Osteoinductive potential of graphene and graphene oxide for bone tissue engineering: a comparative study.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: BioMed Central Country of Publication: England NLM ID: 101265112 Publication Model: Electronic Cited Medium: Internet ISSN: 1749-799X (Electronic) Linking ISSN: 1749799X NLM ISO Abbreviation: J Orthop Surg Res Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : BioMed Central, 2006-
    • Subject Terms:
    • Abstract:
      Background: Bone defects, especially critical-size bone defects, and their repair pose a treatment challenge. Osteoinductive scaffolds have gained importance given their potential in bone tissue engineering applications.
      Methods: Polycaprolactone (PCL) scaffolds are used for their morphological, physical, cell-compatible and osteoinductive properties. The PCL scaffolds were prepared by electrospinning, and the surface was modified by layer-by-layer deposition using either graphene or graphene oxide.
      Results: Graphene oxide-coated PCL (PCL-GO) scaffolds showed a trend for enhanced physical properties such as fibre diameter, wettability and mechanical properties, yield strength, and tensile strength, compared to graphene-modified PCL scaffolds (PCL-GP). However, the surface roughness of PCL-GP scaffolds showed a higher trend than PCL-GO scaffolds. In vitro studies showed that both scaffolds were cell-compatible. Graphene oxide on PCL scaffold showed a trend for enhanced osteogenic differentiation of human umbilical cord Wharton's jelly-derived Mesenchymal Stem Cells without any differentiation media than graphene on PCL scaffolds after 21 days.
      Conclusion: Graphene oxide showed a trend for higher mineralisation, but this trend is not statistically significant. Therefore, graphene and graphene oxide have the potential for bone regeneration and tissue engineering applications. Future in vivo studies and clinical trials are warranted to justify their ultimate clinical use.
      (© 2024. The Author(s).)
    • References:
      ACS Appl Mater Interfaces. 2017 Dec 13;9(49):42589-42600. (PMID: 29148704)
      J Biomech. 2004 May;37(5):623-36. (PMID: 15046991)
      Cells Tissues Organs. 2012;195(3):207-21. (PMID: 21540560)
      Materials (Basel). 2018 Aug 14;11(8):. (PMID: 30110908)
      Surgeon. 2019 Aug;17(4):244-255. (PMID: 30170915)
      ACS Appl Mater Interfaces. 2015 Mar 25;7(11):6331-9. (PMID: 25741576)
      Acta Biomater. 2010 Aug;6(8):3004-12. (PMID: 20144749)
      Biomaterials. 2014 Jan;35(4):1176-84. (PMID: 24211076)
      Tissue Eng Regen Med. 2017 Jan 17;14(1):1-14. (PMID: 30603457)
      Biomaterials. 2004 Mar-Apr;25(7-8):1365-73. (PMID: 14643611)
      J Orthop Surg Res. 2014 Mar 17;9(1):18. (PMID: 24628910)
      Colloids Surf B Biointerfaces. 2013 Apr 1;104:229-38. (PMID: 23333912)
      Carbohydr Polym. 2021 May 15;260:117780. (PMID: 33712136)
      J Nanosci Nanotechnol. 2017 Apr;17(4):2320-328. (PMID: 29640156)
      Int J Biol Macromol. 2018 Apr 15;110:514-521. (PMID: 29155154)
      Materials (Basel). 2017 Jan 13;10(1):. (PMID: 28772425)
      Cytotherapy. 2010 Apr;12(2):143-53. (PMID: 20141338)
      ACS Nano. 2011 Jun 28;5(6):4670-8. (PMID: 21528849)
      Int J Nanomedicine. 2020 Oct 06;15:7523-7551. (PMID: 33116486)
      Biomaterials. 2006 Dec;27(35):5871-82. (PMID: 16938344)
      Sci Rep. 2017 Nov 30;7(1):16641. (PMID: 29192253)
      Tissue Eng. 2001 Dec;7(6):679-89. (PMID: 11749726)
      J Biomed Mater Res A. 2010 Sep 15;94(4):1312-20. (PMID: 20694999)
      Acta Biomater. 2017 Mar 15;51:447-460. (PMID: 28126596)
      Nanotoxicology. 2022 Feb;16(1):1-15. (PMID: 35085045)
      Theranostics. 2012;2(3):283-94. (PMID: 22448195)
      Nano Res. 2019;12(2):247-264. (PMID: 32218914)
      J Tissue Eng Regen Med. 2018 Apr;12(4):936-960. (PMID: 28714236)
      J Craniomaxillofac Surg. 2014 Dec;42(8):2002-9. (PMID: 25458345)
      Biomaterials. 2001 Jun;22(11):1241-51. (PMID: 11336296)
      PLoS One. 2013 May 29;8(5):e65438. (PMID: 23734254)
      J Orthop Surg Res. 2022 Jan 21;17(1):36. (PMID: 35062984)
      J Biol Regul Homeost Agents. 2019 Mar-Apr;33(2 Suppl. 1):89-95. XIX Congresso Nazionale S.I.C.O.O.P. Societa' Italiana Ch. (PMID: 31169015)
      J Mater Chem B. 2014 Sep 7;2(33):5461-5467. (PMID: 32261766)
      Colloids Surf B Biointerfaces. 2017 Nov 1;159:293-302. (PMID: 28802737)
      Biochem Biophys Res Commun. 2018 Mar 18;497(4):1011-1017. (PMID: 29470980)
      ACS Nano. 2011 Sep 27;5(9):7334-41. (PMID: 21793541)
      Br Med Bull. 2021 Dec 16;140(1):50-61. (PMID: 34553227)
      J R Soc Interface. 2010 Mar 6;7(44):453-65. (PMID: 19640877)
    • Contributed Indexing:
      Keywords: Bone defects; Bone tissue engineering; Graphene; Osteogenic differentiation; Osteoinductivity; Scaffolds; Umbilical cord
    • Accession Number:
      7782-42-5 (Graphite)
      0 (graphene oxide)
      24980-41-4 (polycaprolactone)
      0 (Polyesters)
    • Publication Date:
      Date Created: 20240830 Date Completed: 20240831 Latest Revision: 20240902
    • Publication Date:
      20240902
    • Accession Number:
      PMC11365281
    • Accession Number:
      10.1186/s13018-024-05028-9
    • Accession Number:
      39215309