Human Skeletal Muscle Myoblast Culture in Aligned Bacterial Nanocellulose and Commercial Matrices.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: American Chemical Society Country of Publication: United States NLM ID: 101504991 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1944-8252 (Electronic) Linking ISSN: 19448244 NLM ISO Abbreviation: ACS Appl Mater Interfaces Subsets: MEDLINE
    • Publication Information:
      Original Publication: Washington, D.C. : American Chemical Society
    • Subject Terms:
    • Abstract:
      Bacterial nanocellulose (BNC) is a durable, flexible, and dynamic biomaterial capable of serving a wide variety of fields, sectors, and applications within biotechnology, healthcare, electronics, agriculture, fashion, and others. BNC is produced spontaneously in carbohydrate-rich bacterial culture media, forming a cellulosic pellicle via a nanonetwork of fibrils extruded from certain genera. Herein, we demonstrate engineering BNC-based scaffolds with tunable physical and mechanical properties through postprocessing. Human skeletal muscle myoblasts (HSMMs) were cultured on these scaffolds, and in vitro electrical stimulation was applied to promote cellular function for tissue engineering applications. We compared physiologic maturation markers of human skeletal muscle myoblast development using a 2.5-dimensional culture paradigm in fabricated BNC scaffolds, compared to two-dimensional (2D) controls. We demonstrate that the culture of human skeletal muscle myoblasts on BNC scaffolds developed under electrical stimulation produced highly aligned, physiologic morphology of human skeletal muscle myofibers compared to unstimulated BNC and standard 2D culture. Furthermore, we compared an array of metrics to assess the BNC scaffold in a rigorous head-to-head study with commercially available, clinically approved matrices, Kerecis Omega3 Wound Matrix (Marigen) and Phoenix as well as a gelatin methacryloyl (GelMA) hydrogel. The BNC scaffold outcompeted industry standard matrices as well as a 20% GelMA hydrogel in durability and sustained the support of human skeletal muscle myoblasts in vitro. This work offers a robust demonstration of BNC scaffold cytocompatibility with human skeletal muscle cells and sets the basis for future work in healthcare, bioengineering, and medical implant technological development.
    • References:
      J Biomed Res. 2021 May 14;35(4):310-317. (PMID: 34253695)
      Biomacromolecules. 2000 Spring;1(1):31-8. (PMID: 11709840)
      Microb Biotechnol. 2019 Jul;12(4):650-661. (PMID: 31119894)
      Annu Rev Biochem. 2015;84:895-921. (PMID: 26034894)
      Biomacromolecules. 2020 May 11;21(5):1739-1751. (PMID: 31945299)
      J Am Acad Orthop Surg. 2011;19 Suppl 1:S35-7. (PMID: 21304045)
      Biomed Mater. 2021 Oct 19;16(6):. (PMID: 34587593)
      Microb Biotechnol. 2019 Jul;12(4):633-649. (PMID: 30883026)
      J Integr Plant Biol. 2010 Feb;52(2):161-75. (PMID: 20377678)
      Sci Rep. 2021 Jan 22;11(1):2127. (PMID: 33483525)
      J Gastrointest Surg. 2022 Apr;26(4):950-964. (PMID: 35064459)
      Small. 2019 Sep;15(36):e1902232. (PMID: 31328877)
      ACS Mater Au. 2023 Jun 27;3(5):418-441. (PMID: 38089096)
      Cells Tissues Organs. 2016;202(3-4):180-188. (PMID: 27825160)
      Physiol Rev. 2013 Jan;93(1):23-67. (PMID: 23303905)
      Biotechnol Adv. 2020 Jul - Aug;41:107549. (PMID: 32302653)
      Polymers (Basel). 2021 Jun 24;13(13):. (PMID: 34202870)
      Biomaterials. 2015 Dec;73:23-31. (PMID: 26398306)
      Surg Laparosc Endosc Percutan Tech. 2011 Apr;21(2):82-5. (PMID: 21471797)
      Int Urogynecol J Pelvic Floor Dysfunct. 2008 Mar;19(3):375-80. (PMID: 17846702)
      Mater Sci Eng C Mater Biol Appl. 2013 Dec 1;33(8):4599-607. (PMID: 24094166)
      Biomacromolecules. 2014 Jul 14;15(7):2327-46. (PMID: 24914454)
      Plant Physiol. 2010 Oct;154(2):483-6. (PMID: 20921169)
      Chin Med J (Engl). 2014;127(23):4130-9. (PMID: 25430462)
      ACS Biomater Sci Eng. 2020 May 11;6(5):3046-3054. (PMID: 33463300)
      ACS Biomater Sci Eng. 2021 Nov 8;7(11):5215-5229. (PMID: 34668692)
      Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:245-276. (PMID: 15012210)
      Int J Biol Macromol. 2017 Nov;104(Pt A):97-106. (PMID: 28587970)
      Surg Endosc. 2012 Feb;26(2):566-75. (PMID: 21898010)
      Biomacromolecules. 2010 Sep 13;11(9):2498-504. (PMID: 20690614)
      Mater Today Bio. 2020 Oct 13;8:100081. (PMID: 33210083)
      Adv Clin Chem. 2004;38:37-85. (PMID: 15521188)
      ACS Biomater Sci Eng. 2019 Nov 11;5(11):5968-5978. (PMID: 33405719)
      Nano Lett. 2017 Oct 11;17(10):6487-6495. (PMID: 28956933)
      Ann Biomed Eng. 2010 Aug;38(8):2475-84. (PMID: 20300846)
      J Surg Res. 1999 Feb;81(2):189-95. (PMID: 9927539)
      Gefasschirurgie. 2018;23(Suppl 2):46-55. (PMID: 30147244)
      Biomaterials. 2012 Aug;33(23):5732-41. (PMID: 22594976)
      Biomaterials. 2019 Jun;206:160-169. (PMID: 30939408)
      Langenbecks Arch Surg. 2018 Mar;403(2):255-263. (PMID: 29214543)
      Acta Biomater. 2015 Oct;25:2-15. (PMID: 26219862)
      Materials (Basel). 2020 May 29;13(11):. (PMID: 32486040)
      Plast Reconstr Surg. 2022 Aug 1;150(2):290e-299e. (PMID: 35653544)
      Bioengineering (Basel). 2020 Sep 30;7(4):. (PMID: 33007935)
    • Grant Information:
      T32 AR065972 United States AR NIAMS NIH HHS
    • Contributed Indexing:
      Keywords: aligned; bacterial nanocellulose; bioreactor; electrically stimulated; epitaxial; human skeletal muscle myoblasts; hydrogel; mesh; soft-tissue reconstruction
    • Accession Number:
      9004-34-6 (Cellulose)
      0 (Biocompatible Materials)
      0 (Hydrogels)
    • Publication Date:
      Date Created: 20240829 Date Completed: 20240912 Latest Revision: 20240918
    • Publication Date:
      20240918
    • Accession Number:
      PMC11403597
    • Accession Number:
      10.1021/acsami.4c07612
    • Accession Number:
      39206938