Menu
×
West Ashley Library
9 a.m. – 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. – 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. – 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. – 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. – 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. – 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. – 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. – 8 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. – 8 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. – 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
9 a.m. – 6 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. – 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. – 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. – 8 p.m.
Phone: (843) 795-6679
Main Library
9 a.m. – 8 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. – 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
West Ashley Library
9 a.m. – 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. – 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. – 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. – 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. – 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. – 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. – 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. – 8 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. – 8 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. – 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
9 a.m. – 6 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. – 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. – 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. – 8 p.m.
Phone: (843) 795-6679
Main Library
9 a.m. – 8 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. – 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Role of blood lipids in mediating the effect of dietary factors on gastroesophageal reflux disease: a two-step mendelian randomization study.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Liu X;Liu X; Yu H; Yu H; Yan G; Yan G; Sun M; Sun M
- Source:
European journal of nutrition [Eur J Nutr] 2024 Dec; Vol. 63 (8), pp. 3075-3091. Date of Electronic Publication: 2024 Sep 06.- Publication Type:
Journal Article- Language:
English - Source:
- Additional Information
- Source: Publisher: Steinkopff Country of Publication: Germany NLM ID: 100888704 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1436-6215 (Electronic) Linking ISSN: 14366207 NLM ISO Abbreviation: Eur J Nutr Subsets: MEDLINE
- Publication Information: Original Publication: Darmstadt, Germany : Steinkopff, 1999-
- Subject Terms:
- Abstract: Background: Growing studies have indicated an association between dietary factors and gastroesophageal reflux disease (GERD). However, whether these associations refer to a causal relationship and the potential mechanism by which dietary factors affect GERD is still unclear.
Methods: A two-step mendelian randomization analysis was performed to obtain causal estimates of dietary factors, blood lipids on GERD. Independent genetic variants associated with 13 kinds of dietary factors and 5 kinds of blood lipids at the genome-wide significance level were selected as instrumental variables. The summary statistics for GERD were obtained from European Bioinformatics Institute, including 129,080 cases and 473,524 controls. Inverse variance weighted was utilized as the main statistical method. MR-Egger intercept test, Cochran's Q test, and leave-one-out analysis were performed to evaluate possible heterogeneity and pleiotropy. And the potential reverse causality was assessed using Steiger filtering.
Results: The results of the inverse variance weighted method indicated that genetically predicted total pork intake (OR = 2.60, 95% CI: 1.21-5.58, p = 0.0143), total bread intake (OR = 0.68, 95% CI: 0.46-0.99, p = 0.0497), total cereal intake (OR = 0.42, 95% CI: 0.31-0.56, p = 2.98E-06), and total cheese intake (OR = 0.41, 95% CI: 0.27-0.61, p = 1.06E-05) were associated with the risk of GERD. Multivariable Mendelian randomization analysis also revealed a negative association between total cereal intake, total cheese intake and the risk of GERD, but the effect of total pork intake and total bread intake on GERD disappeared after adjustment of smoking, alcohol consumption, use of calcium channel blockers, BMI, physical activity levels, and biological sex (age adjusted). Furthermore, the concentration of low-density lipoprotein cholesterol (LDL-C) is negatively correlated with total cheese intake, which mediates the impact of total cheese intake on GERD. The proportion mediated by LDL-C is 2.27% (95%CI: 1.57%, 4.09%).
Conclusions: This study provides evidence that an increase in total cereal intake and total cheese intake will decrease the risk of GERD. Additionally, LDL-C mediates the causal effect of total cheese intake on GERD. These results provide new insights into the role of dietary factors and blood lipids in GERD, which is beneficial for disease prevention.
(© 2024. Springer-Verlag GmbH Germany, part of Springer Nature.) - References: Zheng Z, Shang Y, Wang N et al (2021) Current Advancement on the dynamic mechanism of gastroesophageal reflux disease. Int J Biol Sci 17(15):4154–4164. https://doi.org/10.7150/ijbs.65066. (PMID: 10.7150/ijbs.65066348034898579455)
Eusebi LH, Ratnakumaran R, Yuan Y, Solaymani-Dodaran M, Bazzoli F, Ford AC (2018) Global prevalence of, and risk factors for, gastro-oesophageal reflux symptoms: a meta-analysis. Gut 67(3):430–440. https://doi.org/10.1136/gutjnl-2016-313589. (PMID: 10.1136/gutjnl-2016-31358928232473)
Dent J, Vakil N, Jones R et al (2010) Accuracy of the diagnosis of GORD by questionnaire, physicians and a trial of proton pump inhibitor treatment: the Diamond Study. Gut 59(6):714–721. https://doi.org/10.1136/gut.2009.200063. (PMID: 10.1136/gut.2009.20006320551454)
Maret-Ouda J, Markar SR, Lagergren J (2020) Gastroesophageal Reflux Disease: A Review. JAMA;324(24):2536-47. https://doi.org/10.1001/jama.2020.21360.
Fass R (2007) Erosive esophagitis and nonerosive reflux disease (NERD): comparison of epidemiologic, physiologic, and therapeutic characteristics. J Clin Gastroenterol 41(2):131–137. (PMID: 10.1097/01.mcg.0000225631.07039.6d17245209)
Sonnenberg A (2011) Effects of environment and lifestyle on gastroesophageal reflux disease. Dig Dis 29(2):229–234. https://doi.org/10.1159/000323927. (PMID: 10.1159/00032392721734389)
Sharma P (2022) Barrett Esophagus: a review. JAMA 328(7):663–671. https://doi.org/10.1001/jama.2022.13298. (PMID: 10.1001/jama.2022.1329835972481)
Li N, Yang W-L, Cai M-H et al (2023) Burden of gastroesophageal reflux disease in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. BMC Public Health 23(1):582. https://doi.org/10.1186/s12889-023-15272-z. (PMID: 10.1186/s12889-023-15272-z3697802710053627)
Sharma P, Yadlapati R (2021) Pathophysiology and treatment options for gastroesophageal reflux disease: looking beyond acid. Ann N Y Acad Sci 1486(1). https://doi.org/10.1111/nyas.14501.
McQuaid KR, Laine L, Fennerty MB, Souza R, Spechler SJ (2011) Systematic review: the role of bile acids in the pathogenesis of gastro-oesophageal reflux disease and related neoplasia. Aliment Pharmacol Ther 34(2):146–165. https://doi.org/10.1111/j.1365-2036.2011.04709.x. (PMID: 10.1111/j.1365-2036.2011.04709.x21615439)
Tack J, Pandolfino JE (2018) Pathophysiology of Gastroesophageal Reflux Disease. Gastroenterology;154(2):277 – 88. https://doi.org/10.1053/j.gastro.2017.09.047.
Newberry C, Lynch K (2019) The role of diet in the development and management of gastroesophageal reflux disease: why we feel the burn. J Thorac Dis;11(Suppl 12):S1594-S601. https://doi.org/10.21037/jtd.2019.06.42.
Kahrilas PJ, McColl K, Fox M et al (2013) The acid pocket: a target for treatment in reflux disease? Am J Gastroenterol 108(7):1058–1064. https://doi.org/10.1038/ajg.2013.132. (PMID: 10.1038/ajg.2013.13223629599)
Hallan A, Bomme M, Hveem K, Møller-Hansen J, Ness-Jensen E (2015) Risk factors on the development of new-onset gastroesophageal reflux symptoms. A population-based prospective cohort study: the HUNT study. Am J Gastroenterol 110(3). https://doi.org/10.1038/ajg.2015.18.
Pan J, Cen L, Chen W, Yu C, Li Y, Shen Z (2019) Alcohol consumption and the risk of gastroesophageal reflux disease: a systematic review and Meta-analysis. Alcohol Alcohol 54(1):62–69. https://doi.org/10.1093/alcalc/agy063. (PMID: 10.1093/alcalc/agy06330184159)
Vaughan TL, Farrow DC, Hansten PD et al (1998) Risk of esophageal and gastric adenocarcinomas in relation to use of calcium channel blockers, asthma drugs, and other medications that promote gastroesophageal reflux. Cancer Epidemiol Biomarkers Prev 7(9):749–756. (PMID: 9752982)
Yuan S, Larsson SC (2022) Adiposity, diabetes, lifestyle factors and risk of gastroesophageal reflux disease: a mendelian randomization study. Eur J Epidemiol 37(7):747–754. https://doi.org/10.1007/s10654-022-00842-z. (PMID: 10.1007/s10654-022-00842-z351195669329382)
Chen J, Ruan X, Fu T et al (2024) Sedentary lifestyle, physical activity, and gastrointestinal diseases: evidence from mendelian randomization analysis. EBioMedicine 103:105110. https://doi.org/10.1016/j.ebiom.2024.105110. (PMID: 10.1016/j.ebiom.2024.1051103858326211004085)
Tosetti C, Savarino E, Benedetto E, De Bastiani R (2021) Elimination of Dietary triggers is successful in treating symptoms of gastroesophageal reflux disease. Dig Dis Sci 66(5):1565–1571. https://doi.org/10.1007/s10620-020-06414-z. (PMID: 10.1007/s10620-020-06414-z32578044)
Nocon M, Labenz J, Willich SN (2006) Lifestyle factors and symptoms of gastro-oesophageal reflux -- a population-based study. Aliment Pharmacol Ther 23(1):169–174. (PMID: 10.1111/j.1365-2036.2006.02727.x16393294)
Surdea-Blaga T, Negrutiu DE, Palage M, Dumitrascu DL (2019) Food and Gastroesophageal Reflux Disease. Curr Med Chem 26(19):3497–3511. https://doi.org/10.2174/0929867324666170515123807. (PMID: 10.2174/092986732466617051512380728521699)
Herdiana Y (2023) Functional food in relation to Gastroesophageal Reflux Disease (GERD). Nutrients 15(16). https://doi.org/10.3390/nu15163583.
Alkhathami AM, Alzahrani AA, Alzhrani MA, Alsuwat OB, Mahfouz MEM (2017) Risk factors for Gastroesophageal Reflux Disease in Saudi Arabia. Gastroenterol Res 10(5):294–300. https://doi.org/10.14740/gr906w. (PMID: 10.14740/gr906w)
Wendl B, Pfeiffer A, Pehl C, Schmidt T, Kaess H (1994) Effect of decaffeination of coffee or tea on gastro-oesophageal reflux. Aliment Pharmacol Ther 8(3):283–287. (PMID: 10.1111/j.1365-2036.1994.tb00289.x7918922)
Zheng Z, Nordenstedt H, Pedersen NL, Lagergren J, Ye W (2007) Lifestyle factors and risk for symptomatic gastroesophageal reflux in monozygotic twins. Gastroenterology 132(1):87–95. (PMID: 10.1053/j.gastro.2006.11.01917241862)
El-Serag HB, Satia JA, Rabeneck L (2005) Dietary intake and the risk of gastro-oesophageal reflux disease: a cross sectional study in volunteers. Gut 54(1):11–17. (PMID: 10.1136/gut.2004.040337155914981774352)
Saberi-Firoozi M, Khademolhosseini F, Yousefi M, Mehrabani D, Zare N, Heydari ST (2007) Risk factors of gastroesophageal reflux disease in Shiraz, southern Iran. World Journal of Gastroenterology;13(41):5486-91.
Mostaghni A, Mehrabani D, Khademolhosseini F et al (2009) Prevalence and risk factors of gastroesophageal reflux disease in Qashqai migrating nomads, southern Iran. World Journal of Gastroenterology;15(8):961-5.
Mone I, Kraja B, Bregu A et al (2016) Adherence to a predominantly Mediterranean diet decreases the risk of gastroesophageal reflux disease: a cross-sectional study in a south eastern European population. Dis Esophagus 29(7):794–800. https://doi.org/10.1111/dote.12384. (PMID: 10.1111/dote.1238426175057)
Nam SY, Park BJ, Cho Y-A, Ryu KH (2019) Gender-specific effect of Micronutrient on non-erosive reflux Disease and Erosive Esophagitis. J Neurogastroenterol Motil 25(1):82–90. https://doi.org/10.5056/jnm18114. (PMID: 10.5056/jnm18114306464796326192)
Zhang M, Hou Z-K, Huang Z-B, Chen X-L, Liu F-B (2021) Dietary and lifestyle factors related to gastroesophageal reflux disease: a systematic review. Ther Clin Risk Manag 17:305–323. https://doi.org/10.2147/TCRM.S296680. (PMID: 10.2147/TCRM.S296680338838998055252)
Zhou A, Hyppönen E (2021) Habitual coffee intake and plasma lipid profile: evidence from UK Biobank. Clin Nutr 40(6):4404–4413. https://doi.org/10.1016/j.clnu.2020.12.042. (PMID: 10.1016/j.clnu.2020.12.04233487505)
Xu R, Yang K, Li S, Dai M, Chen G (2020) Effect of green tea consumption on blood lipids: a systematic review and meta-analysis of randomized controlled trials. Nutr J 19(1):48. https://doi.org/10.1186/s12937-020-00557-5. (PMID: 10.1186/s12937-020-00557-5324345397240975)
Hassannejad R, Moosavian SP, Mohammadifard N et al (2021) Long-term association of red meat consumption and lipid profile: a 13-year prospective population-based cohort study. Nutrition 86:111144. https://doi.org/10.1016/j.nut.2021.111144. (PMID: 10.1016/j.nut.2021.11114433592495)
Hollænder PLB, Ross AB, Kristensen M (2015) Whole-grain and blood lipid changes in apparently healthy adults: a systematic review and meta-analysis of randomized controlled studies. Am J Clin Nutr 102(3):556–572. https://doi.org/10.3945/ajcn.115.109165. (PMID: 10.3945/ajcn.115.10916526269373)
Kim S-A, Shin S (2021) Red meat and processed meat consumption and the risk of dyslipidemia in Korean adults: a prospective cohort study based on the Health examinees (HEXA) study. Nutr Metab Cardiovasc Dis 31(6):1714–1727. https://doi.org/10.1016/j.numecd.2021.02.008. (PMID: 10.1016/j.numecd.2021.02.00833992510)
Matsuzaki J, Suzuki H, Iwasaki E, Yokoyama H, Sugino Y, Hibi T (2010) Serum lipid levels are positively associated with non-erosive reflux disease, but not with functional heartburn. Neurogastroenterol Motil 22(9). https://doi.org/10.1111/j.1365-2982.2010.01518.x.
Lin C-C, Geng J-H, Wu P-Y et al (2024) Sex difference in the associations among risk factors with gastroesophageal reflux disease in a large Taiwanese population study. BMC Gastroenterol 24(1):165. https://doi.org/10.1186/s12876-024-03254-3. (PMID: 10.1186/s12876-024-03254-33875042511095001)
Nomura M, Tashiro N, Watanabe T et al (2014) Association of symptoms of gastroesophageal reflux with metabolic syndrome parameters in patients with endocrine disease. ISRN Gastroenterol 2014:863206. https://doi.org/10.1155/2014/863206. (PMID: 10.1155/2014/863206246243023929142)
Fujikawa Y, Tominaga K, Fujii H et al (2012) High prevalence of gastroesophageal reflux symptoms in patients with non-alcoholic fatty liver disease associated with serum levels of triglyceride and cholesterol but not simple visceral obesity. Digestion 86(3):228–237. https://doi.org/10.1159/000341418. (PMID: 10.1159/00034141822964626)
Fu S, Xu M, Zhou H, Wang Y, Tan Y, Liu D (2022) Metabolic syndrome is associated with higher rate of gastroesophageal reflux disease: a meta-analysis. Neurogastroenterol Motil 34(5):e14234. https://doi.org/10.1111/nmo.14234. (PMID: 10.1111/nmo.1423434378835)
Mohammadi M, Ramezani Jolfaie N, Alipour R, Zarrati M (2016) Is metabolic syndrome considered to be a risk factor for gastroesophageal reflux disease (non-erosive or erosive esophagitis)? A systematic review of the evidence. Iran Red Crescent Med J 18(11):e30363. https://doi.org/10.5812/ircmj.30363. (PMID: 10.5812/ircmj.30363281913405292393)
Cornier M-A, Dabelea D, Hernandez TL et al (2008) The metabolic syndrome. Endocr Rev 29(7):777–822. https://doi.org/10.1210/er.2008-0024. (PMID: 10.1210/er.2008-0024189714855393149)
Davey Smith G, Hemani G (2014) Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet 23(R1):R89–R98. https://doi.org/10.1093/hmg/ddu328. (PMID: 10.1093/hmg/ddu328250643734170722)
Burgess S, Thompson SG (2011) Avoiding bias from weak instruments in mendelian randomization studies. Int J Epidemiol 40(3):755–764. https://doi.org/10.1093/ije/dyr036. (PMID: 10.1093/ije/dyr03621414999)
Emdin CA, Khera AV, Kathiresan S (2017) Mendelian randomization. JAMA 318(19):1925–1926. https://doi.org/10.1001/jama.2017.17219. (PMID: 10.1001/jama.2017.1721929164242)
Sheehan NA, Didelez V, Burton PR, Tobin MD (2008) Mendelian randomisation and causal inference in observational epidemiology. PLoS Med 5(8):e177. https://doi.org/10.1371/journal.pmed.0050177. (PMID: 10.1371/journal.pmed.0050177187523432522255)
Relton CL, Davey Smith G (2012) Two-step epigenetic mendelian randomization: a strategy for establishing the causal role of epigenetic processes in pathways to disease. Int J Epidemiol 41(1):161–176. https://doi.org/10.1093/ije/dyr233. (PMID: 10.1093/ije/dyr233224224513304531)
Hao X, Li W, Shi R, Wang Q (2022) Investigating the causal mediating effect of type 2 diabetes on the relationship between traits and systolic blood pressure: a two-step mendelian randomization study. Front Endocrinol 13:1090867. https://doi.org/10.3389/fendo.2022.1090867. (PMID: 10.3389/fendo.2022.1090867)
Lawlor DA, Harbord RM, Sterne JAC, Timpson N, Davey Smith G (2008) Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med 27(8):1133–1163. (PMID: 10.1002/sim.303417886233)
Boef AGC, Dekkers OM, le Cessie S (2015) Mendelian randomization studies: a review of the approaches used and the quality of reporting. Int J Epidemiol 44(2):496–511. https://doi.org/10.1093/ije/dyv071. (PMID: 10.1093/ije/dyv07125953784)
Didelez V, Sheehan N (2007) Mendelian randomization as an instrumental variable approach to causal inference. Stat Methods Med Res 16(4):309–330. (PMID: 10.1177/096228020607774317715159)
Kettunen J, Demirkan A, Würtz P et al (2016) Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA. Nat Commun 7:11122. https://doi.org/10.1038/ncomms11122. (PMID: 10.1038/ncomms11122270057784814583)
Ong J-S, An J, Han X et al (2022) Multitrait genetic association analysis identifies 50 new risk loci for gastro-oesophageal reflux, seven new loci for Barrett’s oesophagus and provides insights into clinical heterogeneity in reflux diagnosis. Gut 71(6):1053–1061. https://doi.org/10.1136/gutjnl-2020-323906. (PMID: 10.1136/gutjnl-2020-32390634187846)
Zhu G-L, Xu C, Yang K-B et al (2022) Causal relationship between genetically predicted depression and cancer risk: a two-sample bi-directional mendelian randomization. BMC Cancer 22(1):353. https://doi.org/10.1186/s12885-022-09457-9. (PMID: 10.1186/s12885-022-09457-9353611538973550)
Kamat MA, Blackshaw JA, Young R et al (2019) PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics 35(22):4851–4853. https://doi.org/10.1093/bioinformatics/btz469. (PMID: 10.1093/bioinformatics/btz469312331036853652)
Bai X, Wei H, Liu W et al (2022) Cigarette smoke promotes colorectal cancer through modulation of gut microbiota and related metabolites. Gut 71(12):2439–2450. https://doi.org/10.1136/gutjnl-2021-325021. (PMID: 10.1136/gutjnl-2021-32502135387878)
Bagnardi V, Rota M, Botteri E et al (2015) Alcohol consumption and site-specific cancer risk: a comprehensive dose-response meta-analysis. Br J Cancer 112(3):580–593. https://doi.org/10.1038/bjc.2014.579. (PMID: 10.1038/bjc.2014.57925422909)
Bardou M, Barkun AN, Martel M (2013) Obesity and colorectal cancer. Gut 62(6):933–947. https://doi.org/10.1136/gutjnl-2013-304701. (PMID: 10.1136/gutjnl-2013-30470123481261)
Chen H, Zheng X, Zong X et al (2021) Metabolic syndrome, metabolic comorbid conditions and risk of early-onset colorectal cancer. Gut 70(6):1147–1154. https://doi.org/10.1136/gutjnl-2020-321661. (PMID: 10.1136/gutjnl-2020-32166133037055)
Palmer TM, Lawlor DA, Harbord RM et al (2012) Using multiple genetic variants as instrumental variables for modifiable risk factors. Stat Methods Med Res 21(3):223–242. https://doi.org/10.1177/0962280210394459. (PMID: 10.1177/0962280210394459212168023917707)
Papadimitriou N, Dimou N, Tsilidis KK et al (2020) Physical activity and risks of breast and colorectal cancer: a mendelian randomisation analysis. Nat Commun 11(1):597. https://doi.org/10.1038/s41467-020-14389-8. (PMID: 10.1038/s41467-020-14389-8320017146992637)
Li P, Wang H, Guo L et al (2022) Association between gut microbiota and preeclampsia-eclampsia: a two-sample mendelian randomization study. BMC Med 20(1):443. https://doi.org/10.1186/s12916-022-02657-x. (PMID: 10.1186/s12916-022-02657-x363803729667679)
Burgess S, Thompson SG (2017) Interpreting findings from mendelian randomization using the MR-Egger method. Eur J Epidemiol 32(5):377–389. https://doi.org/10.1007/s10654-017-0255-x. (PMID: 10.1007/s10654-017-0255-x285270485506233)
Bowden J, Davey Smith G, Burgess S (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44(2):512–525. https://doi.org/10.1093/ije/dyv080. (PMID: 10.1093/ije/dyv080260502534469799)
Bowden J, Davey Smith G, Haycock PC, Burgess S (2016) Consistent estimation in mendelian randomization with some Invalid instruments using a weighted median estimator. Genet Epidemiol 40(4):304–314. https://doi.org/10.1002/gepi.21965. (PMID: 10.1002/gepi.21965270612984849733)
Rees JMB, Wood AM, Burgess S (2017) Extending the MR-Egger method for multivariable mendelian randomization to correct for both measured and unmeasured pleiotropy. Stat Med 36(29):4705–4718. https://doi.org/10.1002/sim.7492. (PMID: 10.1002/sim.7492289604985725762)
Cohen JF, Chalumeau M, Cohen R, Korevaar DA, Khoshnood B, Bossuyt PMM (2015) Cochran’s Q test was useful to assess heterogeneity in likelihood ratios in studies of diagnostic accuracy. J Clin Epidemiol 68(3):299–306. https://doi.org/10.1016/j.jclinepi.2014.09.005. (PMID: 10.1016/j.jclinepi.2014.09.00525441698)
Hemani G, Bowden J, Davey Smith G (2018) Evaluating the potential role of pleiotropy in mendelian randomization studies. Hum Mol Genet 27(R2):R195–R208. https://doi.org/10.1093/hmg/ddy163. (PMID: 10.1093/hmg/ddy163297713136061876)
Hemani G, Tilling K, Davey Smith G (2017) Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet 13(11):e1007081. https://doi.org/10.1371/journal.pgen.1007081. (PMID: 10.1371/journal.pgen.1007081291491885711033)
Hemani G, Zheng J, Elsworth B et al (2018) The MR-Base platform supports systematic causal inference across the human phenome. Elife;7. https://doi.org/10.7554/eLife.34408.
Yavorska OO, Burgess S (2017) MendelianRandomization: an R package for performing mendelian randomization analyses using summarized data. Int J Epidemiol 46(6):1734–1739. https://doi.org/10.1093/ije/dyx034. (PMID: 10.1093/ije/dyx034283985485510723)
Sanderson E, Spiller W, Bowden J (2021) Testing and correcting for weak and pleiotropic instruments in two-sample multivariable mendelian randomization. Stat Med 40(25):5434–5452. https://doi.org/10.1002/sim.9133. (PMID: 10.1002/sim.9133343383279479726)
Xiao G, He Q, Liu L et al (2022) Causality of genetically determined metabolites on anxiety disorders: a two-sample mendelian randomization study. J Transl Med 20(1):475. https://doi.org/10.1186/s12967-022-03691-2. (PMID: 10.1186/s12967-022-03691-2362666999583573)
Abdi R, Joye IJ (2021) Prebiotic potential of cereal components. Foods 10(10). https://doi.org/10.3390/foods10102338.
Anderson JW, Baird P, Davis RH et al (2009) Health benefits of dietary fiber. Nutr Rev 67(4):188–205. https://doi.org/10.1111/j.1753-4887.2009.00189.x. (PMID: 10.1111/j.1753-4887.2009.00189.x19335713)
Morozov S, Isakov V, Konovalova M (2018) Fiber-enriched diet helps to control symptoms and improves esophageal motility in patients with non-erosive gastroesophageal reflux disease. World J Gastroenterol 24(21):2291–2299. https://doi.org/10.3748/wjg.v24.i21.2291. (PMID: 10.3748/wjg.v24.i21.2291298812385989243)
Momma E, Koeda M, Tanabe T et al (2021) Relationship between gastroesophageal reflux disease (GERD) and constipation: laxative use is common in GERD patients. Esophagus 18(1):152–155. https://doi.org/10.1007/s10388-020-00770-5. (PMID: 10.1007/s10388-020-00770-532860581)
Yang J, Wang H-P, Zhou L, Xu C-F (2012) Effect of dietary fiber on constipation: a meta analysis. World J Gastroenterol 18(48):7378–7383. https://doi.org/10.3748/wjg.v18.i48.7378. (PMID: 10.3748/wjg.v18.i48.7378233261483544045)
van der Schoot A, Drysdale C, Whelan K, Dimidi E (2022) The effect of Fiber supplementation on chronic constipation in adults: an updated systematic review and Meta-analysis of Randomized controlled trials. Am J Clin Nutr 116(4):953–969. https://doi.org/10.1093/ajcn/nqac184. (PMID: 10.1093/ajcn/nqac184358164659535527)
Hongisto SM, Paajanen L, Saxelin M, Korpela R (2006) A combination of fibre-rich rye bread and yoghurt containing Lactobacillus GG improves bowel function in women with self-reported constipation. Eur J Clin Nutr 60(3):319–324. (PMID: 10.1038/sj.ejcn.160231716251881)
Holma R, Hongisto S-M, Saxelin M, Korpela R (2010) Constipation is relieved more by rye bread than wheat bread or laxatives without increased adverse gastrointestinal effects. J Nutr 140(3):534–541. https://doi.org/10.3945/jn.109.118570. (PMID: 10.3945/jn.109.11857020089780)
Møller ME, Dahl R, Bøckman OC (1988) A possible role of the dietary fibre product, wheat bran, as a nitrite scavenger. Food Chem Toxicol 26(10):841–845. (PMID: 10.1016/0278-6915(88)90024-52851507)
Peri L, Pietraforte D, Scorza G, Napolitano A, Fogliano V, Minetti M (2005) Apples increase nitric oxide production by human saliva at the acidic pH of the stomach: a new biological function for polyphenols with a catechol group? Free Radic Biol Med 39(5):668–681. (PMID: 10.1016/j.freeradbiomed.2005.04.02116085185)
Gago B, Lundberg JO, Barbosa RM, Laranjinha J (2007) Red wine-dependent reduction of nitrite to nitric oxide in the stomach. Free Radic Biol Med 43(9):1233–1242. (PMID: 10.1016/j.freeradbiomed.2007.06.00717893036)
Hirsch DP, Holloway RH, Tytgat GN, Boeckxstaens GE (1998) Involvement of nitric oxide in human transient lower esophageal sphincter relaxations and esophageal primary peristalsis. Gastroenterology;115(6):1374-80.
de Goede J, Geleijnse JM, Ding EL, Soedamah-Muthu SS (2015) Effect of cheese consumption on blood lipids: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev 73(5):259–275. https://doi.org/10.1093/nutrit/nuu060. (PMID: 10.1093/nutrit/nuu06026011901)
Hjerpsted J, Leedo E, Tholstrup T (2011) Cheese intake in large amounts lowers LDL-cholesterol concentrations compared with butter intake of equal fat content. Am J Clin Nutr 94(6):1479–1484. https://doi.org/10.3945/ajcn.111.022426. (PMID: 10.3945/ajcn.111.02242622030228)
Pradeilles R, Norris T, Sellem L, Markey O (2023) Effect of isoenergetic substitution of cheese with other dairy products on blood lipid markers in the fasted and Postprandial State: an updated and extended systematic review and Meta-analysis of Randomized controlled trials in adults. Adv Nutr 14(6):1579–1595. https://doi.org/10.1016/j.advnut.2023.09.003. (PMID: 10.1016/j.advnut.2023.09.0033771770010721513)
Johnson ME, Kapoor R, McMahon DJ, McCoy DR, Narasimmon RG (2009) Reduction of Sodium and Fat levels in Natural and Processed cheeses: Scientific and Technological aspects. Compr Rev Food Sci Food Saf 8(3):252–268. https://doi.org/10.1111/j.1541-4337.2009.00080.x. (PMID: 10.1111/j.1541-4337.2009.00080.x33467797)
Christensen R, Lorenzen JK, Svith CR et al (2009) Effect of calcium from dairy and dietary supplements on faecal fat excretion: a meta-analysis of randomized controlled trials. Obes Rev 10(4):475–486. https://doi.org/10.1111/j.1467-789X.2009.00599.x. (PMID: 10.1111/j.1467-789X.2009.00599.x19493303)
Ditscheid B, Keller S, Jahreis G (2005) Cholesterol metabolism is affected by calcium phosphate supplementation in humans. J Nutr 135(7):1678–1682. (PMID: 10.1093/jn/135.7.167815987849)
Rosqvist F, Smedman A, Lindmark-Månsson H et al (2015) Potential role of milk fat globule membrane in modulating plasma lipoproteins, gene expression, and cholesterol metabolism in humans: a randomized study. Am J Clin Nutr 102(1):20–30. https://doi.org/10.3945/ajcn.115.107045. (PMID: 10.3945/ajcn.115.10704526016870)
Pan W, Sun W, Yang S et al (2020) LDL-C plays a causal role on T2DM: a mendelian randomization analysis. Aging 12(3):2584–2594. https://doi.org/10.18632/aging.102763. (PMID: 10.18632/aging.102763320404427041740)
Hu X, Liu Q, Guo X et al (2022) The role of remnant cholesterol beyond low-density lipoprotein cholesterol in diabetes mellitus. Cardiovasc Diabetol 21(1):117. https://doi.org/10.1186/s12933-022-01554-0. (PMID: 10.1186/s12933-022-01554-0357612819238255)
Sun X-M, Tan J-C, Zhu Y, Lin L (2015) Association between diabetes mellitus and gastroesophageal reflux disease: a meta-analysis. World J Gastroenterol 21(10):3085–3092. https://doi.org/10.3748/wjg.v21.i10.3085. (PMID: 10.3748/wjg.v21.i10.3085257803094356931)
Lluch I, Ascaso JF, Mora F et al (1999) Gastroesophageal reflux in diabetes mellitus. Am J Gastroenterol 94(4):919–924. (PMID: 10.1111/j.1572-0241.1999.987_j.x10201457)
He CL, Soffer EE, Ferris CD, Walsh RM, Szurszewski JH, Farrugia G (2001) Loss of interstitial cells of cajal and inhibitory innervation in insulin-dependent diabetes. Gastroenterology 121(2):427–434. (PMID: 10.1053/gast.2001.2626411487552)
Zhang M, Song S, Zhao D et al (2020) High intake of chicken and pork proteins aggravates high-fat-diet-induced inflammation and disorder of hippocampal glutamatergic system. J Nutr Biochem 85:108487. https://doi.org/10.1016/j.jnutbio.2020.108487. (PMID: 10.1016/j.jnutbio.2020.10848732827667)
Nakamura E, Uneyama H, Torii K (2013) Gastrointestinal nutrient chemosensing and the gut-brain axis: significance of glutamate signaling for normal digestion. J Gastroenterol Hepatol 28(Suppl 4):2–8. https://doi.org/10.1111/jgh.12408. (PMID: 10.1111/jgh.1240824251696)
Frisby CL, Mattsson JP, Jensen JM, Lehmann A, Dent J, Blackshaw LA (2005) Inhibition of transient lower esophageal sphincter relaxation and gastroesophageal reflux by metabotropic glutamate receptor ligands. Gastroenterology;129(3).
Isomoto H, Wang A, Mizuta Y et al (2003) Elevated levels of chemokines in esophageal mucosa of patients with reflux esophagitis. Am J Gastroenterol 98(3):551–556. (PMID: 10.1111/j.1572-0241.2003.07303.x12650786)
Souza RF, Huo X, Mittal V et al (2009) Gastroesophageal reflux might cause esophagitis through a cytokine-mediated mechanism rather than caustic acid injury. Gastroenterology;137(5):1776-84. https://doi.org/10.1053/j.gastro.2009.07.055.
Hor PK, Ghosh K, Halder SK et al (2021) Evaluation of nutrient profile, biochemical composition and anti-gastric ulcer potentialities of khambir, a leavened flat bread. Food Chem 345:128824. https://doi.org/10.1016/j.foodchem.2020.128824. (PMID: 10.1016/j.foodchem.2020.12882433321345)
Agarwal S, Fulgoni VL (2023) Association of Pork (All Pork, Fresh Pork and Processed Pork) Consumption with Nutrient Intakes and Adequacy in US Children (Age 2–18 Years) and Adults (Age 19 + Years): NHANES 2011–2018 Analysis. Nutrients;15(10). https://doi.org/10.3390/nu15102293.
Dardzińska JA, Wasilewska E, Szupryczyńska N et al (2023) Inappropriate dietary habits in tobacco smokers as a potential risk factor for lung cancer: pomeranian cohort study. Nutrition 108:111965. https://doi.org/10.1016/j.nut.2022.111965. (PMID: 10.1016/j.nut.2022.11196536689792) - Grant Information: 2022JH1/10400002 Major Science and Technology Project of Liaoning Province
- Contributed Indexing: Keywords: Dietary factor; Gastroesophageal reflux disease; Genome-wide association study; Lipids; Mendelian randomization
- Accession Number: 0 (Lipids)
- Publication Date: Date Created: 20240906 Date Completed: 20241028 Latest Revision: 20241223
- Publication Date: 20241223
- Accession Number: 10.1007/s00394-024-03491-y
- Accession Number: 39240314
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.