA, Cilli EM (2023) Effects of dimerization, dendrimerization, and chirality in p-BthTX-I peptide analogs on the antibacterial activity and enzymatic inhibition of the SARS-CoV-2 PLpro protein. Pharmaceutics 15(2):436. https://doi.org/10.3390/pharmaceutics15020436. (PMID: 10.3390/pharmaceutics15020436368397589964244)
      Bizani D, Morrissy JA, Dominguez AP, Brandelli A (2008) Inhibition of Listeria monocytogenes in dairy products using the bacteriocin-like peptide cerein 8A. Int J Food Microbiol 121(2):229–233. https://doi.org/10.1016/j.ijfoodmicro.2007.11.016. (PMID: 10.1016/j.ijfoodmicro.2007.11.01618068253)
      Boix-Lemonche G, Lekka M, Skerlavaj B (2020) A rapid fluorescence-based microplate assay to investigate the interaction of membrane active antimicrobial peptides with whole gram-positive bacteria. Antibiotics 9:92. https://doi.org/10.3390/antibiotics9020092. (PMID: 10.3390/antibiotics9020092320931047168298)
      Bondi M, Messi P, Halami PM, Papadopoulou C, De Niederhausern S (2014) Emerging microbial concerns in food safety and new control measures. BioMed Res Int. https://doi.org/10.1155/2014/251512. (PMID: 10.1155/2014/251512251106654109624)
      Bournez C, Riool M, de Boer L, Cordfunke RA, de Best L, van Leeuwen R, Drijfhout JW, Zaat SA, van Westen GJ (2023) CalcAMP: A new machine learning model for the accurate prediction of antimicrobial activity of peptides. Antibiotics (Basel) 12(4):725. https://doi.org/10.3390/antibiotics12040725. (PMID: 10.3390/antibiotics1204072537107088)
      Brockgreitens J, Abbas A (2016) Responsive food packaging: recent progress and technological prospects. Compr Rev Food Sci Food Saf 15(1):3–15. https://doi.org/10.1111/1541-4337.12174. (PMID: 10.1111/1541-4337.1217433371571)
      Chaudhary K, Kumar R, Singh S, Tuknait A, Gautam A, Mathur D, Anand P, Varshney GC, Raghava GP (2016) A web server and mobile app for computing hemolytic potency of peptides. Sci Rep 6(1):22843. https://doi.org/10.1038/srep22843. (PMID: 10.1038/srep22843269530924782144)
      Chiloeches A, Zágora J, Plachá D, Torres MD, de la Fuente-Nunez C, López-Fabal F, Gil-Romero Y, Fernández-García R, Fernández-García M, Echeverría C, Muñoz-Bonilla A (2023) Synergistic combination of antimicrobial peptides and cationic polyitaconates in multifunctional PLA fibers. ACS Appl Bio Mater 6(11):4805–4813. https://doi.org/10.1021/acsabm.3c00576. (PMID: 10.1021/acsabm.3c005763786245110852355)
      Crits-Christoph A, Hallowell HA, Koutouvalis K, Suez J (2022) Good microbes, bad genes? The dissemination of antimicrobial resistance in the human microbiome. Gut Microbes 14(1):2055944. https://doi.org/10.1080/19490976.2022.2055944. (PMID: 10.1080/19490976.2022.2055944353328328959533)
      Cui H, Wu J, Li C, Lin L (2017) Improving anti-listeria activity of cheese packaging via nanofiber containing nisin-loaded nanoparticles. LWT 81:233–242. https://doi.org/10.1016/j.lwt.2017.04.003. (PMID: 10.1016/j.lwt.2017.04.003)
      Dang X, Zheng X, Wang Y, Wang L, Ye L, Jiang J (2020) Antimicrobial peptides from the edible insect Musca domestica and their preservation effect on chilled pork. J Food Process Preserv 44(3):14369. https://doi.org/10.1111/jfpp.14369. (PMID: 10.1111/jfpp.14369)
      Dijksteel GS, Ulrich MM, Middelkoop E, Boekema BK (2021) Lessons learned from clinical trials using antimicrobial peptides (AMPs). Front Microbiol 12:616979. https://doi.org/10.3389/fmicb.2021.616979. (PMID: 10.3389/fmicb.2021.616979336927667937881)
      Dong B, Wang Y, Cui G, Wang Y, Lin Y, Su Z, Zhao G (2024) In vitro antimicrobial activity of the novel antimicrobial peptide mytimacin-4 and its influence on the microbial community and quality of pork during refrigerated storage. Food Control 163:110486. https://doi.org/10.1016/j.foodcont.2024.110486. (PMID: 10.1016/j.foodcont.2024.110486)
      Duarte LG, Picone CS (2022) Antimicrobial activity of lactoferrin-chitosan-gellan nanoparticles and their influence on strawberry preservation. Food Res Int 159:111586. https://doi.org/10.1016/j.foodres.2022.111586. (PMID: 10.1016/j.foodres.2022.11158635940786)
      El-Saadony MT, Abd El-Hack ME, Swelum AA, Al-Sultan SI, El-Ghareeb WR, Hussein EO, Ba-Awadh HA, Akl BA, Nader MM (2021) Enhancing quality and safety of raw buffalo meat using the bioactive peptides of pea and red kidney bean under refrigeration conditions. Ital J Anim Sci 20(1):762–776. https://doi.org/10.1080/1828051X.2021.1926346. (PMID: 10.1080/1828051X.2021.1926346)
      Field D, Fernandez de Ullivarri M, Ross RP, Hill C (2023) After a century of nisin research-where are we now? FEMS Microbiol Rev 47(3):fuad023. https://doi.org/10.1093/femsre/fuad023. (PMID: 10.1093/femsre/fuad0233730087410257480)
      Fingerhut LC, Miller DJ, Strugnell JM, Daly NL, Cooke IR (2020) ampir: an R package for fast genome-wide prediction of antimicrobial peptides. Bioinformatics 36(21):5262–5263. https://doi.org/10.1093/bioinformatics/btaa653. (PMID: 10.1093/bioinformatics/btaa653)
      Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the Expasy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, pp 571–607. (PMID: 10.1385/1-59259-890-0:571)
      Giacometti J, Buretić-Tomljanović A (2017) Peptidomics as a tool for characterizing bioactive milk peptides. Food Chem 230:91–98. https://doi.org/10.1016/j.foodchem.2017.03.016. (PMID: 10.1016/j.foodchem.2017.03.01628407976)
      Graf M, Mardirossian M, Nguyen F, Seefeldt AC, Guichard G, Scocchi M, Innis CA, Wilson DN (2017) Proline-rich antimicrobial peptides targeting protein synthesis. Nat Prod Rep 34(7):702–711. https://doi.org/10.1039/C7NP00020K. (PMID: 10.1039/C7NP00020K28537612)
      Grande MJ, Lucas R, Abriouel H, Omar NB, Maqueda M, Martínez-Bueno M, Martínez-Cañamero M, Valdivia E, Gálvez A (2005) Control of Alicyclobacillus acidoterrestris in fruit juices by enterocin AS-48. Int J Food Microbiol 104(3):289–297. https://doi.org/10.1016/j.ijfoodmicro.2005.03.010. (PMID: 10.1016/j.ijfoodmicro.2005.03.01015979752)
      Gupta S, Ansari HR, Gautam A, Open-Source Drug Discovery Consortium, Raghava GP (2013) Identification of B-cell epitopes in an antigen for inducing specific class of antibodies. Biol Direct 8:1–15. https://doi.org/10.1186/1745-6150-8-27. (PMID: 10.1186/1745-6150-8-27)
      Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Open-Source Drug Discovery Consortium, Raghava GP (2013) In silico approach for predicting toxicity of peptides and proteins. PLoS ONE 8(9):73957. https://doi.org/10.1371/journal.pone.0073957. (PMID: 10.1371/journal.pone.0073957)
      Gupta R, Srivastava S (2014) Antifungal effect of antimicrobial peptides (AMPs LR14) derived from Lactobacillus plantarum strain LR/14 and their applications in prevention of grain spoilage. Food Microbiol 42:1–7. https://doi.org/10.1016/j.fm.2014.02.005. (PMID: 10.1016/j.fm.2014.02.00524929709)
      Hazam PK, Selvaraj SP, Negi A, Lin WC, Chen JY (2024) Use of natural peptide TP4 as a food preservative prevents contamination by fungal pathogens. Food Chem 455:139874. https://doi.org/10.1016/j.foodchem.2024.139874. (PMID: 10.1016/j.foodchem.2024.13987438838624)
      Hemmati F, Bahrami A, Esfanjani AF, Hosseini H, McClements DJ, Williams L (2021) Electrospun antimicrobial materials: advanced packaging materials for food applications. Trends Food Sci Technol 111:520–533. https://doi.org/10.1016/j.tifs.2021.03.014. (PMID: 10.1016/j.tifs.2021.03.014)
      Hilpert K, Fjell CD, Cherkasov A (2008) Short linear cationic antimicrobial peptides: screening, optimizing, and prediction. In: Otvos L (ed) Peptide-based drug design. Springer, Berlin, pp 127–159. (PMID: 10.1007/978-1-59745-419-3_8)
      Hiss JA, Hartenfeller M, Schneider G (2010) Concepts and applications of “natural computing” techniques in de novo drug and peptide design. Curr Pharm Des 16:1656–1665. https://doi.org/10.2174/138161210791164009. (PMID: 10.2174/13816121079116400920222857)
      Hou J, Li YQ, Wang ZS, Sun GJ, M HZ, (2017) Applicative effect of glycinin basic polypeptide in fresh wet noodles and antifungal characteristics. LWT 83:267–274. https://doi.org/10.1016/j.lwt.2017.05.028. (PMID: 10.1016/j.lwt.2017.05.028)
      Huan Y, Kong Q, Mou H, Yi H (2020) Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front Microbiol 11:582779. https://doi.org/10.3389/fmicb.2020.582779. (PMID: 10.3389/fmicb.2020.582779331781647596191)
      Huang RH, Xiang Y, Liu XZ, Zhang Y, Hu Z, Wang DC (2002) Two novel antifungal peptides distinct with a five-disulfide motif from the bark of Eucommia ulmoides Oliv. FEBS Lett 521:87–90. https://doi.org/10.1016/s0014-5793(02)02829-6. (PMID: 10.1016/s0014-5793(02)02829-612067732)
      Imran M, Revol-Junelles AM, René N, Jamshidian M, Akhtar MJ, Arab-Tehrany E, Jacquot M, Desobry S (2012) Microstructure and physico-chemical evaluation of nano-emulsion-based antimicrobial peptides embedded in bioactive packaging films. Food Hydrocoll 29(2):407–419. https://doi.org/10.1016/j.foodhyd.2012.04.010. (PMID: 10.1016/j.foodhyd.2012.04.010)
      Jabeen U, Khanum A (2017) Isolation and characterization of potential food preservative peptide from Momordica charantia L. Arab J Chem 10:3982–3989. https://doi.org/10.1016/j.arabjc.2014.06.009. (PMID: 10.1016/j.arabjc.2014.06.009)
      Jamróz E, Kulawik P, Kopel P (2019) The effect of nanofillers on the functional properties of biopolymer-based films: a review. Polymers 11:1–42. https://doi.org/10.3390/polym11040675. (PMID: 10.3390/polym11040675)
      Jamróz E, Kulawik P, Tkaczewska J, Guzik P, Zając M, Juszczak L, Krzyściak P, Turek K (2021) The effects of active double-layered furcellaran/gelatin hydrolysate film system with Ala-Tyr peptide on fresh Atlantic mackerel stored at −18°C. Food Chem 338:127867. https://doi.org/10.1016/j.foodchem.2020.127867. (PMID: 10.1016/j.foodchem.2020.12786732829293)
      Jha B, Singh S (2023) Investigating antimicrobial peptide RI12 (K3W) as an effective bio-preservative against Listeria monocytogenes: a major foodborne pathogen. Arch Microbiol 205(12):367. https://doi.org/10.1007/s00203-023-03707-5. (PMID: 10.1007/s00203-023-03707-537917273)
      Jhong JH, Chi YH, Li WC (2019) AMP: an integrated resource for exploring antimicrobial peptides with functional activities and physicochemical properties on transcriptome and proteome data. Nucleic Acids Res 8(47):285–297. https://doi.org/10.1093/nar/gky1030. (PMID: 10.1093/nar/gky1030)
      Jia L, Yarlagadda R, Reed CC (2015) Structure based thermostability prediction models for protein single point mutations with machine learning tools. PLoS ONE 10:e0138022. https://doi.org/10.1371/journal.pone.0138022. (PMID: 10.1371/journal.pone.0138022263612274567301)
      Jordan O, Gan BH, Alwan S, Perron K, Sublet E, Ducret V, Ye H, Borchard G, Reymond JL, Patrulea V (2024) Highly potent cationic chitosan derivatives coupled to antimicrobial peptide dendrimers to combat Pseudomonas aeruginosa. Adv Healthc Mater. https://doi.org/10.1002/adhm.202304118. (PMID: 10.1002/adhm.20230411839219219)
      Jordá-Vilaplana A, Fombuena V, García-García D, Samper MD, Sánchez-Nácher L (2014) Surface modification of polylactic acid (PLA) by air atmospheric plasma treatment. Eur Polym J 58:23–33. https://doi.org/10.1016/j.eurpolymj.2014.06.002. (PMID: 10.1016/j.eurpolymj.2014.06.002)
      Joseph S, Karnik S, Nilawe P, Jayaraman VK, Idicula-Thomas S (2012) ClassAMP: a prediction tool for classification of antimicrobial peptides. IEEE/ACM Trans Comput Biol Bioinform 9(5):1535–1538. https://doi.org/10.1109/TCBB.2012.89. (PMID: 10.1109/TCBB.2012.8922732690)
      Kamech N, Vukicevic D, Ladram A, Piesse C, Vasseur J, Bojovic V, Simunic J, Juretic D (2012) Improving the selectivity of antimicrobial peptides from anuran skin. J Chem Inf Model 52(12):3341–3351. https://doi.org/10.1021/ci300328y. (PMID: 10.1021/ci300328y23094651)
      Kavousi K, Bagheri M, Behrouzi S, Vafadar S, Atanaki FF, Lotfabadi BT, Ariaeenejad S, Shockravi A, Moosavi-Movahedi AA (2020) IAMPE: NMR-assisted computational prediction of antimicrobial peptides. J Chem Inf Model 60(10):4691–4701. https://doi.org/10.1021/acs.jcim.0c00841. (PMID: 10.1021/acs.jcim.0c0084132946226)
      Khabbaz H, Karimi-Jafari MH, Saboury AA, BabaAli B (2021) Prediction of antimicrobial peptides toxicity based on their physico-chemical properties using machine learning techniques. BMC Bioinform 22:1–1. https://doi.org/10.1186/s12859-021-04468-y. (PMID: 10.1186/s12859-021-04468-y)
      Kumari A, Singh M, Sharma R, Kumar T, Jindal N, Maan S, Joshi VG (2023) Apoptin NLS2 homodimerization strategy for improved antibacterial activity and bio-stability. Amino Acids 55(10):1405–1416. https://doi.org/10.1007/s00726-023-03321-1. (PMID: 10.1007/s00726-023-03321-137725185)
      Lata S, Mishra NK, Raghava GPS (2009) AntiBP2: improved version of antibacterial peptide prediction. BMC Bioinform 11:1–7. https://doi.org/10.1186/1471-2105-11-S1-S19. (PMID: 10.1186/1471-2105-11-S1-S19)
      Lawrence TJ, Carper DL, Spangler MK, Carrell AA, Rush TA, Minter SJ, Weston DJ, Labbé JL (2021) amPEPpy 1.0: a portable and accurate antimicrobial peptide prediction tool. Bioinformatics 37(14):2058–2060. https://doi.org/10.1093/bioinformatics/btaa917. (PMID: 10.1093/bioinformatics/btaa91733135060)
      Lee HT, Lee CC, Yang JR, Lai JZ, Chang KY (2015) A large-scale structural classification of antimicrobial peptides. Biomed Res Int 1:475062. https://doi.org/10.1155/2015/475062. (PMID: 10.1155/2015/475062)
      Lee J, Ryu M, Bae D (2022) Development of DNA aptamers specific for small therapeutic peptides using a modified SELEX method. J Microbiol 60(7):659–667. https://doi.org/10.1007/s12275-022-2235-4. (PMID: 10.1007/s12275-022-2235-435731347)
      Lima KO, de Quadros CDC, da Rocha M, de Lacerda JTJG, Juliano MA, Dias M, Mendes MA, Prentice C (2019) Bioactivity and bioaccessibility of protein hydrolyzates from industrial byproducts of Stripped weakfish (Cynoscion guatucupa). LWT 111:408–413. https://doi.org/10.1016/j.lwt.2019.05.043. (PMID: 10.1016/j.lwt.2019.05.043)
      Liu B, Zhang W, Gou S, Huang H, Yao J, Yang Z, Liu H, Zhong C, Liu B, Ni J, Wang R (2017) Intramolecular cyclization of the antimicrobial peptide Polybia-MPI with triazole stapling: influence on stability and bioactivity. J Pept Sci 23(11):824–832. https://doi.org/10.1002/psc.3031. (PMID: 10.1002/psc.303128833783)
      Lombardi L, Maisetta G, Batoni G, Tavanti A (2015) Insights into the antimicrobial properties of hepcidins: advantages and drawbacks as potential therapeutic agents. Molecules 20(4):6319–41. https://doi.org/10.3390/molecules20046319. (PMID: 10.3390/molecules20046319258678236272296)
      Lu D, Chen Y, Xie Q, Qiu Z, Zhang H, Sun P, Pan J, Wang Y (2022) Preparation of bioactive peptides from marine industrial waste for moon cake preservation by coating. J Food Process Preserv 46(12):e17221. https://doi.org/10.1111/jfpp.17221. (PMID: 10.1111/jfpp.17221)
      Lund MN, Ray CA (2017) Control of Maillard reactions in foods: strategies and chemical mechanisms. J Agric Food Chem 65(23):4537–4552. https://doi.org/10.1021/acs.jafc.7b00882. (PMID: 10.1021/acs.jafc.7b0088228535048)
      Luo X, Chen H, Song Y, Qin Z, Xu L, He N, Tan Y, Dessie W (2023) Advancements, challenges and future perspectives on peptide-based drugs: focus on antimicrobial peptides. Eur J Pharm Sci 181:106363. https://doi.org/10.1016/j.ejps.2022.106363. (PMID: 10.1016/j.ejps.2022.10636336529161)
      Luz C, Calpe J, Saladino F, Luciano FB, Fernandez-Franzón M, Mañes J, Meca G (2018) Antimicrobial packaging based on ϵ-polylysine bioactive film for the control of mycotoxigenic fungi in vitro and in bread. J Food Process Preserv 42:e13370. https://doi.org/10.1111/jfpp.13370. (PMID: 10.1111/jfpp.1337029456275)
      Malheiros PdaS, Sant’Anna V, de Souza BM, Brandelli A, de Melo Franco BDG (2012) Effect of liposome-encapsulated nisin and bacteriocin-like substance P34 on Listeria monocytogenes growth in Minas frescal cheese. Int J Food Microbiol 156(3):272–277. https://doi.org/10.1016/j.ijfoodmicro.2012.04.004. (PMID: 10.1016/j.ijfoodmicro.2012.04.00422554928)
      Meena M, Prajapati P, Ravichandran C, Sehrawat R (2021) Natamycin: a natural preservative for food applications-a review. Food Sci Biotechnol 30(12):1481–1496. https://doi.org/10.1007/s10068-021-00981-1. (PMID: 10.1007/s10068-021-00981-1348686988595390)
      Meher PK, Sahu TK, Saini V, Rao AR (2017) Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC. Sci Rep 7(1):1–12. https://doi.org/10.1038/srep42362. (PMID: 10.1038/srep42362)
      Meira SMM, Zehetmeyer G, Werner JO, Brandelli A (2017) A novel active packaging material based on starch-halloysite nanocomposites incorporating antimicrobial peptides. Food Hydrocoll 63:561–570. https://doi.org/10.1016/j.foodhyd.2016.10.013. (PMID: 10.1016/j.foodhyd.2016.10.013)
      Melo MC, Maasch JR, de la Fuente-Nunez C (2021) Accelerating antibiotic discovery through artificial intelligence. Commun Biol 4(1):1050. https://doi.org/10.1038/s42003-021-02586-0. (PMID: 10.1038/s42003-021-02586-0345043038429579)
      Mironov PA, Paramonov AS, Reznikova OV, Safronova VN, Panteleev PV, Bolosov IA, Ovchinnikova TV, Shenkarev ZO (2024) Dimerization of the β-hairpin membrane-active cationic antimicrobial peptide capitellacin from marine polychaeta: an NMR structural and thermodynamic study. Biomolecules 14(3):332. https://doi.org/10.3390/biom14030332. (PMID: 10.3390/biom140303323854075210968102)
      Mitchell JB (2014) Machine learning methods in chemoinformatics. Wiley Interdiscipl Rev 4:468–481. https://doi.org/10.1002/wcms.1183. (PMID: 10.1002/wcms.1183)
      Mohanty DP, Mohapatra S, Misra S, Sahu DP (2016) Milk derived bioactive peptides and their impact on human health–a review. Saudi J Biol Sci 23(5):577–583. https://doi.org/10.1016/j.sjbs.2015.06.005. (PMID: 10.1016/j.sjbs.2015.06.00527579006)
      Molinos AC, Abriouel H, Lopez RL, Valdivia E, Omar NB, Galvez A (2008) Combined physico-chemical treatments based on enterocin AS-48 for inactivation of Gram-negative bacteria in soybean sprouts. Food Chem Toxicol 46:2912–2921. https://doi.org/10.1016/j.fct.2008.05.035. (PMID: 10.1016/j.fct.2008.05.035)
      Mozafari MR, Khosravi-Darani K, Borazan GG, Cui J, Pardakhty A, Yurdugul S (2008) Encapsulation of food ingredients using nanoliposome technology. Int J Food Prop 11(4):833–844. https://doi.org/10.1080/10942910701648115. (PMID: 10.1080/10942910701648115)
      Nie T, Meng F, Zhou L, Lu F, Bie X, Lu Z, Lu Y (2021) In silico development of novel chimeric lysins with highly specific inhibition against Salmonella by computer-aided design. J Agric Food Chem 69(12):3751–3760. https://doi.org/10.1021/acs.jafc.0c07450. (PMID: 10.1021/acs.jafc.0c0745033565867)
      Ning HQ, Wang ZS, Li YQ, Tian WL, Sun GJ, Mo HZ (2019) Effects of glycinin basic polypeptide on the textural and physicochemical properties of Scomberomorus niphonius surimi. LWT 114:108328. https://doi.org/10.1016/j.lwt.2019.10832. (PMID: 10.1016/j.lwt.2019.10832)
      Noonan J, Williams WP, Shan X (2017) Investigation of antimicrobial peptide genes associated with fungus and insect resistance in maize. Int J Mol Sci 18(9):1938. https://doi.org/10.3390/ijms18091938. (PMID: 10.3390/ijms18091938289147545618587)
      Okella H, Okello E, Mtewa AG, Ikiriza H, Kaggwa B, Aber J, Ndekezi C, Nkamwesiga J, Ajayi CO, Mugeni IM, Ssentamu G, Ochwo S, Odongo S, Tolo CU, Kato CD, Engeu PO (2022) ADMET profiling and molecular docking of potential antimicrobial peptides previously isolated from African catfish, Clarias gariepinus. Front Mol Biosci 9:1039286. https://doi.org/10.3389/fmolb.2022.1039286. (PMID: 10.3389/fmolb.2022.1039286365679449772024)
      Oshiro KG, Candido ES, Chan LY, Torres MD, Monges BE, Rodrigues SG, Porto WF, Ribeiro SM, Henriques ST, Lu TK, de la Fuente-Núñez C (2019) Computer-aided design of mastoparan-like peptides enables the generation of nontoxic variants with extended antibacterial properties. J Med Chem 62(17):8140–8151. https://doi.org/10.1021/acs.jmedchem.9b00915. (PMID: 10.1021/acs.jmedchem.9b0091531411881)
      Peng J, Zheng F, Wei L, Lin H, Jiang J, Hui G (2018) Jumbo squid (Dosidicus gigas) quality enhancement using complex bio-preservative during cold storage. J Food Meas Character 12(1):78–86. https://doi.org/10.1007/s11694-017-9618-y. (PMID: 10.1007/s11694-017-9618-y)
      Porto WF, Silva ON, Franco OL (2012) Prediction and rational design of antimicrobial peptides. In: Faraggi E (ed) Protein structure. InTech, London, pp 377–396.
      Porto WF, Fensterseifer IC, Ribeiro SM, Franco OL (2018) Joker: an algorithm to insert patterns into sequences for designing antimicrobial peptides. Biochim Biophys Acta Gen Subj 1862:2043–2052. https://doi.org/10.1016/j.bbagen.2018.06.011. (PMID: 10.1016/j.bbagen.2018.06.01129928920)
      Przybylski R, Firdaous L, Châtaigné G, Dhulster P, Nedjar N (2016) Production of an antimicrobial peptide derived from slaughterhouse by-product and its potential application on meat as preservative. Food Chem 211:306–313. https://doi.org/10.1016/j.foodchem.2016.05.074. (PMID: 10.1016/j.foodchem.2016.05.07427283637)
      Rai M, Pandit R, Gaikwad S, Kövics G (2016) Antimicrobial peptides as natural bio-preservative to enhance the shelf-life of food. J Food Sci Technol 53:3381–3394. https://doi.org/10.1007/s13197-016-2318-5. (PMID: 10.1007/s13197-016-2318-5277774455069246)
      Rouhi A, Yousefi Y, Falah F, Azghandi M, Behbahani BA, Tabatabaei-Yazdi F, Vasiee A (2024) Exploring the potential of melittin peptide: expression, purification, anti-pathogenic properties, and promising applications as a bio-preservative for beef slices. LWT 199:116083. https://doi.org/10.1016/j.lwt.2024.116083. (PMID: 10.1016/j.lwt.2024.116083)
      Rounds T, Straus SK (2020) Lipidation of antimicrobial peptides as a design strategy for future alternatives to antibiotics. Int J Mol Sci 21(24):9692. https://doi.org/10.3390/ijms21249692. (PMID: 10.3390/ijms21249692333531617766664)
      Santos JC, Sousa RC, Otoni CG, Moraes AR, Souza VG, Medeiros EA, Espitia PJ, Pires AC, Coimbra JS, Soares NF (2018) Nisin and other antimicrobial peptides: production, mechanisms of action, and application in active food packaging. Innov Food Sci Emerg Technol 48:179–194. https://doi.org/10.1016/j.ifset.2018.06.008. (PMID: 10.1016/j.ifset.2018.06.008)
      Santos-Filho NA, Righetto GM, Pereira MR, Piccoli JP, Almeida LMT, Leal TC, Camargo ILBC, Cilli EM (2021) Effect of C-terminal and N-terminal dimerization and alanine scanning on antibacterial activity of the analogs of the peptide p-BthTX-I. Pept Sci. https://doi.org/10.1002/pep2.24243. (PMID: 10.1002/pep2.24243)
      Selvarajan V, Tram NDT, Xu J, Ngen STY, Koh JJ, Teo JWP, Yuen TY, Ee PLR (2023) Stapled β-hairpin antimicrobial peptides with improved stability and activity against drug-resistant Gram-negative bacteria. J Med Chem 66(13):8498–8509. https://doi.org/10.1021/acs.jmedchem.3c00140. (PMID: 10.1021/acs.jmedchem.3c001403735749910350921)
      Shabir U, Ali S, Magray AR, Ganai BA, Firdous P, Hassan T, Nazir R (2018) Fish antimicrobial peptides (AMPs) as essential and promising molecular therapeutic agents: a review. Microb Pathog 114:50–56. https://doi.org/10.1016/j.micpath.2017.11.039. (PMID: 10.1016/j.micpath.2017.11.03929180291)
      Sharma A, Singla D, Rashid M, Raghava GPS (2014) Designing of peptides with desired half-life in intestine-like environment. BMC Bioinform 15:1–8. https://doi.org/10.1186/1471-2105-15-282. (PMID: 10.1186/1471-2105-15-282)
      Shwaiki LN, Arendt EK, Lynch KM (2020) Study on the characterization and application of synthetic peptide Snakin-1 derived from potato tubers—action against food spoilage yeast. Food Control 118:107362. https://doi.org/10.1016/j.foodcont.2020.107362. (PMID: 10.1016/j.foodcont.2020.107362)
      Singh RP, Heldman DR (2001) Introduction to food engineering. Gulf Professional Publishing, San Diego.
      Singh SS, Akhtar MN, Sharma D, Mandal SM, Korpole S (2021) Characterization of iturin V, a novel antimicrobial lipopeptide from a potential probiotic strain Lactobacillus sp. M31. Probiotics Antimicrob Proteins 13(6):1766–1779. https://doi.org/10.1007/s12602-021-09796-2. (PMID: 10.1007/s12602-021-09796-233987819)
      Singh A, Duche RT, Wandhare AG, Sian JK, Singh BP, Sihag MK, Singh KS, Sangwan V, Talan S, Panwar H (2023) Milk-derived antimicrobial peptides: overview, applications, and future perspectives. Probiotics Antimicrob Proteins 15:44–62. https://doi.org/10.1007/s12602-022-10004-y. (PMID: 10.1007/s12602-022-10004-y36357656)
      Spaller BL, Trieu JM, Almeida PF (2013) Hemolytic activity of membrane-active peptides correlates with the thermodynamics of binding to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayers. J Membr Biol 246:257–262. https://doi.org/10.1007/s00232-013-9525-z. (PMID: 10.1007/s00232-013-9525-z233293393584441)
      Sultana A, Luo H, Ramakrishna S (2021) Harvesting of antimicrobial peptides from insect (Hermetia illucens) and its applications in food packaging. Appl Sci 11(15):6991. https://doi.org/10.3390/app11156991. (PMID: 10.3390/app11156991)
      Tajer L, Paillart JC, Dib H, Sabatier JM, Fajloun Z, Abi Khattar Z (2024) Molecular mechanisms of bacterial resistance to antimicrobial peptides in the modern era: an updated review. Microorganisms 12(7):1259. https://doi.org/10.3390/microorganisms12071259. (PMID: 10.3390/microorganisms120712593906503011279074)
      Tang R, Tan H, Dai Y, Li L, Huang Y, Yao H, Cai Y, Yu G (2023) Application of antimicrobial peptides in plant protection: making use of the overlooked merits. Front Plant Sci 14:1139539. https://doi.org/10.3389/fpls.2023.1139539. (PMID: 10.3389/fpls.2023.11395393753805910394246)
      Tian L, Zhang D, Su P, Wei Y, Wang Z, Wang PX, Dai CJ, Gong GL (2019) Design, recombinant expression, and antibacterial activity of a novel hybrid magainin–thanatin antimicrobial peptide. Prep Biochem Biotechnol 49(5):427–434. https://doi.org/10.1080/10826068.2018.1476875. (PMID: 10.1080/10826068.2018.147687530861356)
      Timmons PB, Hewage CM (2020) HAPPENN is a novel tool for hemolytic activity prediction for therapeutic peptides which employs neural networks. Sci Rep 10:10869. https://doi.org/10.1038/s41598-020-67701-3. (PMID: 10.1038/s41598-020-67701-3326167607331684)
      Torres MDT, de la Fuente-Núñez C (2019) Toward computer-made artificial antibiotics. Curr Opin Microbiol 51:30–38. https://doi.org/10.1016/j.mib.2019.03.004. (PMID: 10.1016/j.mib.2019.03.00431082661)
      Udenigwe CC, Fogliano V (2017) Food matrix interaction and bioavailability of bioactive peptides: two faces of the same coin? J Funct Foods 35:9–12. https://doi.org/10.1016/j.jff.2017.05.029. (PMID: 10.1016/j.jff.2017.05.029)
      Veltri D, Kamath U, Shehu A (2018) Deep learning improves antimicrobial peptide recognition. Bioinformatics 34(16):2740–2747. https://doi.org/10.1093/bioinformatics/bty179. (PMID: 10.1093/bioinformatics/bty179295902976084614)
      Vishnepolsky B, Grigolava M, Managadze G, Gabrielian A, Rosenthal A, Hurt DE, Tartakovsky M, Pirtskhalava M (2022) Comparative analysis of machine learning algorithms on the microbial strain-specific AMP prediction. Brief Bioinform. https://doi.org/10.1093/bib/bbac233. (PMID: 10.1093/bib/bbac233357245619294419)
      Waghu FH, Idicula-Thomas S (2020) Collection of antimicrobial peptides database and its derivatives: applications and beyond. Protein Sci 29(1):36–42. https://doi.org/10.1002/pro.3714. (PMID: 10.1002/pro.371431441165)
      Wang W, Feng G, Li X, Ruan C, Ming J, Zeng K (2021) Inhibition of three citrus pathogenic fungi by peptide PAF56 involves cell membrane damage. Foods 10(9):2031. https://doi.org/10.3390/foods10092031. (PMID: 10.3390/foods10092031345741418469410)
      Wang R, Wang T, Zhuo L, Wei J, Fu X, Zou Q, Yao X (2024) Diff-AMP: tailored designed antimicrobial peptide framework with all-in-one generation, identification, prediction and optimization. Brief Bioinform 25(2):pbbae078. https://doi.org/10.1093/bib/bbae078. (PMID: 10.1093/bib/bbae078)
      Wei D, Zhang X (2022) Biosynthesis, bioactivity, biotoxicity and applications of antimicrobial peptides for human health. Biosaf Health 25:118–134. https://doi.org/10.1016/j.bsheal.2022.02.003. (PMID: 10.1016/j.bsheal.2022.02.003)
      Win TS, Malik AA, Prachayasittikul V, Wikberg JEE, Nantasenamat C, Shoombuatong W (2017) HemoPred: a web server for predicting the hemolytic activity of peptides. Fut Med Chem 9(3):275–291. https://doi.org/10.4155/fmc-2016-0188. (PMID: 10.4155/fmc-2016-0188)
      Xiao J, Niu L (2015) Antilisterial peptides released by enzymatic hydrolysis from grass carp proteins and activity on controlling L. monocytogenes inoculated in surimi noodle. J Food Sci 80(11):M2564-9. https://doi.org/10.1111/1750-3841.13104. (PMID: 10.1111/1750-3841.1310426467537)
      Xiao X, Wang P, Lin W-Z, Jia J-H, Chou K-C (2013) iAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types. Anal Biochem 436:168–177. https://doi.org/10.1016/j.ab.2013.01.019. (PMID: 10.1016/j.ab.2013.01.01923395824)
      Yang S, Li J, Aweya JJ, Yuan Z, Weng W, Zhang Y, Liu GM (2020) Antimicrobial mechanism of Larimichthys crocea whey acidic protein-derived peptide (LCWAP) against Staphylococcus aureus and its application in milk. Int J Food Microbiol 335:108891. https://doi.org/10.1016/j.ijfoodmicro.2020.108891. (PMID: 10.1016/j.ijfoodmicro.2020.10889132977153)
      Yang X, Wang Y, Jiang H, Song R, Liu Y, Guo H, Meng D (2023) Antimicrobial peptide CB-M exhibits direct antifungal activity against Botrytis cinerea and induces disease resistance to gray mold in cherry tomato fruit. Postharvest Biol Technol 196:112184. https://doi.org/10.1016/j.postharvbio.2022.112184. (PMID: 10.1016/j.postharvbio.2022.112184)
      Yonezawa A, Kuwahara J, Fujii N, Sugiura Y (1992) Binding of Tachyplesin I to DNA revealed by footprinting analysis: significant contribution of secondary structure to DNA binding and implication for biological action. Biochemistry 31:2998–3004. https://doi.org/10.1021/bi00126a022. (PMID: 10.1021/bi00126a0221372516)
      Zasloff M (2002) Antimicrobial peptides of multicellular origin. Nature 415:389–395. https://doi.org/10.1038/415389a. (PMID: 10.1038/415389a11807545)
      Zhang S, Luo L, Sun X, Ma A (2021) Bioactive peptides: a promising alternative to chemical preservatives for food preservation. J Agric Food Chem 69(42):12369–12384. https://doi.org/10.1021/acs.jafc.1c04020. (PMID: 10.1021/acs.jafc.1c0402034649436)
      Zhao Y, Zhang M, Qiu S, Wang J, Peng J, Zhao P, Zhu R, Wang H, Li Y, Wang K, Yan W (2016) Antimicrobial activity and stability of the D-amino acid substituted derivatives of antimicrobial peptide polybia-MPI. AMB Express 6:1–11. https://doi.org/10.1186/s13568-016-0295-8. (PMID: 10.1186/s13568-016-0295-8)
      Zhong C, Liu T, Gou S, He Y, Zhu N, Zhu Y, Wang L, Liu H, Zhang Y, Yao J, Ni J (2019) Design and synthesis of new N-terminal fatty acid modified-antimicrobial peptide analogues with potent in vitro biological activity. Eur J Med Chem 182:111636. https://doi.org/10.1016/j.ejmech.2019.111636. (PMID: 10.1016/j.ejmech.2019.11163631466017)
    • Contributed Indexing:
      Keywords: Applications; Bioinformatics; Challenges; Fabrication; In silico; Nanoparticles; Packaging
    • Accession Number:
      0 (Food Preservatives)
      0 (Antimicrobial Peptides)
      0 (Anti-Infective Agents)
    • Publication Date:
      Date Created: 20240909 Date Completed: 20240909 Latest Revision: 20241016
    • Publication Date:
      20241016
    • Accession Number:
      10.1007/s11274-024-04126-4
    • Accession Number:
      39249587