Acid-sensing ion channel 3 is a new potential therapeutic target for the control of glioblastoma cancer stem cells growth.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • Subject Terms:
    • Abstract:
      Glioblastoma (GBM) is the most common malignant primary brain cancer that, despite recent advances in the understanding of its pathogenesis, remains incurable. GBM contains a subpopulation of cells with stem cell-like properties called cancer stem cells (CSCs). Several studies have demonstrated that CSCs are resistant to conventional chemotherapy and radiation thus representing important targets for novel anti-cancer therapies. Proton sensing receptors expressed by CSCs could represent important factors involved in the adaptation of tumours to the extracellular environment. Accordingly, the expression of acid-sensing ion channels (ASICs), proton-gated sodium channels mainly expressed in the neurons of peripheral (PNS) and central nervous system (CNS), has been demonstrated in several tumours and linked to an increase in cell migration and proliferation. In this paper we report that the ASIC3 isoform, usually absent in the CNS and present in the PNS, is enriched in human GBM CSCs while poorly expressed in the healthy human brain. We propose here a novel therapeutic strategy based on the pharmacological activation of ASIC3, which induces a significant GBM CSCs damage while being non-toxic for neurons. This approach might offer a promising and appealing new translational pathway for the treatment of glioblastoma.
      (© 2024. The Author(s).)
    • References:
      Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021). (PMID: 3353833810.3322/caac.21660)
      Reifenberger, G., Wirsching, H.-G., Knobbe-Thomsen, C. B. & Weller, M. Advances in the molecular genetics of gliomas—Implications for classification and therapy. Nat. Rev. Clin. Oncol. 14, 434–452 (2017). (PMID: 2803155610.1038/nrclinonc.2016.204)
      Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005). (PMID: 1575800910.1056/NEJMoa043330)
      Hu, Y. et al. Neural network learning defines glioblastoma features to be of neural crest perivascular or radial glia lineages. Sci. Adv. 8, 6340 (2022). (PMID: 10.1126/sciadv.abm6340)
      Rodríguez-Camacho, A. et al. Glioblastoma treatment: State-of-the-art and future perspectives. Int. J. Mol. Sci. 23(13), 7207 (2022). (PMID: 35806212926703610.3390/ijms23137207)
      Corbet, C. & Feron, O. Tumour acidosis: From the passenger to the driver’s seat. Nat. Rev. Cancer 17(10), 577–593 (2017). (PMID: 2891257810.1038/nrc.2017.77)
      Ibrahim-Hashim, A. & Estrella, V. Acidosis and cancer: From mechanism to neutralization. Cancer Metastasis Rev. 38, 149–155 (2019). (PMID: 30806853662583410.1007/s10555-019-09787-4)
      Estrella, V. et al. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res. 73, 1524–1535 (2013). (PMID: 23288510359445010.1158/0008-5472.CAN-12-2796)
      Damaghi, M., Wojtkowiak, J. W. & Gillies, R. J. pH sensing and regulation in cancer. Front. Physiol. 4, 370 (2013). (PMID: 24381558386572710.3389/fphys.2013.00370)
      Hjelmeland, A. B. et al. Acidic stress promotes a glioma stem cell phenotype. Cell Death Differ. 18(5), 829–840 (2011). (PMID: 2112750110.1038/cdd.2010.150)
      Lathia, J. D., Mack, S. C., Mulkearns-Hubert, E. E., Valentim, C. L. L. & Rich, J. N. Cancer stem cells in glioblastoma. Genes Dev. 29, 1203–1217 (2015). (PMID: 26109046449539310.1101/gad.261982.115)
      Lytle, N. K., Barber, A. G. & Reya, T. Stem cell fate in cancer growth, progression and therapy resistance. Nat. Rev. Cancer 18(11), 669–680 (2018). (PMID: 30228301838804210.1038/s41568-018-0056-x)
      Galli, R. et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 64, 7011–7021 (2004). (PMID: 1546619410.1158/0008-5472.CAN-04-1364)
      Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414(6859), 105–111 (2001). (PMID: 1168995510.1038/35102167)
      Piccirillo, S. G. M. et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444(7120), 761–765 (2006). (PMID: 1715166710.1038/nature05349)
      Prevarskaya, N., Skryma, R. & Shuba, Y. Ion channels and the hallmarks of cancer. Trends Mol. Med. 16, 107–121 (2010). (PMID: 2016753610.1016/j.molmed.2010.01.005)
      Liu, C., Zhu, L. L., Xu, S. G., Ji, H. L. & Li, X. M. ENaC/DEG in tumor development and progression. J. Cancer 7, 1888 (2016). (PMID: 27698929503937310.7150/jca.15693)
      Gründer, S., Vanek, J. & Pissas, K. P. Acid-sensing ion channels and downstream signalling in cancer cells: Is there a mechanistic link?. Pflügers Arch.-Eur. J. Physiol. 4, 1–14 (2024).
      Chen, B., Liu, J., Ho, T. T., Ding, X. & Mo, Y. Y. ERK-mediated NF-κB activation through ASIC1 in response to acidosis. Oncogene 512(5), e279–e279 (2016). (PMID: 10.1038/oncsis.2016.81)
      King, P. et al. Regulation of gliomagenesis and stemness through acid sensor ASIC1a. Int. J. Oncol. 59, 1–15 (2021). (PMID: 10.3892/ijo.2021.5262)
      Tian, Y. et al. Glioblastoma cancer stem cell lines express functional acid sensing ion channels ASIC1a and ASIC3. Sci. Rep. 7, 1–14 (2017). (PMID: 10.1038/s41598-017-13666-9)
      Wemmie, J. A. et al. Acid-sensing ion channels in pain and disease. Nat. Rev. Neurosci. 14(7), 461–471 (2013). (PMID: 23783197430701510.1038/nrn3529)
      Boscardin, E., Alijevic, O., Hummler, E., Frateschi, S. & Kellenberger, S. The function and regulation of acid-sensing ion channels (ASICs) and the epithelial Na+ channel (ENaC): IUPHAR review 19. Br. J. Pharmacol. 173, 2671–2701 (2016). (PMID: 27278329499529310.1111/bph.13533)
      Wemmie, J. A. et al. Acid-sensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning. J. Neurosci. 23, 5496–5502 (2003). (PMID: 12843249674125710.1523/JNEUROSCI.23-13-05496.2003)
      Baron, A., Voilley, N., Lazdunski, M. & Lingueglia, E. Acid sensing ion channels in dorsal spinal cord neurons. J. Neurosci. 28, 1498–1508 (2008). (PMID: 18256271667156210.1523/JNEUROSCI.4975-07.2008)
      Deval, E. et al. ASIC3, a sensor of acidic and primary inflammatory pain. EMBO J. 27, 3047–3055 (2008). (PMID: 18923424258516510.1038/emboj.2008.213)
      Lin, Y. W. et al. Identification and characterization of a subset of mouse sensory neurons that express acid-sensing ion channel 3. Neuroscience 151, 544–557 (2008). (PMID: 1808297210.1016/j.neuroscience.2007.10.020)
      Zhang, Z. et al. Acid-sensing ion channel 1a modulation of apoptosis in acidosis-related diseases: Implications for therapeutic intervention. Cell Death Discov. 9(1), 330 (2023). (PMID: 376668231047734910.1038/s41420-023-01624-6)
      Wang, Y., Zhou, H., Sun, Y. & Huang, Y. Acid-sensing ion channel 1: Potential therapeutic target for tumor. Biomed. Pharmacother. 155, 113835 (2022). (PMID: 3627158510.1016/j.biopha.2022.113835)
      Gupta, S. C. et al. Regulation of breast tumorigenesis through acid sensors. Oncogene 35(31), 4102–4111 (2016). (PMID: 2668608410.1038/onc.2015.477)
      Zhu, S. et al. ASIC1 and ASIC3 contribute to acidity-induced EMT of pancreatic cancer through activating Ca2+/RhoA pathway. Cell Death Dis. 8(5), e2806–e2806 (2017). (PMID: 28518134552071010.1038/cddis.2017.189)
      Berdiev, B. K. et al. Acid-sensing ion channels in malignant gliomas. J. Biol. Chem. 278, 15023–15034 (2003). (PMID: 1258418710.1074/jbc.M300991200)
      Litan, A. & Langhans, S. A. Cancer as a channelopathy: Ion channels and pumps in tumor development and progression. Front. Cell. Neurosci. 9, 132394 (2015). (PMID: 10.3389/fncel.2015.00086)
      Yang, M. & Brackenbury, W. J. Membrane potential and cancer progression. Front. Physiol. 4, 185 (2013). (PMID: 23882223371334710.3389/fphys.2013.00185)
      Niklasson, M. et al. Membrane-depolarizing channel blockers induce selective glioma cell death by impairing nutrient transport and unfolded protein/amino acid responses. Cancer Res. 77, 1741–1752 (2017). (PMID: 2808759710.1158/0008-5472.CAN-16-2274)
      Li, W. G., Yu, Y., Zhang, Z. D., Cao, H. & Xu, T. L. ASIC3 channels integrate agmatine and multiple inflammatory signals through the nonproton ligand sensing domain. Mol. Pain 6, 1744–8069 (2010). (PMID: 10.1186/1744-8069-6-88)
      Agharkar, A. S. & Gonzales, E. B. 4-Chlorophenylguanidine is an ASIC3 agonist and positive allosteric modulator. J. Pharmacol. Sci. 133, 184–186 (2017). (PMID: 2825956010.1016/j.jphs.2017.02.007)
      Callejo, G. et al. In silico screening of GMQ-like compounds reveals guanabenz and sephin1 as new allosteric modulators of acid-sensing ion channel 3. Biochem. Pharmacol. 174, 113834 (2020). (PMID: 32027884706865010.1016/j.bcp.2020.113834)
      Yu, Y. et al. A nonproton ligand sensor in the acid-sensing ion channel. Neuron 68, 61–72 (2010). (PMID: 2092079110.1016/j.neuron.2010.09.001)
      Besson, T., Lingueglia, E. & Salinas, M. Pharmacological modulation of acid-sensing ion channels 1a and 3 by amiloride and 2-guanidine-4-methylquinazoline (GMQ). Neuropharmacology 125, 429–440 (2017). (PMID: 2880264710.1016/j.neuropharm.2017.08.004)
      Delaunay, A. et al. Human ASIC3 channel dynamically adapts its activity to sense the extracellular pH in both acidic and alkaline directions. Proc. Natl. Acad. Sci. USA 109, 13124–13129 (2012). (PMID: 22829666342019410.1073/pnas.1120350109)
      Foster, V. S. et al. Acid-sensing ion channels: Expression and function in resident and infiltrating immune cells in the central nervous system. Front. Cell. Neurosci. 15, 738043 (2021). (PMID: 34602982848465010.3389/fncel.2021.738043)
      Minghua, L. et al. Acid-sensing ion channels in acidosis-induced injury of human brain neurons. J. Cereb. Blood Flow Metab. 30, 1247–1260 (2010). (PMID: 10.1038/jcbfm.2010.30)
      Bortner, C. D., Gómez-Angelats, M. & Cidlowski, J. A. Plasma membrane depolarization without repolarization is an early molecular event in anti-Fas-induced apoptosis. J. Biol. Chem. 276, 4304–4314 (2001). (PMID: 1105008010.1074/jbc.M005171200)
      Narayanan, A. et al. The proneural gene ASCL1 governs the transcriptional subgroup affiliation in glioblastoma stem cells by directly repressing the mesenchymal gene NDRG1. Cell Death Differ. 26(9), 1813–1831 (2019). (PMID: 3053828710.1038/s41418-018-0248-7)
      Di Tomaso, T. et al. Immunobiological characterization of cancer stem cells isolated from glioblastoma patients. Clin. Cancer Res. 16, 800–813 (2010). (PMID: 20103663284200310.1158/1078-0432.CCR-09-2730)
      De Ceglia, R. et al. Down-sizing of neuronal network activity and density of presynaptic terminals by pathological acidosis are efficiently prevented by diminazene aceturate. Brain Behav. Immun. 45, 263–276 (2015). (PMID: 2549958310.1016/j.bbi.2014.12.003)
      Pahari S., Sun L., & Alexov E. PKAD: A database of experimentally measured pKa values of ionizable groups in proteins. Database baz024 (2019).
      Yoder, N. & Gouaux, E. The his-gly motif of acid-sensing ion channels resides in a reentrant ‘loop’ implicated in gating and ion selectivity. Elife 9, 1–18 (2020). (PMID: 10.7554/eLife.56527)
      Abraham, M. J. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015). (PMID: 10.1016/j.softx.2015.06.001)
      Schmid, N. et al. Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur. Biophys. J. 40, 843–856 (2011). (PMID: 2153365210.1007/s00249-011-0700-9)
      Sanner, M. F. Python: A programming language for software integration and development. J. Mol. Graph Model. 17, 57–61 (1999). (PMID: 10660911)
      Trott, O. & Olson, A. J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31(2), 455–461 (2010). (PMID: 19499576304164110.1002/jcc.21334)
      Morris, G. M. et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2009). (PMID: 19399780276063810.1002/jcc.21256)
      Casella, G. et al. IL4 induces IL6-producing M2 macrophages associated to inhibition of neuroinflammation in vitro and in vivo. J. Neuroinflamm. 13, 1–10 (2016). (PMID: 10.1186/s12974-016-0596-5)
      Rahman, M. et al. Neurosphere and adherent culture conditions are equivalent for malignant glioma stem cell lines. Anat. Cell Biol. 48, 25–35 (2015). (PMID: 25806119437117810.5115/acb.2015.48.1.25)
      Cortés Franco K.D. et al. Aggressive migration in acidic pH of a glioblastoma cancer stem cell line in vitro is independent of ASIC and KCa3.1 ion channels, but involves phosphoinositide 3-kinase. Pflugers Arch. Eur. J. Physiol. 475, 405–416 (2023).
      Zhou, Z. H. et al. The acid-sensing ion channel, ASIC2, promotes invasion and metastasis of colorectal cancer under acidosis by activating the calcineurin/NFAT1 axis. J. Exp. Clin. Cancer Res. 36, 1–12 (2017). (PMID: 10.1186/s13046-017-0599-9)
      Qian, H. Y. et al. Metformin attenuates bone cancer pain by reducing TRPV1 and ASIC3 expression. Front. Pharmacol. 12, 713944 (2021). (PMID: 34421611837145910.3389/fphar.2021.713944)
      Poon, M. T. C., Bruce, M., Simpson, J. E., Hannan, C. J. & Brennan, P. M. Temozolomide sensitivity of malignant glioma cell lines—A systematic review assessing consistencies between in vitro studies. BMC Cancer 21, 1–9 (2021). (PMID: 10.1186/s12885-021-08972-5)
      Cidado, J. et al. Ki-67 is required for maintenance of cancer stem cells but not cell proliferation. Oncotarget 7, 6281 (2016). (PMID: 26823390486875610.18632/oncotarget.7057)
      Wu, Y. et al. Acid-sensing ion channels contribute to the effect of extracellular acidosis on proliferation and migration of A549 cells. Tumor Biol. 39, 12 (2017). (PMID: 10.1177/1010428317705750)
      Alijevic, O. & Kellenberger, S. Subtype-specific modulation of acid-sensing ion channel (ASIC) function by 2-guanidine-4-methylquinazoline. J. Biol. Chem. 287, 36059–36070 (2012). (PMID: 22948146347627410.1074/jbc.M112.360487)
      Diochot, S. et al. A new sea anemone peptide, APETx2, inhibits ASIC3, a major acid-sensitive channel in sensory neurons. EMBO J. 23, 1516–1525 (2004). (PMID: 1504495339108110.1038/sj.emboj.7600177)
      Beier, D. et al. Temozolomide preferentially depletes cancer stem cells in glioblastoma. Cancer Res. 68, 5706–5715 (2008). (PMID: 1863262310.1158/0008-5472.CAN-07-6878)
      Wu, Y., Franzmeier, S., Liesche-Starnecker, F. & Schlegel, J. Enhanced sensitivity to ALDH1A3-dependent ferroptosis in TMZ-resistant glioblastoma cells. Cells 12(21), 2522 (2023). (PMID: 379476011064913410.3390/cells12212522)
      Yuan, X. et al. Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23, 9392–9400 (2004). (PMID: 1555801110.1038/sj.onc.1208311)
      Laks, D. R. et al. Neurosphere formation is an independent predictor of clinical outcome in malignant glioma. Stem cells 27, 980–987 (2009). (PMID: 1935352610.1002/stem.15)
      Hu, Y. & Gordon, K. S. ELDA: Extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J. Immunol. Methods 347, 70–78 (2009). (PMID: 1956725110.1016/j.jim.2009.06.008)
      Deval, E. et al. Acid-sensing ion channels in postoperative pain. J. Neurosci. 31, 6059–6066 (2011). (PMID: 21508231663295910.1523/JNEUROSCI.5266-10.2011)
      Wang, D. et al. Effects of hypoxia and ASIC3 on nucleus pulposus cells: From cell behavior to molecular mechanism. Biomed. Pharmacother. 117, 109061 (2019). (PMID: 3120217210.1016/j.biopha.2019.109061)
      Walker, K. & Hjelmeland, A. Method for efficient transduction of cancer stem cells. J. Cancer Stem Cell Res. 2, 1 (2014). (PMID: 10.14343/JCSCR.2014.2e1008)
      Rooj, A. K. et al. Glioma-specific cation conductance regulates migration and cell cycle progression. J. Biol. Chem. 287, 4053–4065 (2012). (PMID: 2213066510.1074/jbc.M111.311688)
      Kapoor, N. et al. Knockdown of ASIC1 and epithelial sodium channel subunits inhibits glioblastoma whole cell current and cell migration. J. Biol. Chem. 284, 24526–24541 (2009). (PMID: 19561078278204410.1074/jbc.M109.037390)
      Kellenberger, S. & Schild, L. International Union of Basic and Clinical Pharmacology. XCI. Structure, function, and pharmacology of acid-sensing ion channels and the epithelial Na+ channel. Pharmacol. Rev. 67, 1–35 (2015). (PMID: 2528751710.1124/pr.114.009225)
      Cheng, Q. et al. Novel insights into ion channels in cancer stem cells (review). Int. J. Oncol. 53, 1435–1441 (2018). (PMID: 30066845)
      Takayasu, T., Kurisu, K., Esquenazi, Y. & Ballester, L. Y. Ion channels and their role in the pathophysiology of gliomas. Mol. Cancer Ther. 19, 1959–1969 (2020). (PMID: 33008831757739510.1158/1535-7163.MCT-19-0929)
      Pollak, J. et al. Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy. PLoS One 12, e0172884 (2017). (PMID: 28264064533877910.1371/journal.pone.0172884)
      Pöhlmann, J. et al. High costs, low quality of life, reduced survival, and room for improving treatment: An analysis of burden and unmet needs in glioma. Front. Oncol. 14, 1368606 (2024). (PMID: 385715091098784110.3389/fonc.2024.1368606)
      Li, W. G. & Xu, T. L. ASIC3 channels in multimodal sensory perception. ACS Chem. Neurosci. 2, 26–37 (2011). (PMID: 2277885410.1021/cn100094b)
      Dulai, J. S., Smith, E. S. J. & Rahman, T. Acid-sensing ion channel 3: An analgesic target. Channels 15, 94–127 (2021). (PMID: 33258401780112410.1080/19336950.2020.1852831)
    • Accession Number:
      0 (Acid Sensing Ion Channels)
      0 (ASIC3 protein, human)
    • Publication Date:
      Date Created: 20240903 Date Completed: 20240904 Latest Revision: 20241011
    • Publication Date:
      20241011
    • Accession Number:
      PMC11372124
    • Accession Number:
      10.1038/s41598-024-71623-9
    • Accession Number:
      39227705