Bone Quality and Mineralization and Effects of Treatment in Osteogenesis Imperfecta.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Verlag Country of Publication: United States NLM ID: 7905481 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0827 (Electronic) Linking ISSN: 0171967X NLM ISO Abbreviation: Calcif Tissue Int Subsets: MEDLINE
    • Publication Information:
      Publication: New York Ny : Springer Verlag
      Original Publication: Berlin, New York, Springer International.
    • Subject Terms:
    • Abstract:
      Osteogenesis imperfecta (OI) is a rare congenital bone dysplasia characterized by high fracture rates and broad variations in clinical manifestations ranging from mild to increasingly severe and perinatal lethal forms. The underlying mutations affect either the synthesis or processing of the type I procollagen molecule itself or proteins that are involved in the formation and mineralization of the collagen matrix. Consequently, the collagen forming cells, the osteoblasts, become broadly dysfunctional in OI. Strikingly, hypermineralized bone matrix seems to be a frequent feature in OI, despite the variability in clinical severity and mutations in the so far studied different forms of human OI. While the causes of the increased mineral content of the bone matrix are not fully understood yet, there is evidence that the descendants of the osteoblasts, the osteocytes, which play a critical role not only in bone remodeling, but also in mineralization and sensing of mechanical loads, are also highly dysregulated and might be of major importance in the pathogenesis of OI. In this review article, we firstly summarize findings of cellular abnormalities in osteoblasts and osteocytes, alterations of the organic matrix, as well as of the microstructural organization of bone. Secondly, we focus on the hypermineralization of the bone matrix in OI as observed in several different forms of human OI as well as in animal models, its measurement and potential mechanical implications and its effect on the bone mineral density measured by dual X-ray absorptiometry. Thirdly, we give an overview of established medication treatments of OI and new approaches with a focus of their known or possible effects on the bone material, particularly on bone matrix mineralization.
      Competing Interests: Declarations. Conflict of interest: The authors have nothing to disclose.
      (© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
    • References:
      Jovanovic M, Guterman-Ram G, Marini JC (2022) Osteogenesis imperfecta: mechanisms and signaling pathways connecting classical and rare OI types. Endocr Rev 43:61–90. (PMID: 3400798610.1210/endrev/bnab017)
      Etich J, Rehberg M, Eckes B, Sengle G, Semler O, Zaucke F (2020) Signaling pathways affected by mutations causing osteogenesis imperfecta. Cell Signal 76:109789. (PMID: 3298049610.1016/j.cellsig.2020.109789)
      Marini JC, Forlino A, Bachinger HP, Bishop NJ, Byers PH, Paepe A, Fassier F, Fratzl-Zelman N, Kozloff KM, Krakow D, Montpetit K, Semler O (2017) Osteogenesis imperfecta. Nat Rev Dis Primers 3:17052. (PMID: 2882018010.1038/nrdp.2017.52)
      Folkestad L, Hald JD, Gram J, Langdahl BL, Hermann AP, Diederichsen AC, Abrahamsen B, Brixen K (2016) Cardiovascular disease in patients with osteogenesis imperfecta—a nationwide, register-based cohort study. Int J Cardiol 225:250–257. (PMID: 2774148310.1016/j.ijcard.2016.09.107)
      Dimori M, Fett J, Leikin S, Otsuru S, Thostenson JD, Carroll JL, Morello R (2023) Distinct type I collagen alterations cause intrinsic lung and respiratory defects of variable severity in mouse models of osteogenesis imperfecta. J Physiol 601:355–379. (PMID: 3628571710.1113/JP283452)
      Gochuico BR, Hossain M, Talvacchio SK, Zuo MXG, Barton M, Dang Do AN, Marini JC (2023) Pulmonary function and structure abnormalities in children and young adults with osteogenesis imperfecta point to intrinsic and extrinsic lung abnormalities. J Med Genet 60:1067–1075. (PMID: 3719778510.1136/jmg-2022-109009)
      Hald JD, Folkestad L, Swan CZ, Wanscher J, Schmidt M, Gjorup H, Haubek D, Leonhard CH, Larsen DA, Hjortdal JO, Harslof T, Duno M, Lund AM, Jensen JB, Brixen K, Langdahl B (2018) Osteogenesis imperfecta and the teeth, eyes, and ears—a study of non-skeletal phenotypes in adults. Osteoporos Int 29:2781–2789. (PMID: 3014384910.1007/s00198-018-4663-x)
      Tauer JT, Robinson ME, Rauch F (2019) Osteogenesis imperfecta: new perspectives from clinical and translational research. JBMR Plus 3:e10174. (PMID: 31485550671578310.1002/jbm4.10174)
      Sillence DO, Senn A, Danks DM (1979) Genetic heterogeneity in osteogenesis imperfecta. J Med Genet 16:101–116. (PMID: 458828101273310.1136/jmg.16.2.101)
      Van Dijk FS, Sillence DO (2014) Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. Am J Med Genet A 164A:1470–1481. (PMID: 2471555910.1002/ajmg.a.36545)
      Morello R, Bertin TK, Chen Y, Hicks J, Tonachini L, Monticone M, Castagnola P, Rauch F, Glorieux FH, Vranka J, Bachinger HP, Pace JM, Schwarze U, Byers PH, Weis M, Fernandes RJ, Eyre DR, Yao Z, Boyce BF, Lee B (2006) CRTAP is required for prolyl 3-hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell 127:291–304. (PMID: 1705543110.1016/j.cell.2006.08.039)
      Morello R (2018) Osteogenesis imperfecta and therapeutics. Matrix Biol 71–72:294–312. (PMID: 29540309613377410.1016/j.matbio.2018.03.010)
      Unger S, Ferreira CR, Mortier GR, Ali H, Bertola DR, Calder A, Cohn DH, Cormier-Daire V, Girisha KM, Hall C, Krakow D, Makitie O, Mundlos S, Nishimura G, Robertson SP, Savarirayan R, Sillence D, Simon M, Sutton VR, Warman ML, Superti-Furga A (2023) Nosology of genetic skeletal disorders: 2023 revision. Am J Med Genet A 191:1164–1209. (PMID: 367794271008195410.1002/ajmg.a.63132)
      Fratzl-Zelman N, Misof BM, Klaushofer K, Roschger P (2015) Bone mass and mineralization in osteogenesis imperfecta. Wien Med Wochenschr 165:271–277. (PMID: 2620847710.1007/s10354-015-0369-2)
      Mahr M, Blouin S, Behanova M, Misof BM, Glorieux FH, Zwerina J, Rauch F, Hartmann MA, Fratzl-Zelman N (2021) Increased osteocyte lacunae density in the hypermineralized bone matrix of children with osteogenesis imperfecta type I. Int J Mol Sci, 22.
      Boyde A, Travers R, Glorieux FH, Jones SJ (1999) The mineralization density of iliac crest bone from children with osteogenesis imperfecta. Calcif Tissue Int 64:185–190. (PMID: 1002437310.1007/s002239900600)
      Weber M, Roschger P, Fratzl-Zelman N, Schoberl T, Rauch F, Glorieux FH, Fratzl P, Klaushofer K (2006) Pamidronate does not adversely affect bone intrinsic material properties in children with osteogenesis imperfecta. Bone 39:616–622. (PMID: 1664429910.1016/j.bone.2006.02.071)
      Blouin S, Fratzl-Zelman N, Glorieux FH, Roschger P, Klaushofer K, Marini JC, Rauch F (2017) Hypermineralization and high osteocyte lacunar density in osteogenesis imperfecta type v bone indicate exuberant primary bone formation. J Bone Miner Res 32:1884–1892. (PMID: 2854828810.1002/jbmr.3180)
      Fratzl-Zelman N, Schmidt I, Roschger P, Roschger A, Glorieux FH, Klaushofer K, Wagermaier W, Rauch F, Fratzl P (2015) Unique micro- and nano-scale mineralization pattern of human osteogenesis imperfecta type VI bone. Bone 73:233–241. (PMID: 2555459910.1016/j.bone.2014.12.023)
      Fratzl-Zelman N, Morello R, Lee B, Rauch F, Glorieux FH, Misof BM, Klaushofer K, Roschger P (2010) CRTAP deficiency leads to abnormally high bone matrix mineralization in a murine model and in children with osteogenesis imperfecta type VII. Bone 46:820–826. (PMID: 1989591810.1016/j.bone.2009.10.037)
      Fratzl-Zelman N, Barnes AM, Weis M, Carter E, Hefferan TE, Perino G, Chang W, Smith PA, Roschger P, Klaushofer K, Glorieux FH, Eyre DR, Raggio C, Rauch F, Marini JC (2016) Non-lethal type viii osteogenesis imperfecta has elevated bone matrix mineralization. J Clin Endocrinol Metab 101:3516–3525. (PMID: 27383115501057010.1210/jc.2016-1334)
      Lindahl K, Barnes AM, Fratzl-Zelman N, Whyte MP, Hefferan TE, Makareeva E, Brusel M, Yaszemski MJ, Rubin CJ, Kindmark A, Roschger P, Klaushofer K, McAlister WH, Mumm S, Leikin S, Kessler E, Boskey AL, Ljunggren O, Marini JC (2011) COL1 C-propeptide cleavage site mutations cause high bone mass osteogenesis imperfecta. Hum Mutat 32:598–609. (PMID: 21344539310363110.1002/humu.21475)
      Fahiminiya S, Al-Jallad H, Majewski J, Palomo T, Moffatt P, Roschger P, Klaushofer K, Glorieux FH, Rauch F (2015) A polyadenylation site variant causes transcript-specific BMP1 deficiency and frequent fractures in children. Hum Mol Genet 24:516–524. (PMID: 2521453510.1093/hmg/ddu471)
      Cundy T, Dray M, Delahunt J, Hald JD, Langdahl B, Li C, Szybowska M, Mohammed S, Duncan EL, McInerney-Leo AM, Wheeler PG, Roschger P, Klaushofer K, Rai J, Weis M, Eyre D, Schwarze U, Byers PH (2018) Mutations that alter the carboxy-terminal-propeptide cleavage site of the chains of type i procollagen are associated with a unique osteogenesis imperfecta phenotype. J Bone Miner Res 33:1260–1271. (PMID: 2966917710.1002/jbmr.3424)
      Roschger P, Fratzl-Zelman N, Misof BM, Glorieux FH, Klaushofer K, Rauch F (2008) Evidence that abnormal high bone mineralization in growing children with osteogenesis imperfecta is not associated with specific collagen mutations. Calcif Tissue Int 82:263–270. (PMID: 1831157310.1007/s00223-008-9113-x)
      Webb EA, Balasubramanian M, Fratzl-Zelman N, Cabral WA, Titheradge H, Alsaedi A, Saraff V, Vogt J, Cole T, Stewart S, Crabtree NJ, Sargent BM, Gamsjaeger S, Paschalis EP, Roschger P, Klaushofer K, Shaw NJ, Marini JC, Hogler W (2017) Phenotypic spectrum in osteogenesis imperfecta due to mutations in TMEM38B: unraveling a complex cellular defect. J Clin Endocrinol Metab 102:2019–2028. (PMID: 28323974547076110.1210/jc.2016-3766)
      Palomo T, Al-Jallad H, Moffatt P, Glorieux FH, Lentle B, Roschger P, Klaushofer K, Rauch F (2014) Skeletal characteristics associated with homozygous and heterozygous WNT1 mutations. Bone 67:63–70. (PMID: 2501083310.1016/j.bone.2014.06.041)
      Vollersen N, Zhao W, Rolvien T, Lange F, Schmidt FN, Sonntag S, Shmerling D, von Kroge S, Stockhausen KE, Sharaf A, Schweizer M, Karsak M, Busse B, Bockamp E, Semler O, Amling M, Oheim R, Schinke T, Yorgan TA (2021) The WNT1(G177C) mutation specifically affects skeletal integrity in a mouse model of osteogenesis imperfecta type XV. Bone Res 9:48. (PMID: 34759273858099410.1038/s41413-021-00170-0)
      Elefteriou F, Yang X (2011) Genetic mouse models for bone studies–strengths and limitations. Bone 49:1242–1254. (PMID: 21907838333179810.1016/j.bone.2011.08.021)
      Dietrich K, Fiedler IA, Kurzyukova A, Lopez-Delgado AC, McGowan LM, Geurtzen K, Hammond CL, Busse B, Knopf F (2021) Skeletal biology and disease modeling in zebrafish. J Bone Miner Res 36:436–458. (PMID: 3348457810.1002/jbmr.4256)
      Le Pabic P, Dranow DB, Hoyle DJ, Schilling TF (2022) Zebrafish endochondral growth zones as they relate to human bone size, shape and disease. Front Endocrinol (Lausanne) 13:1060187. (PMID: 3656156410.3389/fendo.2022.1060187)
      Fratzl P, Weinkamer R (2007) Nature’s hierarchical materials. Prog Mater Sci 52:1263–1334. (PMID: 10.1016/j.pmatsci.2007.06.001)
      Kerschnitzki M, Wagermaier W, Roschger P, Seto J, Shahar R, Duda GN, Mundlos S, Fratzl P (2011) The organization of the osteocyte network mirrors the extracellular matrix orientation in bone. J Struct Biol 173:303–311. (PMID: 2108116710.1016/j.jsb.2010.11.014)
      Jilka RL (2013) The relevance of mouse models for investigating age-related bone loss in humans. J Gerontol Series A Biol Sci Med Sci 68:1209–1217. (PMID: 10.1093/gerona/glt046)
      Isojima T, Sims NA (2021) Cortical bone development, maintenance and porosity: genetic alterations in humans and mice influencing chondrocytes, osteoclasts, osteoblasts and osteocytes. Cell Mol Life Sci 78:5755–5773. (PMID: 341967321107303610.1007/s00018-021-03884-w)
      Blouin S, Fratzl-Zelman N, Roschger A, Cabral WA, Klaushofer K, Marini JC, Fratzl P, Roschger P (2019) Cortical bone properties in the Brtl/+ mouse model of Osteogenesis imperfecta as evidenced by acoustic transmission microscopy. J Mech Behav Biomed Mater 90:125–132. (PMID: 3036630210.1016/j.jmbbm.2018.10.010)
      Walker EC, Truong K, McGregor NE, Poulton IJ, Isojima T, Gooi JH, Martin TJ, Sims NA (2020) Cortical bone maturation in mice requires SOCS3 suppression of gp130/STAT3 signalling in osteocytes. Elife, 9.
      Ip V, Toth Z, Chibnall J, McBride-Gagyi S (2016) Remnant woven bone and calcified cartilage in mouse bone: differences between ages/sex and effects on bone strength. PLoS ONE 11:e0166476. (PMID: 27829059510236610.1371/journal.pone.0166476)
      Parfitt AM, Travers R, Rauch F, Glorieux FH (2000) Structural and cellular changes during bone growth in healthy children. Bone 27:487–494. (PMID: 1103344310.1016/S8756-3282(00)00353-7)
      Giraud-Guille MM (1988) Twisted plywood architecture of collagen fibrils in human compact bone osteons. Calcif Tissue Int 42:167–180. (PMID: 313016510.1007/BF02556330)
      Reznikov N, Shahar R, Weiner S (2014) Three-dimensional structure of human lamellar bone: the presence of two different materials and new insights into the hierarchical organization. Bone 59:93–104. (PMID: 2421179910.1016/j.bone.2013.10.023)
      Razi H, Predan J, Fischer FD, Kolednik O, Fratzl P (2020) Damage tolerance of lamellar bone. Bone 130:115102. (PMID: 3166925410.1016/j.bone.2019.115102)
      Stover DA, Verrelli BC (2011) Comparative vertebrate evolutionary analyses of type I collagen: potential of COL1a1 gene structure and intron variation for common bone-related diseases. Mol Biol Evol 28:533–542. (PMID: 2072438110.1093/molbev/msq221)
      Li SW, Khillan J, Prockop DJ (1995) The complete cDNA coding sequence for the mouse pro alpha 1(I) chain of type I procollagen. Matrix Biol 14:593–595. (PMID: 853561010.1016/S0945-053X(05)80009-5)
      Moreno-Jimenez I, Cipitria A, Sanchez-Herrero A, van Tol AF, Roschger A, Lahr CA, McGovern JA, Hutmacher DW, Fratzl P (2020) Human and mouse bones physiologically integrate in a humanized mouse model while maintaining species-specific ultrastructure. Sci Adv, p 6.
      Morvan-Dubois G, Le Guellec D, Garrone R, Zylberberg L, Bonnaud L (2003) Phylogenetic analysis of vertebrate fibrillar collagen locates the position of zebrafish alpha3(I) and suggests an evolutionary link between collagen alpha chains and hox clusters. J Mol Evol 57:501–514. (PMID: 1473830810.1007/s00239-003-2502-x)
      Gistelinck C, Gioia R, Gagliardi A, Tonelli F, Marchese L, Bianchi L, Landi C, Bini L, Huysseune A, Witten PE, Staes A, Gevaert K, De Rocker N, Menten B, Malfait F, Leikin S, Carra S, Tenni R, Rossi A, De Paepe A, Coucke P, Willaert A, Forlino A (2016) Zebrafish collagen type I: molecular and biochemical characterization of the major structural protein in bone and skin. Sci Rep 6:21540. (PMID: 26876635475350810.1038/srep21540)
      Lisse TS, Thiele F, Fuchs H, Hans W, Przemeck GK, Abe K, Rathkolb B, Quintanilla-Martinez L, Hoelzlwimmer G, Helfrich M, Wolf E, Ralston SH, Hrabe de Angelis M (2008) ER stress-mediated apoptosis in a new mouse model of osteogenesis imperfecta. PLoS Genet 4:e7. (PMID: 18248096222292410.1371/journal.pgen.0040007)
      van Dijk FS, Semler O, Etich J, Kohler A, Jimenez-Estrada JA, Bravenboer N, Claeys L, Riesebos E, Gegic S, Piersma SR, Jimenez CR, Waisfisz Q, Flores CL, Nevado J, Harsevoort AJ, Janus GJM, Franken AAM, van der Sar AM, Meijers-Heijboer H, Heath KE, Lapunzina P, Nikkels PGJ, Santen GWE, Nuchel J, Plomann M, Wagener R, Rehberg M, Hoyer-Kuhn H, Eekhoff EMW, Pals G, Morgelin M, Newstead S, Wilson BT, Ruiz-Perez VL, Maugeri A, Netzer C, Zaucke F, Micha D (2020) Interaction between KDELR2 and HSP47 as a key determinant in osteogenesis imperfecta caused by bi-allelic variants in KDELR2. Am J Hum Genet 107(5):989–999. https://doi.org/10.1016/j.ajhg.2020.09.009. (PMID: 10.1016/j.ajhg.2020.09.009330533347675035)
      Claeys L, Storoni S, Eekhoff M, Elting M, Wisse L, Pals G, Bravenboer N, Maugeri A, Micha D (2021) Collagen transport and related pathways in osteogenesis imperfecta. Hum Genet 140:1121–1141. (PMID: 34169326826340910.1007/s00439-021-02302-2)
      El-Gazzar A, Voraberger B, Rauch F, Mairhofer M, Schmidt K, Guillemyn B, Mitulovic G, Reiterer V, Haun M, Mayr MM, Mayr JA, Kimeswenger S, Drews O, Saraff V, Shaw N, Fratzl-Zelman N, Symoens S, Farhan H, Hogler W (2023) Bi-allelic mutation in SEC16B alters collagen trafficking and increases ER stress. EMBO Mol Med 15:e16834. (PMID: 369164461008658810.15252/emmm.202216834)
      Youlten SE, Kemp JP, Logan JG, Ghirardello EJ, Sergio CM, Dack MRG, Guilfoyle SE, Leitch VD, Butterfield NC, Komla-Ebri D, Chai RC, Corr AP, Smith JT, Mohanty ST, Morris JA, McDonald MM, Quinn JMW, McGlade AR, Bartonicek N, Jansson M, Hatzikotoulas K, Irving MD, Beleza-Meireles A, Rivadeneira F, Duncan E, Richards JB, Adams DJ, Lelliott CJ, Brink R, Phan TG, Eisman JA, Evans DM, Zeggini E, Baldock PA, Bassett JHD, Williams GR, Croucher PI (2021) Osteocyte transcriptome mapping identifies a molecular landscape controlling skeletal homeostasis and susceptibility to skeletal disease. Nat Commun 12:2444. (PMID: 33953184810017010.1038/s41467-021-22517-1)
      Zimmerman SM, Dimori M, Heard-Lipsmeyer ME, Morello R (2019) The osteocyte transcriptome is extensively dysregulated in mouse models of osteogenesis imperfecta. JBMR Plus 3:e10171. (PMID: 31372585665945010.1002/jbm4.10171)
      Alliston T (2014) Biological regulation of bone quality. Curr Osteoporos Rep 12:366–375. (PMID: 24894149413436610.1007/s11914-014-0213-4)
      Robling AG, Bonewald LF (2020) The osteocyte: new insights. Annu Rev Physiol 82:485–506. (PMID: 32040934827456110.1146/annurev-physiol-021119-034332)
      Dole NS, Mazur CM, Acevedo C, Lopez JP, Monteiro DA, Fowler TW, Gludovatz B, Walsh F, Regan JN, Messina S, Evans DS, Lang TF, Zhang B, Ritchie RO, Mohammad KS, Alliston T (2017) Osteocyte-intrinsic TGF-beta signaling regulates bone quality through perilacunar/canalicular remodeling. Cell Rep 21:2585–2596. (PMID: 29186693601461510.1016/j.celrep.2017.10.115)
      Grafe I, Yang T, Alexander S, Homan EP, Lietman C, Jiang MM, Bertin T, Munivez E, Chen Y, Dawson B, Ishikawa Y, Weis MA, Sampath TK, Ambrose C, Eyre D, Bachinger HP, Lee B (2014) Excessive transforming growth factor-beta signaling is a common mechanism in osteogenesis imperfecta. Nat Med 20:670–675. (PMID: 24793237404832610.1038/nm.3544)
      Zimmerman SM, Heard-Lipsmeyer ME, Dimori M, Thostenson JD, Mannen EM, O’Brien CA, Morello R (2018) Loss of RANKL in osteocytes dramatically increases cancellous bone mass in the osteogenesis imperfecta mouse (oim). Bone Rep 9:61–73. (PMID: 30105276607755010.1016/j.bonr.2018.06.008)
      Rauch F, Travers R, Parfitt AM, Glorieux FH (2000) Static and dynamic bone histomorphometry in children with osteogenesis imperfecta. Bone 26:581–589. (PMID: 1083192910.1016/S8756-3282(00)00269-6)
      Uveges TE, Collin-Osdoby P, Cabral WA, Ledgard F, Goldberg L, Bergwitz C, Forlino A, Osdoby P, Gronowicz GA, Marini JC (2008) Cellular mechanism of decreased bone in Brtl mouse model of OI: imbalance of decreased osteoblast function and increased osteoclasts and their precursors. J Bone Miner Res 23:1983–1994. (PMID: 18684089268692210.1359/jbmr.080804)
      Besio R, Chow CW, Tonelli F, Marini JC, Forlino A (2019) Bone biology: insights from osteogenesis imperfecta and related rare fragility syndromes. FEBS J 286:3033–3056. (PMID: 31220415738488910.1111/febs.14963)
      Ito S, Nagata K (2021) Quality control of procollagen in cells. Annu Rev Biochem 90:631–658. (PMID: 3382365110.1146/annurev-biochem-013118-111603)
      Saito M, Marumo K (2015) Effects of collagen crosslinking on bone material properties in health and disease. Calcif Tissue Int 97:242–261. (PMID: 2579157010.1007/s00223-015-9985-5)
      Bella J, Hulmes DJ (2017) Fibrillar Collagens. In: Parry DAD, Squire JM (eds) Fibrous proteins: structures and mechanisms in sub-cellular biochemistry 82. Springer, pp 457–490. (PMID: 10.1007/978-3-319-49674-0_14)
      Garibaldi N, Besio R, Dalgleish R, Villani S, Barnes AM, Marini JC, Forlino A (2022) Dissecting the phenotypic variability of osteogenesis imperfecta. Dis Model Mech, 15.
      Forlino A, Marini JC (2016) Osteogenesis imperfecta. Lancet 387(10028):1657–1671. https://doi.org/10.1016/S0140-6736(15)00728. (PMID: 2654248110.1016/S0140-6736(15)00728-X)
      Bateman JF, Shoulders MD, Lamande SR (2022) Collagen misfolding mutations: the contribution of the unfolded protein response to the molecular pathology. Connect Tissue Res 63:210–227. (PMID: 10.1016/S0140-6736(15)00728-X352251188977234)
      Marini JC, Cabral WA, Barnes AM, Chang W (2007) Components of the collagen prolyl 3-hydroxylation complex are crucial for normal bone development. Cell Cycle 6:1675–1681. (PMID: 1763050710.4161/cc.6.14.4474)
      Cabral WA, Perdivara I, Weis M, Terajima M, Blissett AR, Chang W, Perosky JE, Makareeva EN, Mertz EL, Leikin S, Tomer KB, Kozloff KM, Eyre DR, Yamauchi M, Marini JC (2014) Abnormal type I collagen post-translational modification and crosslinking in a cyclophilin B KO mouse model of recessive osteogenesis imperfecta. PLoS Genet 10:e1004465. (PMID: 24968150407259310.1371/journal.pgen.1004465)
      Harrington MJ, Fratzl P (2021) Natural load-bearing protein materials. Prog Mater Sci 120:44. (PMID: 10.1016/j.pmatsci.2020.100767)
      Viguet-Carrin S, Garnero P, Delmas PD (2006) The role of collagen in bone strength. Osteoporos Int 17:319–336. (PMID: 1634162210.1007/s00198-005-2035-9)
      Maghsoudi-Ganjeh M, Samuel J, Ahsan AS, Wang X, Zeng X (2021) Intrafibrillar mineralization deficiency and osteogenesis imperfecta mouse bone fragility. J Mech Behav Biomed Mater 117:104377. (PMID: 33636677800984410.1016/j.jmbbm.2021.104377)
      Eyre DR, Weis MA (2013) Bone collagen: new clues to its mineralization mechanism from recessive osteogenesis imperfecta. Calcif Tissue Int 93:338–347. (PMID: 23508630375844910.1007/s00223-013-9723-9)
      Depalle B, Qin Z, Shefelbine SJ, Buehler MJ (2015) Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils. J Mech Behav Biomed Mater 52:1–13. (PMID: 25153614465395210.1016/j.jmbbm.2014.07.008)
      Cabral WA, Fratzl-Zelman N, Weis M, Perosky JE, Alimasa A, Harris R, Kang H, Makareeva E, Barnes AM, Roschger P, Leikin S, Klaushofer K, Forlino A, Backlund PS, Eyre DR, Kozloff KM, Marini JC (2020) Substitution of murine type I collagen A1 3-hydroxylation site alters matrix structure but does not recapitulate osteogenesis imperfecta bone dysplasia. Matrix Biol 90:20–39. (PMID: 32112888747607510.1016/j.matbio.2020.02.003)
      Gistelinck C, Weis M, Rai J, Schwarze U, Niyazov D, Song KM, Byers PH, Eyre DR (2021) Abnormal bone collagen cross-linking in osteogenesis imperfecta/bruck syndrome caused by compound heterozygous PLOD2 mutations. JBMR Plus 5:e10454. (PMID: 33778323799015610.1002/jbm4.10454)
      Gahlawat S, Nanda V, Shreiber DI (2024) Designing collagens to shed light on the multi-scale structure-function mapping of matrix disorders. Matrix Biol Plus 21:100139. (PMID: 3818685210.1016/j.mbplus.2023.100139)
      Nyman JS, Reyes M, Wang X (2005) Effect of ultrastructural changes on the toughness of bone. Micron 36:566–582. (PMID: 1616974210.1016/j.micron.2005.07.004)
      Sims TJ, Miles CA, Bailey AJ, Camacho NP (2003) Properties of collagen in OIM mouse tissues. Connect Tissue Res 44(Suppl 1):202–205. (PMID: 1295219810.1080/03008200390181663)
      Carriero A, Zimmermann EA, Paluszny A, Tang SY, Bale H, Busse B, Alliston T, Kazakia G, Ritchie RO, Shefelbine SJ (2014) How tough is brittle bone? Investigating osteogenesis imperfecta in mouse bone. J Bone Miner Res 29:1392–1401. (PMID: 2442067210.1002/jbmr.2172)
      Revell CK, Jensen OE, Shearer T, Lu Y, Holmes DF, Kadler KE (2021) Collagen fibril assembly: new approaches to unanswered questions. Matrix Biol Plus 12:100079. (PMID: 34381990833471710.1016/j.mbplus.2021.100079)
      Chretien A, Couchot M, Mabilleau G, Behets C (2022) Biomechanical, microstructural and material properties of tendon and bone in the young Oim mice model of osteogenesis imperfecta. Int J Mol Sci, 23.
      Lim J, Grafe I, Alexander S, Lee B (2017) Genetic causes and mechanisms of osteogenesis imperfecta. Bone 102:40–49. (PMID: 28232077560774110.1016/j.bone.2017.02.004)
      Hasegawa K, Kataoka K, Inoue M, Seino Y, Morishima T, Tanaka H (2008) Impaired pyridinoline cross-link formation in patients with osteogenesis imperfecta. J Bone Miner Metab 26:394–399. (PMID: 1860040710.1007/s00774-007-0827-z)
      Bank RA, Tekoppele JM, Janus GJ, Wassen MH, Pruijs HE, Van der Sluijs HA, Sakkers RJ (2000) Pyridinium cross-links in bone of patients with osteogenesis imperfecta: evidence of a normal intrafibrillar collagen packing. J Bone Miner Res 15:1330–1336. (PMID: 1089368110.1359/jbmr.2000.15.7.1330)
      Nijhuis WH, Eastwood DM, Allgrove J, Hvid I, Weinans HH, Bank RA, Sakkers RJ (2019) Current concepts in osteogenesis imperfecta: bone structure, biomechanics and medical management. J Child Orthop 13:1–11. (PMID: 30838070637643810.1302/1863-2548.13.180190)
      Paschalis EP, Gamsjaeger S, Fratzl-Zelman N, Roschger P, Masic A, Brozek W, Hassler N, Glorieux FH, Rauch F, Klaushofer K, Fratzl P (2016) Evidence for a role for nanoporosity and pyridinoline content in human mild osteogenesis imperfecta. J Bone Miner Res 31:1050–1059. (PMID: 2674857910.1002/jbmr.2780)
      Alford AI, Kozloff KM, Hankenson KD (2015) Extracellular matrix networks in bone remodeling. Int J Biochem Cell Biol 65:20–31. (PMID: 2599787510.1016/j.biocel.2015.05.008)
      Li T, Chang SW, Rodriguez-Florez N, Buehler MJ, Shefelbine S, Dao M, Zeng K (2016) Studies of chain substitution caused sub-fibril level differences in stiffness and ultrastructure of wildtype and oim/oim collagen fibers using multifrequency-AFM and molecular modeling. Biomaterials 107:15–22. (PMID: 27589372504035510.1016/j.biomaterials.2016.08.038)
      Klosowski MM, Carzaniga R, Abellan P, Ramasse Q, McComb DW, Porter AE, Shefelbine SJ (2017) Electron microscopy reveals structural and chemical changes at the nanometer scale in the osteogenesis imperfecta murine pathology. ACS Biomater Sci Eng 3:2788–2797. (PMID: 3341870310.1021/acsbiomaterials.6b00300)
      Wallace JM, Orr BG, Marini JC, Holl MM (2011) Nanoscale morphology of Type I collagen is altered in the Brtl mouse model of osteogenesis imperfecta. J Struct Biol 173:146–152. (PMID: 2069625210.1016/j.jsb.2010.08.003)
      Kwon J, Cho H (2022) Collagen piezoelectricity in osteogenesis imperfecta and its role in intrafibrillar mineralization. Commun Biol 5:1229. (PMID: 36369514965225510.1038/s42003-022-04204-z)
      Folkestad L, Hald JD, Hansen S, Gram J, Langdahl B, Abrahamsen B, Brixen K (2012) Bone geometry, density, and microarchitecture in the distal radius and tibia in adults with osteogenesis imperfecta type I assessed by high-resolution pQCT. J Bone Miner Res 27:1405–1412. (PMID: 2240791010.1002/jbmr.1592)
      Kocijan R, Muschitz C, Haschka J, Hans D, Nia A, Geroldinger A, Ardelt M, Wakolbinger R, Resch H (2015) Bone structure assessed by HR-pQCT, TBS and DXL in adult patients with different types of osteogenesis imperfecta. Osteoporos Int 26:2431–2440. (PMID: 2595628510.1007/s00198-015-3156-4)
      Hald JD, Folkestad L, Harslof T, Lund AM, Duno M, Jensen JB, Neghabat S, Brixen K, Langdahl B (2016) Skeletal phenotypes in adult patients with osteogenesis imperfecta-correlations with COL1A1/COL1A2 genotype and collagen structure. Osteoporos Int 27:3331–3341. (PMID: 2725633310.1007/s00198-016-3653-0)
      Rolvien T, Sturznickel J, Schmidt FN, Butscheidt S, Schmidt T, Busse B, Mundlos S, Schinke T, Kornak U, Amling M, Oheim R (2018) Comparison of bone microarchitecture between adult osteogenesis imperfecta and early-onset osteoporosis. Calcif Tissue Int 103:512–521. (PMID: 2994697310.1007/s00223-018-0447-8)
      McCarthy EF, Earnest K, Rossiter K, Shapiro J (1997) Bone histomorphometry in adults with type IA osteogenesis imperfecta. Clin Orthop Relat Res, pp 254–262.
      Ste-Marie LG, Charhon SA, Edouard C, Chapuy MC, Meunier PJ (1984) Iliac bone histomorphometry in adults and children with osteogenesis imperfecta. J Clin Pathol 37:1081–1089. (PMID: 649094749894410.1136/jcp.37.10.1081)
      Shapiro JR, McCarthy EF, Rossiter K, Ernest K, Gelman R, Fedarko N, Santiago HT, Bober M (2003) The effect of intravenous pamidronate on bone mineral density, bone histomorphometry, and parameters of bone turnover in adults with type IA osteogenesis imperfecta. Calcif Tissue Int 72:103–112. (PMID: 1245726010.1007/s00223-001-1055-5)
      Glorieux FH, Ward LM, Rauch F, Lalic L, Roughley PJ, Travers R (2002) Osteogenesis imperfecta type VI: a form of brittle bone disease with a mineralization defect. J Bone Miner Res 17:30–38. (PMID: 1177166710.1359/jbmr.2002.17.1.30)
      Homan EP, Rauch F, Grafe I, Lietman C, Doll JA, Dawson B, Bertin T, Napierala D, Morello R, Gibbs R, White L, Miki R, Cohn DH, Crawford S, Travers R, Glorieux FH, Lee B (2011) Mutations in SERPINF1 cause osteogenesis imperfecta type VI. J Bone Miner Res 26:2798–2803. (PMID: 2182673610.1002/jbmr.487)
      Becker J, Semler O, Gilissen C, Li Y, Bolz HJ, Giunta C, Bergmann C, Rohrbach M, Koerber F, Zimmermann K, de Vries P, Wirth B, Schoenau E, Wollnik B, Veltman JA, Hoischen A, Netzer C (2011) Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive osteogenesis imperfecta. Am J Hum Genet 88:362–371. (PMID: 21353196305941810.1016/j.ajhg.2011.01.015)
      Semler O, Garbes L, Keupp K, Swan D, Zimmermann K, Becker J, Iden S, Wirth B, Eysel P, Koerber F, Schoenau E, Bohlander SK, Wollnik B, Netzer C (2012) A mutation in the 5’-UTR of IFITM5 creates an in-frame start codon and causes autosomal-dominant osteogenesis imperfecta type V with hyperplastic callus. Am J Hum Genet 91:349–357. (PMID: 22863195341554110.1016/j.ajhg.2012.06.011)
      Cho TJ, Lee KE, Lee SK, Song SJ, Kim KJ, Jeon D, Lee G, Kim HN, Lee HR, Eom HH, Lee ZH, Kim OH, Park WY, Park SS, Ikegawa S, Yoo WJ, Choi IH, Kim JW (2012) A single recurrent mutation in the 5’-UTR of IFITM5 causes osteogenesis imperfecta type V. Am J Hum Genet 91:343–348. (PMID: 22863190341553310.1016/j.ajhg.2012.06.005)
      Glorieux FH, Rauch F, Plotkin H, Ward L, Travers R, Roughley P, Lalic L, Glorieux DF, Fassier F, Bishop NJ (2000) Type V osteogenesis imperfecta: a new form of brittle bone disease. J Bone Miner Res 15:1650–1658. (PMID: 1097698510.1359/jbmr.2000.15.9.1650)
      Farber CR, Reich A, Barnes AM, Becerra P, Rauch F, Cabral WA, Bae A, Quinlan A, Glorieux FH, Clemens TL, Marini JC (2014) A novel IFITM5 mutation in severe atypical osteogenesis imperfecta type VI impairs osteoblast production of pigment epithelium-derived factor. J Bone Miner Res 29:1402–1411. (PMID: 2451960910.1002/jbmr.2173)
      Robichon J, Germain JP (1968) Pathogenesis of osteogenesis imperfecta. Can Med Assoc J 99:975–979. (PMID: 56879911945437)
      Jones SJ, Glorieux FH, Travers R, Boyde A (1999) The microscopic structure of bone in normal children and patients with osteogenesis imperfecta: a survey using backscattered electron imaging. Calcif Tissue Int 64:8–17. (PMID: 986827710.1007/s002239900571)
      Moharrer Y, Boerckel JD (2021) Tunnels in the rock: dynamics of osteocyte morphogenesis. Bone 153:116104. (PMID: 34245936847886610.1016/j.bone.2021.116104)
      Creecy A, Damrath JG, Wallace JM (2020) Control of bone matrix properties by osteocytes. Front Endocrinol (Lausanne) 11:578477. (PMID: 3353700210.3389/fendo.2020.578477)
      Ayoubi M, van Tol AF, Weinkamer R, Roschger P, Brugger PC, Berzlanovich A, Bertinetti L, Roschger A, Fratzl P (2021) 3D interrelationship between osteocyte network and forming mineral during human bone remodeling. Adv Healthc Mater 10:e2100113. (PMID: 3396382110.1002/adhm.202100113)
      van Tol AF, Schemenz V, Wagermaier W, Roschger A, Razi H, Vitienes I, Fratzl P, Willie BM, Weinkamer R (2020) The mechanoresponse of bone is closely related to the osteocyte lacunocanalicular network architecture. Proc Natl Acad Sci U S A 117:32251–32259. (PMID: 33288694776875410.1073/pnas.2011504117)
      Pathak JL, Bravenboer N, Klein-Nulend J (2020) The osteocyte as the new discovery of therapeutic options in rare bone diseases. Front Endocrinol (Lausanne) 11:405. (PMID: 3273338010.3389/fendo.2020.00405)
      Bateman JF, Sampurno L, Maurizi A, Lamande SR, Sims NA, Cheng TL, Schindeler A, Little DG (2019) Effect of rapamycin on bone mass and strength in the alpha2(I)-G610C mouse model of osteogenesis imperfecta. J Cell Mol Med 23:1735–1745. (PMID: 3059775910.1111/jcmm.14072)
      Besio R, Garibaldi N, Leoni L, Cipolla L, Sabbioneda S, Biggiogera M, Mottes M, Aglan M, Otaify GA, Temtamy SA, Rossi A, Forlino A (2019) Cellular stress due to impairment of collagen prolyl hydroxylation complex is rescued by the chaperone 4-phenylbutyrate. Dis Model Mech, p 12.
      Ichimura A, Miyazaki Y, Nagatomo H, Kawabe T, Nakajima N, Kim GE, Tomizawa M, Okamoto N, Komazaki S, Kakizawa S, Nishi M, Takeshima H (2023) Atypical cell death and insufficient matrix organization in long-bone growth plates from Tric-b-knockout mice. Cell Death Dis 14:848. (PMID: 381235631073337810.1038/s41419-023-06285-y)
      Shapiro F, Maguire K, Swami S, Zhu H, Flynn E, Wang J, Wu JY (2021) Histopathology of osteogenesis imperfecta bone. Supramolecular assessment of cells and matrices in the context of woven and lamellar bone formation using light, polarization and ultrastructural microscopy. Bone Rep 14:100734.
      Imbert L, Auregan JC, Pernelle K, Hoc T (2015) Microstructure and compressive mechanical properties of cortical bone in children with osteogenesis imperfecta treated with bisphosphonates compared with healthy children. J Mech Behav Biomed Mater 46:261–270. (PMID: 2582815710.1016/j.jmbbm.2014.12.020)
      Carriero A, Doube M, Vogt M, Busse B, Zustin J, Levchuk A, Schneider P, Muller R, Shefelbine SJ (2014) Altered lacunar and vascular porosity in osteogenesis imperfecta mouse bone as revealed by synchrotron tomography contributes to bone fragility. Bone 61:116–124. (PMID: 2437392110.1016/j.bone.2013.12.020)
      Imbert L, Auregan JC, Pernelle K, Hoc T (2014) Mechanical and mineral properties of osteogenesis imperfecta human bones at the tissue level. Bone 65:18–24. (PMID: 2480307710.1016/j.bone.2014.04.030)
      Albert C, Jameson J, Smith P, Harris G (2014) Reduced diaphyseal strength associated with high intracortical vascular porosity within long bones of children with osteogenesis imperfecta. Bone 66:121–130. (PMID: 24928496446757810.1016/j.bone.2014.05.022)
      Andre G, Chretien A, Demoulin A, Beersaerts M, Docquier PL, Behets C (2023) Col1A-2 Mutation in Osteogenesis Imperfecta Mice Contributes to Long Bone Fragility by Modifying Cell-Matrix Organization. Int J Mol Sci, p 24.
      Claeys L, Zhytnik L, Wisse LE, van Essen HW, Eekhoff EMW, Pals G, Bravenboer N, Micha D (2023) Exploration of the skeletal phenotype of the Col1a1 (+/Mov13) mouse model for haploinsufficient osteogenesis imperfecta type 1. Front Endocrinol (Lausanne) 14:1145125. (PMID: 3696777110.3389/fendo.2023.1145125)
      Blouin S, Misof BM, Mahr M, Fratzl-Zelman N, Roschger P, Lueger S, Messmer P, Keplinger P, Rauch F, Glorieux FH, Berzlanovich A, Gruber GM, Brugger PC, Shane E, Recker RR, Zwerina J, Hartmann MA (2023) Osteocyte lacunae in transiliac bone biopsy samples across life span. Acta Biomater 157:275–287. https://doi.org/10.1016/j.actbio.2022.11.051. (PMID: 10.1016/j.actbio.2022.11.05136549635)
      Vardakastani V, Saletti D, Skalli W, Marry P, Allain JM, Adam C (2014) Increased intra-cortical porosity reduces bone stiffness and strength in pediatric patients with osteogenesis imperfecta. Bone 69:61–67. (PMID: 2523889810.1016/j.bone.2014.09.003)
      Hedjazi G, Guterman-Ram G, Blouin S, Schemenz V, Wagermaier W, Fratzl P, Hartmann MA, Zwerina J, Fratzl-Zelman N, Marini JC (2022) Alterations of bone material properties in growing Ifitm5/BRIL p.S42 knock-in mice, a new model for atypical type VI osteogenesis imperfecta. Bone 162:116451.
      Kang H, Aryal Ac S, Barnes AM, Martin A, David V, Crawford SE, Marini JC (2022) Antagonism between PEDF and TGF-beta contributes to type VI osteogenesis imperfecta bone and vascular pathogenesis. J Bone Miner Res 37:925–937. (PMID: 3525812910.1002/jbmr.4540)
      Yeni YN, Brown CU, Wang Z, Norman TL (1997) The influence of bone morphology on fracture toughness of the human femur and tibia. Bone 21:453–459. (PMID: 935674010.1016/S8756-3282(97)00173-7)
      Albert C, Jameson J, Tarima S, Smith P, Harris G (2017) Macroscopic anisotropic bone material properties in children with severe osteogenesis imperfecta. J Biomech 64:103–111. (PMID: 2898868010.1016/j.jbiomech.2017.09.003)
      Milovanovic P, Busse B (2020) Phenomenon of osteocyte lacunar mineralization: indicator of former osteocyte death and a novel marker of impaired bone quality? Endocr Connect 9:R70–R80. (PMID: 32168472715926310.1530/EC-19-0531)
      Cui J, Shibata Y, Zhu T, Zhou J, Zhang J (2022) Osteocytes in bone aging: advances, challenges, and future perspectives. Ageing Res Rev 77:101608. (PMID: 3528328910.1016/j.arr.2022.101608)
      Busse B, Djonic D, Milovanovic P, Hahn M, Puschel K, Ritchie RO, Djuric M, Amling M (2010) Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone. Aging Cell 9:1065–1075. (PMID: 2087475710.1111/j.1474-9726.2010.00633.x)
      Folkestad L, Hald JD, Ersboll AK, Gram J, Hermann AP, Langdahl B, Abrahamsen B, Brixen K (2017) Fracture rates and fracture sites in patients with osteogenesis imperfecta: a nationwide register-based cohort study. J Bone Miner Res 32:125–134. (PMID: 2744825010.1002/jbmr.2920)
      Eren ED, Nijhuis WH, van der Weel F, Dede Eren A, Ansari S, Bomans PHH, Friedrich H, Sakkers RJ, Weinans H, de With G (2022) Multiscale characterization of pathological bone tissue. Microsc Res Tech 85:469–486. (PMID: 3449096710.1002/jemt.23920)
      Song IW, Nagamani SC, Nguyen D, Grafe I, Sutton VR, Gannon FH, Munivez E, Jiang MM, Tran A, Wallace M, Esposito P, Musaad S, Strudthoff E, McGuire S, Thornton M, Shenava V, Rosenfeld S, Huang S, Shypailo R, Orwoll E, Lee B (2022) Targeting TGF-beta for treatment of osteogenesis imperfecta. J Clin Invest, p. 132.
      Shapiro F, Wu JY (2019) Woven bone overview: structural classification based on its integral role in developmental, repair and pathological bone formation throughout vertebrate groups. Eur Cell Mater 38:137–167. (PMID: 3157119110.22203/eCM.v038a11)
      Fratzl-Zelman N, Roschger P, Misof BM, Pfeffer S, Glorieux FH, Klaushofer K, Rauch F (2009) Normative data on mineralization density distribution in iliac bone biopsies of children, adolescents and young adults. Bone 44:1043–1048. (PMID: 1926856510.1016/j.bone.2009.02.021)
      Traub W, Arad T, Vetter U, Weiner S (1994) Ultrastructural studies of bones from patients with osteogenesis imperfecta. Matrix Biol 14:337–345. (PMID: 782775710.1016/0945-053X(94)90200-3)
      Chow J, Ryan N, Shefelbine SJ, Shapiro F (2023) Lamellar thickness measurements in control and osteogenesis imperfecta human bone, with development of a method of automated thickness averaging to simplify quantitation. Matrix Biol 116:85–101. (PMID: 3659273710.1016/j.matbio.2022.12.006)
      Milovanovic P, Busse B (2019) Inter-site variability of the human osteocyte lacunar network: implications for bone quality. Curr Osteoporos Rep 17:105–115. (PMID: 3098028410.1007/s11914-019-00508-y)
      Fan Z, Smith PA, Eckstein EC, Harris GF (2006) Mechanical properties of OI type III bone tissue measured by nanoindentation. J Biomed Mater Res A 79:71–77. (PMID: 1675846110.1002/jbm.a.30713)
      Costantini A, Makitie RE, Hartmann MA, Fratzl-Zelman N, Zillikens MC, Kornak U, Soe K, Makitie O (2022) Early-onset osteoporosis: rare monogenic forms elucidate the complexity of disease pathogenesis beyond type I collagen. J Bone Miner Res 37:1623–1641. (PMID: 3594911510.1002/jbmr.4668)
      Mahr M, Blouin S, Misof BM, Paschalis EP, Hartmann MA, Zwerina J, Fratzl-Zelman N (2021) Bone properties in osteogenesis imperfecta: what can we learn from a bone biopsy beyond histology? Wien Med Wochenschr 171:111–119. (PMID: 3361679810.1007/s10354-021-00818-w)
      Masci M, Wang M, Imbert L, Barnes AM, Spevak L, Lukashova L, Huang Y, Ma Y, Marini JC, Jacobsen CM, Warman ML, Boskey AL (2016) Bone mineral properties in growing Col1a2(+/G610C) mice, an animal model of osteogenesis imperfecta. Bone 87:120–129. (PMID: 27083399486291710.1016/j.bone.2016.04.011)
      Roschger P, Paschalis EP, Fratzl P, Klaushofer K (2008) Bone mineralization density distribution in health and disease. Bone 42:456–466. (PMID: 1809645710.1016/j.bone.2007.10.021)
      Ruffoni D, Fratzl P, Roschger P, Klaushofer K, Weinkamer R (2007) The bone mineralization density distribution as a fingerprint of the mineralization process. Bone 40:1308–1319. (PMID: 1733726310.1016/j.bone.2007.01.012)
      Misof BM, Roschger P, Mahr M, Fratzl-Zelman N, Glorieux FH, Hartmann MA, Rauch F, Blouin S (2023) Accelerated mineralization kinetics in children with osteogenesis imperfecta type 1. Bone 166:116580. (PMID: 3621002410.1016/j.bone.2022.116580)
      Camacho NP, Landis WJ, Boskey AL (1996) Mineral changes in a mouse model of osteogenesis imperfecta detected by Fourier transform infrared microscopy. Connect Tissue Res 35:259–265. (PMID: 908466410.3109/03008209609029199)
      Grabner B, Landis WJ, Roschger P, Rinnerthaler S, Peterlik H, Klaushofer K, Fratzl P (2001) Age- and genotype-dependence of bone material properties in the osteogenesis imperfecta murine model (oim). Bone 29:453–457. (PMID: 1170449810.1016/S8756-3282(01)00594-4)
      Misof BM, Roschger P, Baldini T, Raggio CL, Zraick V, Root L, Boskey AL, Klaushofer K, Fratzl P, Camacho NP (2005) Differential effects of alendronate treatment on bone from growing osteogenesis imperfecta and wild-type mouse. Bone 36:150–158. (PMID: 1566401310.1016/j.bone.2004.10.006)
      Vanleene M, Porter A, Guillot PV, Boyde A, Oyen M, Shefelbine S (2012) Ultra-structural defects cause low bone matrix stiffness despite high mineralization in osteogenesis imperfecta mice. Bone 50:1317–1323. (PMID: 22449447340787510.1016/j.bone.2012.03.007)
      Bogan R, Riddle RC, Li Z, Kumar S, Nandal A, Faugere MC, Boskey A, Crawford SE, Clemens TL (2013) A mouse model for human osteogenesis imperfecta type VI. J Bone Miner Res 28:1531–1536. (PMID: 2341314610.1002/jbmr.1892)
      Rodriguez-Florez N, Garcia-Tunon E, Mukadam Q, Saiz E, Oldknow KJ, Farquharson C, Millan JL, Boyde A, Shefelbine SJ (2015) An investigation of the mineral in ductile and brittle cortical mouse bone. J Bone Miner Res 30:786–795. (PMID: 2541832910.1002/jbmr.2414)
      Fratzl-Zelman N, Bachinger HP, Vranka JA, Roschger P, Klaushofer K, Rauch F (2016) Bone matrix hypermineralization in prolyl-3 hydroxylase 1 deficient mice. Bone 85:15–22. (PMID: 2680844210.1016/j.bone.2016.01.018)
      Fiedler IAK, Schmidt FN, Wolfel EM, Plumeyer C, Milovanovic P, Gioia R, Tonelli F, Bale HA, Jahn K, Besio R, Forlino A, Busse B (2018) Severely impaired bone material quality in Chihuahua zebrafish resembles classical dominant human osteogenesis imperfecta. J Bone Miner Res 33:1489–1499. (PMID: 2966508610.1002/jbmr.3445)
      Cabral WA, Fratzl-Zelman N, Roschger P, Marini JC (2011) Cellular dysregulation of gene expression in response to abnormal extracellular matrix may contribute to matrix hypermineralization in osteogenesis imperfecta. Bone 48:S71–S72. (PMID: 10.1016/j.bone.2011.03.077)
      Sinder BP, Lloyd WR, Salemi JD, Marini JC, Caird MS, Morris MD, Kozloff KM (2016) Effect of anti-sclerostin therapy and osteogenesis imperfecta on tissue-level properties in growing and adult mice while controlling for tissue age. Bone 84:222–229. (PMID: 26769006475744710.1016/j.bone.2016.01.001)
      Sinder BP, Salemi JD, Ominsky MS, Caird MS, Marini JC, Kozloff KM (2015) Rapidly growing Brtl/+ mouse model of osteogenesis imperfecta improves bone mass and strength with sclerostin antibody treatment. Bone 71:115–123. (PMID: 2544545010.1016/j.bone.2014.10.012)
      Grafe I, Alexander S, Yang T, Lietman C, Homan EP, Munivez E, Chen Y, Jiang MM, Bertin T, Dawson B, Asuncion F, Ke HZ, Ominsky MS, Lee B (2016) Sclerostin antibody treatment improves the bone phenotype of crtap mice, a model of recessive osteogenesis imperfecta. J Bone Miner Res 31(5):1030–1040. https://doi.org/10.1002/jbmr.2776. (PMID: 10.1002/jbmr.277626716893)
      Bi X, Grafe I, Ding H, Flores R, Munivez E, Jiang MM, Dawson B, Lee B, Ambrose CG (2017) Correlations between bone mechanical properties and bone composition parameters in mouse models of dominant and recessive osteogenesis imperfecta and the response to anti-TGF-beta treatment. J Bone Miner Res 32:347–359. (PMID: 2764940910.1002/jbmr.2997)
      Hofstaetter JG, Misof BM, Jones DC, Zoehrer R, Blouin S, Schueler C, Paschalis EP, Erben RG, Weinkamer R, Klaushofer K, Roschger P (2019) Biomechanical and bone material properties of Schnurri-3 null mice. JBMR Plus 3:e10226. (PMID: 31768487687418210.1002/jbm4.10226)
      Kuroda Y, Kawaai K, Hatano N, Wu Y, Takano H, Momose A, Ishimoto T, Nakano T, Roschger P, Blouin S, Matsuo K (2021) Hypermineralization of hearing-related bones by a specific osteoblast subtype. J Bone Miner Res 36:1535–1547. (PMID: 3390556210.1002/jbmr.4320)
      Tang CC, Castro Andrade CD, O'Meara MJ, Yoon SH, Sato T, Brooks DJ, Bouxsein ML, Martins JDS, Wang J, Gray NS, Misof B, Roschger P, Blouin S, Klaushofer K, Velduis-Vlug A, Vegting Y, Rosen CJ, O'Connell D, Sundberg TB, Xavier RJ, Ung P, Schlessinger A, Kronenberg HM, Berdeaux R, Foretz M, Wein MN (2021) Dual targeting of salt inducible kinases and CSF1R uncouples bone formation and bone resorption. Elife, p 10.
      Fratzl P, Paris O, Klaushofer K, Landis WJ (1996) Bone mineralization in an osteogenesis imperfecta mouse model studied by small-angle x-ray scattering. J Clin Invest 97:396–402. (PMID: 856796050703010.1172/JCI118428)
      Carleton SM, McBride DJ, Carson WL, Huntington CE, Twenter KL, Rolwes KM, Winkelmann CT, Morris JS, Taylor JF, Phillips CL (2008) Role of genetic background in determining phenotypic severity throughout postnatal development and at peak bone mass in Col1a2 deficient mice (oim). Bone 42:681–694. (PMID: 18313376242332610.1016/j.bone.2007.12.215)
      Fratzl-Zelman N, Schmidt I, Roschger P, Glorieux FH, Klaushofer K, Fratzl P, Rauch F, Wagermaier W (2014) Mineral particle size in children with osteogenesis imperfecta type I is not increased independently of specific collagen mutations. Bone 60:122–128. (PMID: 2429623910.1016/j.bone.2013.11.023)
      Eanes ED, Lundy DR, Martin GN (1970) X-ray diffraction study of the mineralization of turkey leg tendon. Calcif Tissue Res 6:239–248. (PMID: 550067710.1007/BF02196204)
      Bishop N (2016) Bone material properties in osteogenesis imperfecta. J Bone Miner Res 31:699–708. (PMID: 2698799510.1002/jbmr.2835)
      Shanas N, Querido W, Oswald J, Jepsen K, Carter E, Raggio C, Pleshko N (2022) Infrared spectroscopy-determined bone compositional changes associated with anti-resorptive treatment of the oim/oim mouse model of osteogenesis imperfecta. Appl Spectrosc 76:416–427. (PMID: 3464313410.1177/00037028211055477)
      Granke M, Does MD, Nyman JS (2015) The role of water compartments in the material properties of cortical bone. Calcif Tissue Int 97:292–307. (PMID: 25783011452633110.1007/s00223-015-9977-5)
      Surowiec RK, Allen MR, Wallace JM (2022) Bone hydration: How we can evaluate it, what can it tell us, and is it an effective therapeutic target? Bone Rep 16:101161. (PMID: 3500510110.1016/j.bonr.2021.101161)
      Andriotis OG, Chang SW, Vanleene M, Howarth PH, Davies DE, Shefelbine SJ, Buehler MJ, Thurner PJ (2015) Structure-mechanics relationships of collagen fibrils in the osteogenesis imperfecta mouse model. J R Soc Interface 12:20150701. (PMID: 26468064461450510.1098/rsif.2015.0701)
      Camacho NP, Carroll P, Raggio CL (2003) Fourier transform infrared imaging spectroscopy (FT-IRIS) of mineralization in bisphosphonate-treated oim/oim mice. Calcif Tissue Int 72:604–609. (PMID: 1257487410.1007/s00223-002-1038-1)
      Camacho NP, Hou L, Toledano TR, Ilg WA, Brayton CF, Raggio CL, Root L, Boskey AL (1999) The material basis for reduced mechanical properties in oim mice bones. J Bone Miner Res 14:264–272. (PMID: 993348110.1359/jbmr.1999.14.2.264)
      Cassella JP, Garrington N, Stamp TC, Ali SY (1995) An electron probe X-ray microanalytical study of bone mineral in osteogenesis imperfecta. Calcif Tissue Int 56:118–122. (PMID: 773631910.1007/BF00296342)
      Sarathchandra P, Kayser MV, Ali SY (1999) Abnormal mineral composition of osteogenesis imperfecta bone as determined by electron probe X-ray microanalysis on conventional and cryosections. Calcif Tissue Int 65:11–15. (PMID: 1036972710.1007/PL00005829)
      Cassella JP, Barber P, Catterall AC, Ali SY (1994) A morphometric analysis of osteoid collagen fibril diameter in osteogenesis imperfecta. Bone 15:329–334. (PMID: 806845410.1016/8756-3282(94)90296-8)
      Veilleux LN, Pouliot-Laforte A, Lemay M, Cheung MS, Glorieux FH, Rauch F (2015) The functional muscle-bone unit in patients with osteogenesis imperfecta type I. Bone 79:52–57. (PMID: 2600491810.1016/j.bone.2015.05.019)
      Currey JD (2008) Collagen and the mechanical properties of bone and calcified cartilage. In: Fratzl P (ed) Collagen: structure and mechanics. Springer, New York, USA, pp 397–420. (PMID: 10.1007/978-0-387-73906-9_14)
      Indermaur M, Casari D, Kochetkova T, Peruzzi C, Zimmermann E, Rauch F, Willie B, Michler J, Schwiedrzik J, Zysset P (2021) Compressive strength of iliac bone ECM is not reduced in osteogenesis imperfecta and increases with mineralization. J Bone Miner Res 36:1364–1375. (PMID: 3374028610.1002/jbmr.4286)
      Ping H, Wagermaier W, Horbelt N, Scoppola E, Li C, Werner P, Fu Z, Fratzl P (2022) Mineralization generates megapascal contractile stresses in collagen fibrils. Science 376:188–192. (PMID: 3538980210.1126/science.abm2664)
      Albert C, Jameson J, Toth JM, Smith P, Harris G (2013) Bone properties by nanoindentation in mild and severe osteogenesis imperfecta. Clin Biomech (Bristol, Avon) 28:110–116. (PMID: 2314142210.1016/j.clinbiomech.2012.10.003)
      Indermaur M, Casari D, Kochetkova T, Willie BM, Michler J, Schwiedrzik J, Zysset P (2023) Tensile mechanical properties of dry cortical bone extracellular matrix: a comparison among two osteogenesis imperfecta and one healthy control iliac crest biopsies. JBMR Plus 7:e10826. (PMID: 381307641073113310.1002/jbm4.10826)
      Kocijan R, Muschitz C, Fratzl-Zelman N, Haschka J, Dimai HP, Trubrich A, Bittighofer C, Resch H (2013) Femoral geometric parameters and BMD measurements by DXA in adult patients with different types of osteogenesis imperfecta. Skeletal Radiol 42:187–194. (PMID: 2295544910.1007/s00256-012-1512-4)
      Etich J, Lessmeier L, Rehberg M, Sill H, Zaucke F, Netzer C, Semler O (2020) Osteogenesis imperfecta-pathophysiology and therapeutic options. Mol Cell Pediatr 7:9. (PMID: 32797291742767210.1186/s40348-020-00101-9)
      Cheung MS, Glorieux FH, Rauch F (2009) Large osteoclasts in pediatric osteogenesis imperfecta patients receiving intravenous pamidronate. J Bone Miner Res 24:669–674. (PMID: 1906367910.1359/jbmr.081225)
      Simm PJ, Biggin A, Zacharin MR, Rodda CP, Tham E, Siafarikas A, Jefferies C, Hofman PL, Jensen DE, Woodhead H, Brown J, Wheeler BJ, Brookes D, Lafferty A, Munns CF, Group ABMW (2018) Consensus guidelines on the use of bisphosphonate therapy in children and adolescents. J Paediatr Child Health 54:223–233. (PMID: 2950422310.1111/jpc.13768)
      Liu W, Lee B, Nagamani SCS, Nicol L, Rauch F, Rush ET, Sutton VR, Orwoll E (2023) Approach to the patient: pharmacological therapies for fracture risk reduction in adults with osteogenesis imperfecta. J Clin Endocrinol Metab 108:1787–1796. (PMID: 366587501027122710.1210/clinem/dgad035)
      Rauch F, Glorieux FH (2004) Osteogenesis imperfecta. Lancet 363:1377–1385. (PMID: 1511049810.1016/S0140-6736(04)16051-0)
      Ralston SH, Gaston MS (2019) Management of osteogenesis imperfecta. Front Endocrinol (Lausanne) 10:924. (PMID: 3211704410.3389/fendo.2019.00924)
      Whyte MP, McAlister WH, Dhiman V, Gopinathan NR, Bhadada SK (2023) Drug-induced osteopetrosis. Bone 173:116788. (PMID: 3717288310.1016/j.bone.2023.116788)
      Rauch F, Travers R, Munns C, Glorieux FH (2004) Sclerotic metaphyseal lines in a child treated with pamidronate: histomorphometric analysis. J Bone Miner Res 19:1191–1193. (PMID: 1517700310.1359/JBMR.040303)
      Smith EJ, Little DG, Briody JN, McEvoy A, Smith NC, Eisman JA, Gardiner EM (2005) Transient disturbance in physeal morphology is associated with long-term effects of nitrogen-containing bisphosphonates in growing rabbits. J Bone Miner Res 20:1731–1741. (PMID: 1616073110.1359/JBMR.050604)
      Land C, Rauch F, Travers R, Glorieux FH (2007) Osteogenesis imperfecta type VI in childhood and adolescence: effects of cyclical intravenous pamidronate treatment. Bone 40:638–644. (PMID: 1712711710.1016/j.bone.2006.10.010)
      Robinson ME, Trejo P, Palomo T, Glorieux FH, Rauch F (2019) Osteogenesis imperfecta: skeletal outcomes after bisphosphonate discontinuation at final height. J Bone Miner Res 34:2198–2204. (PMID: 3135669910.1002/jbmr.3833)
      Roschger P, Misof B, Paschalis E, Fratzl P, Klaushofer K (2014) Changes in the degree of mineralization with osteoporosis and its treatment. Curr Osteoporos Rep 12:338–350. (PMID: 2494795110.1007/s11914-014-0218-z)
      Goudriaan WA, Harsevoort GJ, van Leeuwen M, Franken AA, Janus GJM (2020) Incidence and treatment of femur fractures in adults with osteogenesis imperfecta: an analysis of an expert clinic of 216 patients. Eur J Trauma Emerg Surg 46:165–171. (PMID: 3024437410.1007/s00068-018-1005-9)
      Andersen JD, Bunger MH, Rahbek O, Hald JD, Harslof T, Langdahl BL (2019) Do femoral fractures in adult patients with osteogenesis imperfecta imitate atypical femoral fractures? A case series. Osteoporos Int 30:513–517. (PMID: 3044895910.1007/s00198-018-4769-1)
      Majdoub F, Ferjani HL, Nessib DB, Kaffel D, Maatallah K, Hamdi W (2023) Denosumab use in osteogenesis imperfecta: an update on therapeutic approaches. Ann Pediatr Endocrinol Metab 28:98–106. (PMID: 374010561032994410.6065/apem.2346058.029)
      Trejo P, Rauch F, Ward L (2018) Hypercalcemia and hypercalciuria during denosumab treatment in children with osteogenesis imperfecta type VI. J Musculoskelet Neuronal Interact 18:76–80. (PMID: 295045825881132)
      Liu J, Lin X, Sun L, Zhang Q, Jiang Y, Wang O, Xing X, Xia W, Li M (2024) Safety and efficacy of denosumab in children with osteogenesis imperfecta-the first prospective comparative study. J Clin Endocrinol Metab 109(7):1827–1836. https://doi.org/10.1210/clinem/dgad732. (PMID: 10.1210/clinem/dgad732)
      Lin X, Hu J, Zhou B, Wang X, Zhang Q, Jiang Y, Wang O, Xia W, Xing X, Li M (2024) Efficacy and safety of denosumab versus zoledronic acid in OI adults: a prospective, open-label, randomized study. J Clin Endocrinol Metab 109(7):1873–1882. https://doi.org/10.1210/clinem/dgae012. (PMID: 10.1210/clinem/dgae012)
      Marini F, Giusti F, Palmini G, Brandi ML (2023) Role of Wnt signaling and sclerostin in bone and as therapeutic targets in skeletal disorders. Osteoporos Int 34:213–238. (PMID: 3598231810.1007/s00198-022-06523-7)
      Glorieux FH, Devogelaer JP, Durigova M, Goemaere S, Hemsley S, Jakob F, Junker U, Ruckle J, Seefried L, Winkle PJ (2017) BPS804 anti-sclerostin antibody in adults with moderate osteogenesis imperfecta: results of a randomized phase 2a trial. J Bone Miner Res 32:1496–1504. (PMID: 2837040710.1002/jbmr.3143)
      Uehara M, Nakamura Y, Nakano M, Miyazaki A, Suzuki T, Takahashi J (2022) Efficacy of romosozumab for osteoporosis in a patient with osteogenesis imperfecta: a case report. Mod Rheumatol Case Rep 6:128–133. (PMID: 3449136310.1093/mrcr/rxab018)
      Roschger A, Roschger P, Keplingter P, Klaushofer K, Abdullah S, Kneissel M, Rauch F (2014) Effect of sclerostin antibody treatment in a mouse model of severe osteogenesis imperfecta. Bone 66:182–188. (PMID: 2495371210.1016/j.bone.2014.06.015)
      Marulanda J, Tauer JT, Boraschi-Diaz I, Bardai G, Rauch F (2023) Effect of sclerostin inactivation in a mouse model of severe dominant osteogenesis imperfecta. Sci Rep 13:5010. (PMID: 369735041004301310.1038/s41598-023-32221-3)
      Cardinal M, Tys J, Roels T, Lafont S, Ominsky MS, Devogelaer JP, Chappard D, Mabilleau G, Ammann P, Nyssen-Behets C, Manicourt DH (2019) Sclerostin antibody reduces long bone fractures in the oim/oim model of osteogenesis imperfecta. Bone 124:137–147. (PMID: 3105131510.1016/j.bone.2019.04.011)
      Cardinal M, Dessain A, Roels T, Lafont S, Ominsky MS, Devogelaer JP, Chappard D, Mabilleau G, Ammann P, Nyssen-Behets C, Manicourt DH (2020) Sclerostin-antibody treatment decreases fracture rates in axial skeleton and improves the skeletal phenotype in growing oim/oim mice. Calcif Tissue Int 106:494–508. (PMID: 3202575210.1007/s00223-019-00655-5)
      Cardinal M, Chretien A, Roels T, Lafont S, Ominsky MS, Devogelaer JP, Manicourt DH, Behets C (2021) Gender-related impact of sclerostin antibody on bone in the osteogenesis imperfecta mouse. Front Genet 12:705505. (PMID: 34447412838333910.3389/fgene.2021.705505)
      Gatti D, Rossini M, Viapiana O, Povino MR, Liuzza S, Fracassi E, Idolazzi L, Adami S (2013) Teriparatide treatment in adult patients with osteogenesis imperfecta type I. Calcif Tissue Int 93:448–452. (PMID: 2390772310.1007/s00223-013-9770-2)
      Orwoll ES, Shapiro J, Veith S, Wang Y, Lapidus J, Vanek C, Reeder JL, Keaveny TM, Lee DC, Mullins MA, Nagamani SC, Lee B (2014) Evaluation of teriparatide treatment in adults with osteogenesis imperfecta. J Clin Invest 124:491–498. (PMID: 24463451390462110.1172/JCI71101)
      Nicol L, Srikanth P, Henriksen K, Sun S, Smith R, Karsdal MA, Nagamani SCS, Shapiro J, Lee B, Leder BZ, Orwoll E (2021) Widespread disturbance in extracellular matrix collagen biomarker responses to teriparatide therapy in osteogenesis imperfecta. Bone 142:115703. (PMID: 3309903210.1016/j.bone.2020.115703)
      Marini JC, Hopkins E, Glorieux FH, Chrousos GP, Reynolds JC, Gundberg CM, Reing CM (2003) Positive linear growth and bone responses to growth hormone treatment in children with types III and IV osteogenesis imperfecta: high predictive value of the carboxyterminal propeptide of type I procollagen. J Bone Miner Res 18:237–243. (PMID: 1256840110.1359/jbmr.2003.18.2.237)
      King D, Jarjoura D, McEwen HA, Askew MJ (2005) Growth hormone injections improve bone quality in a mouse model of osteogenesis imperfecta. J Bone Miner Res 20:987–993. (PMID: 1588363910.1359/JBMR.050108)
      Botor M, Fus-Kujawa A, Uroczynska M, Stepien KL, Galicka A, Gawron K, Sieron AL (2021) Osteogenesis Imperfecta: Current and Prospective Therapies. Biomolecules, p. 11.
      Hald JD, Keerie C, Weir CJ, Javaid MK, Lam W, Osborne P, Walsh J, Langdahl BL, Ralston SH (2023) Protocol of a randomised trial of teriparatide followed by zoledronic acid to reduce fracture risk in adults with osteogenesis imperfecta. BMJ Open 13:e078164. (PMID: 379931511066814010.1136/bmjopen-2023-078164)
      Foessl I, Dimai HP, Obermayer-Pietsch B (2023) Long-term and sequential treatment for osteoporosis. Nat Rev Endocrinol 19:520–533. (PMID: 3746408810.1038/s41574-023-00866-9)
      Olvera D, Stolzenfeld R, Marini JC, Caird MS, Kozloff KM (2018) Low dose of bisphosphonate enhances sclerostin antibody-induced trabecular bone mass gains in Brtl/+ osteogenesis imperfecta mouse model. J Bone Miner Res 33:1272–1282. (PMID: 2954401810.1002/jbmr.3421)
      Little DG, Peacock L, Mikulec K, Kneissel M, Kramer I, Cheng TL, Schindeler A, Munns C (2017) Combination sclerostin antibody and zoledronic acid treatment outperforms either treatment alone in a mouse model of osteogenesis imperfecta. Bone 101:96–103. (PMID: 2846125410.1016/j.bone.2017.04.016)
      Lee LR, Holman AE, Li X, Vasiljevski ER, O’Donohue AK, Cheng TL, Little DG, Schindeler A, Biggin A, Munns CF (2022) Combination treatment with growth hormone and zoledronic acid in a mouse model of Osteogenesis imperfecta. Bone 159:116378. (PMID: 3525792910.1016/j.bone.2022.116378)
      Oreffo RO, Mundy GR, Seyedin SM, Bonewald LF (1989) Activation of the bone-derived latent TGF beta complex by isolated osteoclasts. Biochem Biophys Res Commun 158:817–823. (PMID: 292004110.1016/0006-291X(89)92795-2)
      Hildebrand A, Romaris M, Rasmussen LM, Heinegard D, Twardzik DR, Border WA, Ruoslahti E (1994) Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta. Biochem J 302(Pt 2):527–534. (PMID: 8093006113725910.1042/bj3020527)
      Tang SY, Alliston T (2013) Regulation of postnatal bone homeostasis by TGFbeta. BoneKEy reports 2:255. (PMID: 24404376372271910.1038/bonekey.2012.255)
      Tauer JT, Abdullah S, Rauch F (2019) Effect of anti-TGF-beta treatment in a mouse model of severe osteogenesis imperfecta. J Bone Miner Res 34:207–214. (PMID: 3035792910.1002/jbmr.3617)
      Greene B, Russo RJ, Dwyer S, Malley K, Roberts E, Serrielo J, Piepenhagen P, Cummings S, Ryan S, Zarazinski C, Uppuganti S, Bukanov N, Nyman JS, Cox MK, Liu S, Ibraghimov-Beskrovnaya O, Sabbagh Y (2021) Inhibition of TGF-beta increases bone volume and strength in a mouse model of osteogenesis imperfecta. JBMR Plus 5:e10530. (PMID: 34532615844139510.1002/jbm4.10530)
      Sun B, Wu H, Lu J, Zhang R, Shen X, Gu Y, Shi C, Zhang Y, Yuan W (2023) Irisin reduces bone fracture by facilitating osteogenesis and antagonizing TGF-beta/Smad signaling in a growing mouse model of osteogenesis imperfecta. J Orthop Translat 38:175–189. (PMID: 3643962910.1016/j.jot.2022.10.012)
      Omosule CL, Joseph D, Weiler B, Gremminger VL, Silvey S, Jeong Y, Rafique A, Krueger P, Kleiner S, Phillips CL (2022) Combinatorial inhibition of myostatin and activin a improves femoral bone properties in the G610C mouse model of osteogenesis imperfecta. J Bone Miner Res 37:938–953. (PMID: 3519528410.1002/jbmr.4529)
      Jeong Y, Daghlas SA, Xie Y, Hulbert MA, Pfeiffer FM, Dallas MR, Omosule CL, Pearsall RS, Dallas SL, Phillips CL (2018) Skeletal response to soluble activin receptor type IIB in mouse models of osteogenesis imperfecta. J Bone Miner Res 33:1760–1772. (PMID: 2981318710.1002/jbmr.3473)
      Tauer JT, Rauch F (2019) Novel ActRIIB ligand trap increases muscle mass and improves bone geometry in a mouse model of severe osteogenesis imperfecta. Bone 128:115036. (PMID: 3141960110.1016/j.bone.2019.115036)
      Oestreich AK, Kamp WM, McCray MG, Carleton SM, Karasseva N, Lenz KL, Jeong Y, Daghlas SA, Yao X, Wang Y, Pfeiffer FM, Ellersieck MR, Schulz LC, Phillips CL (2016) Decreasing maternal myostatin programs adult offspring bone strength in a mouse model of osteogenesis imperfecta. Proc Natl Acad Sci U S A 113:13522–13527. (PMID: 27821779512731810.1073/pnas.1607644113)
      Garibaldi N, Contento BM, Babini G, Morini J, Siciliani S, Biggiogera M, Raspanti M, Marini JC, Rossi A, Forlino A, Besio R (2021) Targeting cellular stress in vitro improves osteoblast homeostasis, matrix collagen content and mineralization in two murine models of osteogenesis imperfecta. Matrix Biol 98:1–20. (PMID: 337986771116274310.1016/j.matbio.2021.03.001)
      Duran I, Zieba J, Csukasi F, Martin JH, Wachtell D, Barad M, Dawson B, Fafilek B, Jacobsen CM, Ambrose CG, Cohn DH, Krejci P, Lee BH, Krakow D (2022) 4-PBA Treatment improves bone phenotypes in the Aga2 mouse model of osteogenesis imperfecta. J Bone Miner Res 37:675–686. (PMID: 3499793510.1002/jbmr.4501)
      Gioia R, Tonelli F, Ceppi I, Biggiogera M, Leikin S, Fisher S, Tenedini E, Yorgan TA, Schinke T, Tian K, Schwartz JM, Forte F, Wagener R, Villani S, Rossi A, Forlino A (2017) The chaperone activity of 4PBA ameliorates the skeletal phenotype of Chihuahua, a zebrafish model for dominant osteogenesis imperfecta. Hum Mol Genet 26:2897–2911. (PMID: 28475764588610610.1093/hmg/ddx171)
      Takigawa S, Frondorf B, Liu S, Liu Y, Li B, Sudo A, Wallace JM, Yokota H, Hamamura K (2016) Salubrinal improves mechanical properties of the femur in osteogenesis imperfecta mice. J Pharmacol Sci 132:154–161. (PMID: 2774381410.1016/j.jphs.2016.09.006)
      Quintanilla Rodriguez BS, Correa R (2024) Raloxifene. In: StatPearls. Treasure Island (FL) relationships with ineligible companies. Disclosure: Ricardo Correa declares no relevant financial relationships with ineligible companies.
      Ettinger B, Black DM, Mitlak BH, Knickerbocker RK, Nickelsen T, Genant HK, Christiansen C, Delmas PD, Zanchetta JR, Stakkestad J, Gluer CC, Krueger K, Cohen FJ, Eckert S, Ensrud KE, Avioli LV, Lips P, Cummings SR (1999) Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA 282:637–645. (PMID: 1051771610.1001/jama.282.7.637)
      Berman AG, Wallace JM, Bart ZR, Allen MR (2016) Raloxifene reduces skeletal fractures in an animal model of osteogenesis imperfecta. Matrix Biol 52–54:19–28. (PMID: 2670724210.1016/j.matbio.2015.12.008)
      Gallant MA, Brown DM, Hammond M, Wallace JM, Du J, Deymier-Black AC, Almer JD, Stock SR, Allen MR, Burr DB (2014) Bone cell-independent benefits of raloxifene on the skeleton: a novel mechanism for improving bone material properties. Bone 61:191–200. (PMID: 24468719395502810.1016/j.bone.2014.01.009)
      Powell KM, Skaggs C, Pulliam A, Berman A, Allen MR, Wallace JM (2019) Zoledronate and Raloxifene combination therapy enhances material and mechanical properties of diseased mouse bone. Bone 127:199–206. (PMID: 31233931703674410.1016/j.bone.2019.06.018)
      Kohler R, Creecy A, Williams DR, Allen MR, Wallace JM (2024) Effects of novel raloxifene analogs alone or in combination with mechanical loading in the Col1a2(G610c/+) murine model of osteogenesis imperfecta. Bone 179:116970. (PMID: 3797741610.1016/j.bone.2023.116970)
      Creecy A, Segvich D, Metzger C, Kohler R, Wallace JM (2024) Combining anabolic loading and raloxifene improves bone quantity and some quality measures in a mouse model of osteogenesis imperfecta. Bone 184:117106. (PMID: 3864123210.1016/j.bone.2024.117106)
      Gobron B, Couchot M, Irwin N, Legrand E, Bouvard B, Mabilleau G (2023) Development of a first-in-class unimolecular dual GIP/GLP analogue, GL-0001, for the treatment of bone fragility. J Bone Miner Res 38:733–748. (PMID: 3685003410.1002/jbmr.4792)
      Mieczkowska A, Bouvard B, Chappard D, Mabilleau G (2015) Glucose-dependent insulinotropic polypeptide (GIP) directly affects collagen fibril diameter and collagen cross-linking in osteoblast cultures. Bone 74:29–36. (PMID: 2558262310.1016/j.bone.2015.01.003)
      Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, Sussman M, Orchard P, Marx JC, Pyeritz RE, Brenner MK (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5:309–313. (PMID: 1008638710.1038/6529)
      Schindeler A, Lee LR, O’Donohue AK, Ginn SL, Munns CF (2022) Curative cell and gene therapy for osteogenesis imperfecta. J Bone Miner Res 37:826–836. (PMID: 3530668710.1002/jbmr.4549)
      Horwitz EM, Prockop DJ, Gordon PL, Koo WW, Fitzpatrick LA, Neel MD, McCarville ME, Orchard PJ, Pyeritz RE, Brenner MK (2001) Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 97:1227–1231. (PMID: 1122236410.1182/blood.V97.5.1227)
      Otsuru S, Gordon PL, Shimono K, Jethva R, Marino R, Phillips CL, Hofmann TJ, Veronesi E, Dominici M, Iwamoto M, Horwitz EM (2012) Transplanted bone marrow mononuclear cells and MSCs impart clinical benefit to children with osteogenesis imperfecta through different mechanisms. Blood 120:1933–1941. (PMID: 22829629343309510.1182/blood-2011-12-400085)
      Battle L, Yakar S, Carriero A (2021) A systematic review and meta-analysis on the efficacy of stem cell therapy on bone brittleness in mouse models of osteogenesis imperfecta. Bone Rep 15:101108. (PMID: 34368408832635510.1016/j.bonr.2021.101108)
      Panaroni C, Gioia R, Lupi A, Besio R, Goldstein SA, Kreider J, Leikin S, Vera JC, Mertz EL, Perilli E, Baruffaldi F, Villa I, Farina A, Casasco M, Cetta G, Rossi A, Frattini A, Marini JC, Vezzoni P, Forlino A (2009) In utero transplantation of adult bone marrow decreases perinatal lethality and rescues the bone phenotype in the knockin murine model for classical, dominant osteogenesis imperfecta. Blood 114:459–468. (PMID: 19414862271421610.1182/blood-2008-12-195859)
      Vanleene M, Saldanha Z, Cloyd KL, Jell G, Bou-Gharios G, Bassett JH, Williams GR, Fisk NM, Oyen ML, Stevens MM, Guillot PV, Shefelbine SJ (2011) Transplantation of human fetal blood stem cells in the osteogenesis imperfecta mouse leads to improvement in multiscale tissue properties. Blood 117:1053–1060. (PMID: 2108813310.1182/blood-2010-05-287565)
      Fus-Kujawa A, Mendrek B, Bajdak-Rusinek K, Diak N, Strzelec K, Gutmajster E, Janelt K, Kowalczuk A, Trybus A, Rozwadowska P, Wojakowski W, Gawron K, Sieron AL (2023) Gene-repaired iPS cells as novel approach for patient with osteogenesis imperfecta. Front Bioeng Biotechnol 11:1205122. (PMID: 374567341034890410.3389/fbioe.2023.1205122)
      Lin C, Greenblatt MB, Gao G, Shim JH (2024) Development of AAV-mediated gene therapy approaches to treat skeletal diseases. Hum Gene Ther 35:317–328. (PMID: 3853421710.1089/hum.2024.022)
      Yang YS, Sato T, Chaugule S, Ma H, Xie J, Gao G, Shim JH (2024) AAV-based gene editing of type 1 collagen mutation to treat osteogenesis imperfecta. Mol Ther Nucleic Acids 35:102111. (PMID: 3826195010.1016/j.omtn.2023.102111)
      Cotti S, Huysseune A, Koppe W, Rucklin M, Marone F, Wolfel EM, Fiedler IAK, Busse B, Forlino A, Witten PE (2020) More bone with less minerals? The effects of dietary phosphorus on the post-cranial skeleton in Zebrafish. Int J Mol Sci, p 21.
      Cotti S, Huysseune A, Larionova D, Koppe W, Forlino A, Witten PE (2022) Compression fractures and partial phenotype rescue with a low phosphorus diet in the chihuahua zebrafish osteogenesis imperfecta model. Front Endocrinol (Lausanne) 13:851879. (PMID: 3528245610.3389/fendo.2022.851879)
      Mertz EL, Makareeva E, Mirigian LS, Koon KY, Perosky JE, Kozloff KM, Leikin S (2016) Makings of a brittle bone: unexpected lessons from a low protein diet study of a mouse OI model. Matrix Biol 52–54:29–42. (PMID: 27039252506145210.1016/j.matbio.2016.03.005)
      Hoyer-Kuhn H, Semler O, Schoenau E, Roschger P, Klaushofer K, Rauch F (2013) Hyperosteoidosis and hypermineralization in the same bone: bone tissue analyses in a boy with a homozygous BMP1 mutation. Calcif Tissue Int 93:565–570. (PMID: 2409180910.1007/s00223-013-9799-2)
      Jovanovic M, Mitra A, Besio R, Contento BM, Wong KW, Derkyi A, To M, Forlino A, Dale RK, Marini JC (2023) Absence of TRIC-B from type XIV Osteogenesis Imperfecta osteoblasts alters cell adhesion and mitochondrial function—a multi-omics study. Matrix Biol 121:127–148. (PMID: 373486831063496710.1016/j.matbio.2023.06.004)
      Fahiminiya S, Majewski J, Mort J, Moffatt P, Glorieux FH, Rauch F (2013) Mutations in WNT1 are a cause of osteogenesis imperfecta. J Med Genet 50:345–348. (PMID: 2343476310.1136/jmedgenet-2013-101567)
    • Contributed Indexing:
      Keywords: Bone lamellae; Bone material; Bone mineralization; Collagen; Osteogenesis imperfecta; Tissue water; Treatment; Woven bone
    • Publication Date:
      Date Created: 20240904 Date Completed: 20241129 Latest Revision: 20241217
    • Publication Date:
      20241218
    • Accession Number:
      10.1007/s00223-024-01263-8
    • Accession Number:
      39231826